API src

Found 1523 results.

VP-3.2./BioWPC

Das Projekt "VP-3.2./BioWPC" wird vom Umweltbundesamt gefördert und von Erfurt.Sasse Industry Holding GmbH & Co. KG durchgeführt. Das Vorhaben zielt auf eine weitere Steigerung des Einsatzes nachwachsender Rohstoffe und eine langfristige sowie weitgehende Umstellung chemischer Produktionsprozesse auf nachwachsende Rohstoffe. Dafür sind neue inter- und transdisziplinäre Ansätze in Forschung, Entwicklung und Produktion erforderlich. Die Umsetzung dieser anspruchsvollen Zielstellungen erfordert einen nicht unerheblichen technischen und finanziellen Aufwand. Sie ist nur durch eine integrale Betrachtung von Prozessen vom Labor- bis zum Produktionsmaßstab möglich. Daher sind im Projekt Partner entlang der gesamten Wertschöpfungskette beteiligt. Auf Grund der Dimension und der Ziele des Vorhabens kommt der Einbindung eines integrierten Chemieverbund-Standortes wesentliche Bedeutung zu, insbesondere um den Ansatz der Bio-Raffinerie zu realisieren. Die Zuwendung würde dazu beitragen, dass die industriellen Partner (KMU und Großunternehmen) ihre F&E Tätigkeit im Bereich nachwachsender Rohstoffe intensivieren würden und Tätigkeiten aufnehmen würden, die sie sonst nur in sehr beschränktem Umfang durchführen könnten. Bei der Umsetzung des Projektes sind umfangreiche wissenschaftlich-technische Fragen zu klären, die die industriellen und wissenschaftlichen Partner nicht mit eigenen Mitteln lösen können. Versuche zur Dosierung von Partikeln verschiedener Größen und Schlankheitsgrade (Späne, Fasern) und Holzarten.

Teil II

Das Projekt "Teil II" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Institut für Siedlungs- und Industriewasserwirtschaft durchgeführt. Schwerpunkt der Untersuchungen ist es, den Nutzungsgrad fuer das innerhalb der Abwasser-/Abfallaufbereitung anfallende Biogas zu steigern. Durch ein Verfahren zur biologischen Trennung von Methan und Kohlendioxid mit Hilfe von Algenkulturen wird der Brennwert des Gases erhoeht und dem von Erdgas angenaehert. Die Grundlagenuntersuchungen zur Entwicklung geeigneter Reaktoren werden vom Kooperationspartner energy of nature Projektgesellschaft fuer umwelttechnische Anlagensysteme Leipzig mbH durchgefuehrt. Der vorliegende Antrag beinhaltet die Verfahrensgestaltung, worin die zu entwickelnden speziellen Reaktoren eingebunden werden.

Sub project 1

Das Projekt "Sub project 1" wird vom Umweltbundesamt gefördert und von Forschungszentrum Jülich GmbH, Institut für Bio-und Geowissenschaften (IBG), IBG-1: Biotechnologie durchgeführt. Die Nutzung von nachwachsenden Rohstoffen mit Mikroorganismen hat zu vielen Produktionsprozessen in der Industriellen Biotechnologie geführt. Vielfach wird eine Verminderung der Leistungsfähigkeit der Mikroorganismen bei der Maßstabsvergrößerung in den Produktionsmaßstab beobachtet. Ein Grund dafür ist die Inhomogenität von großen Bioreaktoren. Das Ziel des Vorhabens ist es, die metabolischen Vorgänge in den mikrobiellen Zellen auf der Ebene der Stoffflüsse und Metaboliten besser zu verstehen, um damit Ansatzpunkte für die Verbesserung der Verfahren und Prozesse zu untersuchen. Die Arbeiten werden sich dabei auf ein Produkt aus dem Bereich der Bulk-Chemikalien und E. coli als Produktionsorganismus konzentrieren. Mit dem Einsatz eines sogenannten Scale-down Bioreaktors kann das inhomogene Verhalten von großen Bioreaktoren im Labormaßstab nachgestellt und die dabei beteiligten metabolischen Prozesse untersucht werden. Für die Beobachtung der metabolischen Konsequenzen dieser inhomogenen Bedingungen auf den Stoffwechsel und seine Leistungsfähigkeit wird das Werkzeug der 13C-basierten Stoffflussanalyse für den Einsatz im Scale-down Bioreaktor entwickelt und eingesetzt. Ein wichtiger Fokus liegt hierbei auf der Identifizierung der metabolischen Unterschiede zwischen Kultivierungen im Scale-down Ansatz und ideal durchmischten Laborbioreaktoren unter Zuhilfenahme von Bioprozessbilanzierung, Omics-Technologien und Netzwerkmodellierung.

Teilprojekt 10

Das Projekt "Teilprojekt 10" wird vom Umweltbundesamt gefördert und von Zweckverband Klärwerk Steinhäule durchgeführt. Für die Kläranlage Steinhäule soll durch halbtechnische Versuche die technische und wirtschaftliche optimale Lösung zur Erweiterung der Anlagen um eine 5. Reinigungsstufe (Ozon-, Membran-, Filtration- und UV-Verfahren) zur Elimination von antibiotikaresistenter Keime für eine großtechnische Umsetzung gefunden werden. 1. Anlageninstallation durch Xylem und Steinhäule Jan.,Febr.,Mai,Juni,Sept.,Okt. 2016/17/18 2. Abstimmung der Testphasen Febr., Juni, Sept. 2016,2017,2018 3. Probenahme Febr. April, Juni, Aug., Okt. Dez. 2016,2017,2018 4. Laboruntersuchungen Jan - Dez. 2016,2017, 2018 5. Modifikationen der Anlagen April , Mai, Okt., Nov. 2016,2017,2018 6. Vergleich der mikrobiologischen Daten Okt. -. Dez. 2016,2017,2018 7. Erfassung von Regenerationspotentialen Juni - Dez. 2016,2017,2018.

Teilprojekt 7

Das Projekt "Teilprojekt 7" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Institut IWAR, Fachgebiet Stoffstrommanagement und Ressourcenwirtschaft durchgeführt. Übergeordnetes Ziel von PLASTRAT ist die Entwicklung unterschiedlicher Lösungsstrategien aus den Bereichen Technik, Green Economy und sozial-ökologischer Forschung, die zur Minderung von Plastikeinträgen in das limnische Milieu urbaner Siedlungsräume beitragen. Ziel aller Ansätze von PLASTRAT ist dabei die Ableitung von Bewertungsparametern zur Kategorisierung umweltfreundlicher Kunststoffspezies und definierter Maßnahmen zur Risikominimierung von Plastikrückständen in limnischen Systemen. Das Institut IWAR der TU Darmstadt ist hauptverantwortlich für das Arbeitspaket 1 (AP 1) Mikroplastik im 'urbanen Wasserkreislauf' (vom 01.08.2017 bis 31.10.2017) und AP 2.3 'De- / Adsorption von Stoffen auf Mikroplastik' (vom 01.08.2017 bis 31.07.2020). Für AP 1 wird die TU Darmstadt Informationen und Daten sammeln, die zur Planung und Umsetzung von AP 2.3 genutzt werden. Die Literaturrecherche umfasst Mikroplastik und Schadstoffe in Kläranlagen. Die Hauptaufgabe von IWAR ist AP 2.3, hier wird das Adsorptions- und Desorptionsverhalten ausgewählter Schadstoffe auf Mikroplastik mit bekannter Herkunft und Eigenschaften in einem Langzeittest untersucht. Die Materialien für den Desorptionsversuch des Feldversuchs werden in AP 2.3.1 vorbereitet. Genaue Orte für den Implementierungstest werden ausgewählt und der Implementierungstest in AP 2.3.2 ausgeführt. Die ersten Proben werden im ersten Quartal 2018 gesammelt und im IWAR-Labor analysiert. Die Dauer des Langzeittests beträgt max. 24 Monate. In AP 2.3.3 werden die Messergebnisse des Langzeittests (AP 2.3.2) zusammengetragen und den Stakeholder (AP 6) vorgelegt, zur Bewertung der Umweltfreundlichkeit von Mikroplastik sowie Parameter sowie der Entwicklung von Maßnahmen zur Minimierung der Risiken bestimmter Schadstoffe enthalten, die auf Kunststoffen in den Kläranlagen aufgeladen werden.

Teil 1

Das Projekt "Teil 1" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Wasserbau durchgeführt. In einer Machbarkeitsstudie soll die Möglichkeit untersucht werden, ob CKW-Fahnen unter Einsatz von Eisenkolloiden, die in den Untergrund eingebracht werden, saniert werden können. Durch die wiederholte Injektion von relativ geringen Eisenmengen könnte so eine im Vergleich zu reaktiven Eisenwänden - kostengünstige Sicherung von CKW-Altlasten, die sich einer konventionellen Sanierung entziehen, erreicht werden. Die hier skizzierte Technik soll im Hinblick auf die praktische Anwendbarkeit bei konkreten Feldfällen überprüft werden. Die grundsätzliche Funktion dieser Maßnahme konnte in Vorversuchen nachgewiesen werden. Um eine praktikable Reichweite der Injektion zu erreichen, was in den Vorversuchen nicht gelang, sollen deshalb hier die relevanten Randbedingungen in 2D-Versuchen und 3D-Versuchen in VEGAS optimiert werden. Dazu werden neuartige Eisenkolloide von Forschungszentrum Karlsruhe entwickelt und in klein- und mittelskaligen Versuchen in VEGAS auf Ihre hydraulische und chemische Eignung überprüft.

Teilprojekt 1

Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Engler-Bunte-Institut, Bereich Gas, Erdöl und Kohle durchgeführt. 1. Vorhabenziel: Das Verbundprojekt soll über 3 Jahre laufen (7 Partner: 3 x Forschung, 4 x Industrie). Ziel ist die Entwicklung eines Konzepts zur Speicherung der bei Wind und Photovoltaik volatil anfallenden elektrischen Energie durch Fixierung von CO2 in Form von CH4. Zur Erzeugung des CH4 aus Strom wird durch Druckelektrolyse H2 gewonnen. Anschließend wird der Wasserstoff zu Methan umgesetzt: CO2 + 4H2 - größer als oder gleich CH4 + 2H2O Das Methan muss vor der Einspeisung ins Erdgasnetz konditioniert werden. Dazu sollen alternative Stoffe ermittelt werden, die die derzeit übliche Konditionierung durch fossiles Flüssiggas ersetzen können. Aufgabe des DVGW ist eine Reaktorkonzeptentwicklung zur Methanisierung. Für die exotherme Reaktion kann der Wärmehaushalt durch den Einsatz von funktionalen Flüssigkeiten wie Ionischen Fluiden optimal gesteuert und die Wärme auf einem hohen Temperaturniveau aus dem Reaktor entnommen werden. Damit kann die Ressourceneffizienz erhöht werden. Die Modellierung des Reaktors soll ein Scale Up auf technische Reaktoren ermöglichen. Zudem soll die intelligente Kopplung der Methanisierung mit CO2-Quellen untersucht werden. 2. Arbeitsplanung: Anfangs werden geeignete Wärmeträgerflüssigkeiten (z. B. IL) ermittelt. Parallel hierzu wird eine Apparatur zur Drei-Phasen-Methanisierung aufgebaut und betrieben. Die Erkenntnisse sollen als Basis für die Modellierung des Reaktors mit Matlab dienen. Am Ende des Projektes soll ein großtechnischer Reaktor grob ausgelegt werden.

Modelling of the impact on ozone and other chemical compounds in the atmosphere from airplane emissions

Das Projekt "Modelling of the impact on ozone and other chemical compounds in the atmosphere from airplane emissions" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre Oberpfaffenhofen durchgeführt. General Information: Summary Observations have shown that ozone levels in the upper troposphere (UT) and the lower stratosphere (LS) have changed over the last two to three decades. The observed reductions in the LS, which has been seen in the Northern Hemisphere during the last decade most probably are caused by man made emissions (CFCs and bromine compounds) in conjunction with particles and PSCs formation. For the UT, observations have shown an ozone increase for at least two decades, but less so the last few years. The causes of these changes are poorly understood. Modelling studies have been used to estirnate the impact of different man made sources on the chemical composition, and on ozone in particular in the UT and the LS. These studies show that there are significant uncertainties in the estimates of the impact which are a result of limited knowledge of atmospheric processes and which have to be improved in order to come up with better estimates of the impact of aircraft emissions on ozone in the UT and the LS. Emissions from aircraft (NOx, H20, SO2 and soot) at cruising altitudes are likely to affect the ozone chemistry in the UT and the LS in two ways: directly through enhanced photochemical activity (emission of NOx and water vapour), and through enhanced particle formation from NOx, water vapour and SO2. The impact of aircraft emissions is of particular importance to study, as the emissions are projected to grow rapidly over the next two decades compared to emissions from most other sources, and because there are significant regional differences in the impact on ozone and in the projected growth in the emissions. It is therefore likely that future aircraft emissions have the potential to perturb ozone levels significantly. The overall objective of the study is to improve our scientific basis for estimates of the impact of aircraft emissions on the chemical composition in the UT and in the LS, and to perform 3-D model studies of the large scale (regional to hemispheric) perturbation of ozone from a projected future fleet of subsonic and supersonic aircraft. Focus in the study will be on two main areas: a) The role of heterogeneous processes in the UT and the LS and how these processes can be parameterised in global 3-D CTMs, and b) modelling studies of the future impact of subsonic as well as supersonic traffic on the ozone in the UT and the LS, with particular emphasis on the regional contribution to global scale ozone from regions with the largest projected traffic (Europe - US, South Asia and surrounding areas). The tools for these studies will be state of the art 3-D CTMs (Chemical Tracer Models) available among the participating groups. The CTMs have different spatial resolution, transport parameterisation, and parameterisation of the chemical processes, including heterogeneous chemistry,... Prime Contractor: University of Oslo, Department of Geophysics; Oslo; Norway.

Automated measuring system for waste from dismantling of the KKN plant, to be released

Das Projekt "Automated measuring system for waste from dismantling of the KKN plant, to be released" wird vom Umweltbundesamt gefördert und von NIS Ingenieurgesellschaft mbH durchgeführt. Objective: an important task in the decommissioning of nuclear installations is the proof of the very low radioactivity levels, allowing for free release of the generated waste. This proof involves long measuring times on a great number of representative samples out of important masses of metal structures and concrete, and considerable radiation exposure of the measuring staff. The main objective of the present research is the development, construction and large-scale testing of a prototype for an automatic measuring system, appropriate to treat important masses of waste, with low-level activities and different nuclide compositions and shapes. It is expected to minimise human errors by automatic operation. The measuring system will be designed as a mobile unit, with a modular structure allowing for a general purpose application to lwr typical waste arising, at different decommissioning sites. The practical testing will be done a total mass of 1000 mg in the framework of the kkn decommissioning. The study will be completed by a conclusive assessment of the merits of the developed measuring system for large-scale operation. General information: b.1.conceptual studies for the definition of the requirements for a measuring system, including assessment of existing low-level activity measuring techniques, definition of the types of waste to be treated, and health physics protection considerations. B.2. Preparation of a design of the complete measuring system, including detectors, control and transport system, general purpose software for measuring data processing, followed by a call for tenders and the choice of manufactures. B.3. Preparation of a licensing dossier for experimental operation of the measuring system programme. In the framework of the decommissioning of kkn. B.4. Execution of a large-scale test programme. B.5.conclusive assessment of the appropriateness of the developed measuring system, considering technical and economic aspects. Achievements: the dismantling of nuclear facilities requires proof that the radioactivity levels of materials to be released from restricted areas remain below low limiting values. Up till now, decisive measurements have been almost impossible on parts and material with complex geometries. In order to keep measurement costs low, a device has been developed which uses a fast automatic procedure to examine large amounts of dismantled and potentially contaminating components. The device measures the gross gamma-radiation which has a higher penetrating capacity into the material than beta radiation. The measuring tunnel is 1.2 m broad and 1.2 m high. Parts to be measured can be up to 4 m long and weigh 1 tonne. Analysis of measurements has shown that the specified minimal detectable activity level of 1000 bq cobalt-60 can be achieved, even with steel shielding of 2 cm thickness.

VP2.8 - Teilprojekt A

Das Projekt "VP2.8 - Teilprojekt A" wird vom Umweltbundesamt gefördert und von Fraunhofer-Zentrum für Chemisch-Biotechnologische Prozesse durchgeführt. Ziel des Projektes ist die Entwicklung eines neuen Verfahrens zur Gewinnung von Phytosterolen aus dem Kraft-Aufschluss von Nadelholz. Dabei wird angestrebt, diese im Kiefernholz natürlich vorkommenden bioaktiven Bestandteile so zu extrahieren und aufzureinigen, dass sie zur Herstellung von Kosmetika und Nahrungsergänzungsmitteln eingesetzt werden können. An die Verfahrensentwicklung im Labormaßstab schließen sich der Scale-up des entwickelten Verfahrens in den Technikumsmaßstab sowie die Vorbereitung der industriellen Umsetzung des Prozesses am Zellstoffwerk Stendal an. Bei der Herstellung von Kraftzellstoff aus Kiefern- und Fichtenholz sammeln sich die Holzextraktstoffe in konzentrierter Form als Nebenproduktstrom an. Die Mischung der verschiedenen Holzextraktstoffe enthält auch Sterole in nicht unerheblichen Mengen. Die Verwendung von Sterolen im Rahmen von Formulierungen für (Natur)kosmetika oder auch Nahrungsmitteln ist ein wachsendes Feld mit hoher Wertschöpfung. Gegenüber etablierten Verfahren der Phytosterolgewinnung aus Destillationsrückständen der Tallölraffination werden deutliche wirtschaftliche Vorteile und Verbesserungen der Produktqualität erwartet. Das Fraunhofer CBP untersucht zu Beginn im Labormaßstab ein Extraktionsverfahren mit umweltfreundlichen Alternativen zu gängigen Lösungsmitteln. Basierend auf den Ergebnissen der Laborversuche wird dann das optimierte Gesamtverfahren am CBP in den Technikumsmaßstab überführt.

1 2 3 4 5151 152 153