technologyComment of kaolin production (RER, RoW): There exist two different processes for the production of market kaolin - a dry and a wet process. The first one - the dry process - is relatively simple but yields therefore also a lower quality product, reflecting the quality found in the crude kaolin. The wet process on the other hand side is used to produce filler and coating grades. It is this process that is modeled in this dataset. The most important four steps of the wet process are the following: - Mining: Nowadays most of kaolin mining is done in open pit mining. Depending on the composi-tion, either mining with shovels, draglines, motorized scrapers and front-end loaders is done (e.g. Georgia, USA) or mining with high-pressure hydraulic monitors (e.g. Cornwall, UK) is done. In the second case, a stream of water is washing out the fine particle kaolin and is leaving the coarse quartz and mica residues within the soil. - Mineral separation (degritting): Kaolin beeing a mineral, it is obvious that there are always also other minerals (the grit) in the kaolin deposits, which have to be separated. To separate two miner-als, either physical or chemical differences between the two substances are taken as base. In gen-eral, the mined kaolin is mixed therefore with water and a dispersing chemical to form a slurry that is then degritted (by e.g. rake classifiers, hydrocyclones or screens). - Kaolin benefication: When the separated kaolin fullfills not the specification asked a benefication process is added to improve e.g. the brightness (either by magnetic separation or by bleaching with ozone or hydrogen peroxide), the rheology (by blending different kaolins), the purity (either by blending or by magnetic separation) or the grain size distribution (again blending as a possibility). In this step, the producer is also deciding the form of delivery (bulk, powder, slurry). - Storage & transport: The storage is done either in silos (bulk and powder) or in tanks (slurries). Due to the fact that customers more and more apply for the 'just in time' principle, the storage ca-pacities of the producers are increasing and the transports are done more and more by lorry to the customer (more flexible than other means of transport). References: Hischier R. (2007) Life Cycle Inventories of Packagings & Graphical Papers. ecoinvent report No. 11. Swiss Centre for Life Cycle Inventories, Dübendorf, 2007.
technologyComment of barite production (CA-QC, RER, RoW): Barite is mined both in open pit and underground mines. About 60 to 120 kg of Barite can be yielded from one cubic meter of ore. The ore is transported via lorry (usually less than 5km) to a washing installation. Subsequently, it is separated from the water and grinded wet or dry. Between 65% and 85% of barite contained in the ore can be extracted. This dataset includes resource extraction and processing of the material. technologyComment of niobium mine operation and beneficiation, from pyrochlore ore (BR, RoW): Open-pit mining is applied and hydraulic excavators are used to extract the ore with different grades, which is transported to stockpiles awaiting homogenization through earth-moving equipment in order to attain the same concentration. Conveyor belts (3.5 km) are utilized to transport the homogenized ore to the concentration unit. Initially, the ore passes through a jaw crusher and moves to the ball mills, where the pyrochlore grains (1 mm average diameter) are reduced to diameters less than 0.104 mm. In the ball mills, recycled water is added in order to i) granulate the concentrate and ii) remove the gas from the sintering unit. The granulated ore undergoes i) magnetic separation, where magnetite is removed and is sold as a coproduct and ii) desliming in order to remove fractions smaller than 5μm by utilizing cyclones. Then the ore enters the flotation process - last stage of the beneficiation process – where the pyrochlore particles come into contact with flotation chemicals (hydrochloric & fluorosilic acid, triethylamene and lime), thereby removing the solid fractions and producing pyrochlore concentrate and barite as a coproduct which is also sold. The produced concentrate contains 55% Nb2O5 and 11% water and moves to the sintering unit, via tubes or is transported in bags while the separated and unused minerals enter the tailings dam. In the sintering unit, the pyrochlore concentrate undergoes pelletizing, sintering, crushing and classification. These units not only accumulate the material but are also responsible for removing sulfur and water from the concentrate. Then the concentrate enters the dephosphorization unit, where phosphorus and lead are removed from the concentrate. The removal of sulphur and phosphorus have to be executed because of the local pyrochlore ore composition. Then the concentrate undergoes a carbothermic reduction by using charcoal and petroleum coke, producing a refined concentrate, 63% Nb2O5 and tailings with high lead content that are disposed in the tailings dam again.
technologyComment of heavy mineral sand quarry operation (AU, RoW): There are two ways for mining zircon sand: dry & wet mining with the choice of mining depending on the structure of the geological deposit. During wet mining, floating dredges and a floating concentrator are utilized in an enclosed pond, where the concentrator moves behind the dredges. Wet mining is the preferred technique for large continuous deposits with amounts of clay. For all other types of HMS deposits (hard-ground deposits, discontinuous deposits and small tonnage high-grade deposits), dry mining is the most preferred mining process. Dry mining utilizes earth-moving machinery (loaders, excavators, scrapes) for the purposes of sand excavation and transportation to the concentrator. The mining unit plants used in dry mining are mobile in order to minimize the transport distance of the sand. After the transportation of the HMS to the respective concentrator, wet gravity separations techniques (spirals) are usually applied for the production of the heavy mineral concentrate (HMC), although some hard-rock sites use bulk froth flotation to extract the heavy minerals from the sand. The produced slurry from dry and wet mining is then fed to the concentrator, where the HMC (90-96% heavy minerals) is produced along with the tailings that are backfilled in the mined areas. The HMC is transported to a mineral separation plant (MSP), where the HMC is subjected to scrubbing, drying and is separated by magnetic, electrostatic and gravity separation, producing zircon sand, ilmenite and rutile, with the last two considered as byproducts. technologyComment of ilmenite - magnetite mine operation (GLO): No comment present
technologyComment of iron ore beneficiation (IN): Milling and mechanical sorting. Average iron yield is 65% . The process so developed basically involves crushing, classification, processing of lumps, fines and slimes separately to produce concentrate suitable as lump and sinter fines and for pellet making. The quality is essentially defined as Fe contents, Level of SiO2 and Al2O3 contamination. The process aims at maximizing Fe recovery by subjecting the rejects/tailings generated from coarser size processing to fine size reduction and subsequent processing to recover iron values. technologyComment of iron ore beneficiation (RoW): Milling and mechanical sorting. Average iron yield is 84%. technologyComment of iron ore mine operation and beneficiation (CA-QC): Milling and mechanical sorting. Average iron yield is 75%. Specific data were collected on one of the two production site in Quebec. According to the documentation available, the technologies of the 2 mines seems similar. Uncertainity has been adjusted accordingly. technologyComment of niobium mine operation and beneficiation, from pyrochlore ore (BR, RoW): Open-pit mining is applied and hydraulic excavators are used to extract the ore with different grades, which is transported to stockpiles awaiting homogenization through earth-moving equipment in order to attain the same concentration. Conveyor belts (3.5 km) are utilized to transport the homogenized ore to the concentration unit. Initially, the ore passes through a jaw crusher and moves to the ball mills, where the pyrochlore grains (1 mm average diameter) are reduced to diameters less than 0.104 mm. In the ball mills, recycled water is added in order to i) granulate the concentrate and ii) remove the gas from the sintering unit. The granulated ore undergoes i) magnetic separation, where magnetite is removed and is sold as a coproduct and ii) desliming in order to remove fractions smaller than 5μm by utilizing cyclones. Then the ore enters the flotation process - last stage of the beneficiation process – where the pyrochlore particles come into contact with flotation chemicals (hydrochloric & fluorosilic acid, triethylamene and lime), thereby removing the solid fractions and producing pyrochlore concentrate and barite as a coproduct which is also sold. The produced concentrate contains 55% Nb2O5 and 11% water and moves to the sintering unit, via tubes or is transported in bags while the separated and unused minerals enter the tailings dam. In the sintering unit, the pyrochlore concentrate undergoes pelletizing, sintering, crushing and classification. These units not only accumulate the material but are also responsible for removing sulfur and water from the concentrate. Then the concentrate enters the dephosphorization unit, where phosphorus and lead are removed from the concentrate. The removal of sulphur and phosphorus have to be executed because of the local pyrochlore ore composition. Then the concentrate undergoes a carbothermic reduction by using charcoal and petroleum coke, producing a refined concentrate, 63% Nb2O5 and tailings with high lead content that are disposed in the tailings dam again. technologyComment of rare earth element mine operation and beneficiation, bastnaesite and monazite ore (CN-NM): Firstly, open pit, mining (drilling and blasting) is performed in order to obtain the iron ore and a minor quantity of rare earth ores (5−6 % rare earth oxide equivalent). Then, a two-step beneficiation process is applied to produce the REO concentrate. In the first step, ball milling and magnetic separation is used for the isolation of the iron ore. In the second step, the resulting REO tailing (containing monazite and bastnasite), is processed to get a 50% REO equivalent concentrate via flotation. technologyComment of rare earth oxides production, from rare earth oxide concentrate, 70% REO (CN-SC): This dataset refers to the separation (hydrochloric acid leaching) and refining (metallothermic reduction) process used in order to produce high-purity rare earth oxides (REO) from REO concentrate, 70% beneficiated. ''The concentrate is calcined at temperatures up to 600ºC to oxidize carbonaceous material. Then HCl leaching, alkaline treatment, and second HCl leaching is performed to produce a relatively pure rare earth chloride (95% REO). Hydrochloric acid leaching in Sichuan is capable of separating and recovering the majority of cerium oxide (CeO) in a short process. For this dataset, the entire quantity of Ce (50% cerium dioxide [CeO2]/REO) is assumed to be produced here as CeO2 with a grade of 98% REO. Foreground carbon dioxide CO2 emissions were calculated from chemical reactions of calcining beneficiated ores. Then metallothermic reduction produces the purest rare earth metals (99.99%) and is most common for heavy rare earths. The metals volatilize, are collected, and then condensed at temperatures of 300 to 400°C (Chinese Ministryof Environmental Protection 2009).'' Source: Lee, J. C. K., & Wen, Z. (2017). Rare Earths from Mines to Metals: Comparing Environmental Impacts from China's Main Production Pathways. Journal of Industrial Ecology, 21(5), 1277-1290. doi:10.1111/jiec.12491 technologyComment of scandium oxide production, from rare earth tailings (CN-NM): See general comment. technologyComment of vanadium-titanomagnetite mine operation and beneficiation (CN): Natural rutile resources are scarce in China. For that reason, the production of titanium stems from high-grade titanium slag, the production of which includes 2 processes: i) ore mining & dressing process and ii) titanium slag smelting process. During the ore mining and dressing process, ilmenite concentrate (47.82% TiO2) is produced through high-intensity magnetic separation of the middling ore, which is previously produced as a byproduct during the magnetic separation sub-process of the vanadium titano-magnetite ore. During the titanium slag smelting process, the produced ilmenite concentrate from the ore mining & dressing process is mixed with petroleum coke as the reducing agent and pitch as the bonding agent. Afterwards it enters the electric arc furnace, where it is smelted, separating iron from the ilmenite concentrate and obtaining high-grade titanium slag.
Das Projekt "Applied mineralogy of pyrochlore and related minerals in the weathering zones of the niobium desposits of the lueshe and the bingo carbonatites zaire" wird vom Umweltbundesamt gefördert und von Gesellschaft für Elektrometallurgie mbH durchgeführt. Objective: The objectives of this research project are to improve the geological, mineralogical and geochemical understanding of the Lueshe and Bingo pyrochlore deposits, and to develop exploration and exploitation concepts for similar occurrences. As a sideline, the potential of accompanying phosphate minerals as raw materials for local fertilizer production will be examined. General Information: The European Community is a major consumer of niobium, but no niobium ores are being mined within the community. GfE is producing pyrochlore from an area in Zaire which has sufficient reserves to cover the Community's needs but geological and metallurgical research is needed to enable a more efficient exploitation. In recent years approximately 6000 drill samples have been taken in the lateritic ore body at Lueshe, which has enabled the distinction of 6 ore types. To investigate the distribution of pyrochlore within the weathering profile, 500 samples will be processed, representing all the major ore types. At Lueshe, size fractions will be separated at different magnetic susceptibilities by a Frantz isodynamic or a wet high density magnetic separator. Using heavy liquids, pyrochlore will be isolated from the nonmagnetic fractions. Chemical analysis by X-ray fluorescence (XRF) will be carried out at Lueshe and will give valuable information on the concentration and distribution of the pyrochlore. From this material, 100 samples will be selected as representative of the whole Lueshe deposit on which further detailed mineralogical and chemical work will be concentrated.
Das Projekt "Erfassung des Feinstkornes in Abwaessern der Eisen- und Stahlindustrie mittels Magnetfilterung" wird vom Umweltbundesamt gefördert und von UVR-FIA GmbH Verfahrensentwicklung-Umweltschutztechnik-Recycling- GmbH durchgeführt. Mit dem Vorhaben soll ein magnetisches Verfahren zur Abscheidung Fe-haltiger Feststoffe mit hohem Feinstkornanteil aus Abwaessern und Prozesswaessern der Eisen- und Stahlindustrie entwickelt werden. Es werden vier Hauptzielstellungen verfolgt: 1. Senkung des Fe-Gehaltes im Klarwasser unter den vom Wasserhaushaltsgesetz vorgeschriebenen Wert. 2. Absenkung der notwendigen Feldstaerke im Prozessraum auf 0,1 t (1000 Gauss) durch geeignet gestaltete Matrixelemente. 3. Minimierung des Energieaufwandes durch Dauermagneteinsatz. 4. Verbesserung des Ausspuelverfahrens von Magnetfiltern durch geeignete Matrixwerkstoffe und Matrixformen. Mit der Versuchsanlage sind die Prozessparameter zu optimieren und die Verfahrenskosten zu ermitteln.
Das Projekt "Erfassung des Feinstkornes in Abwaessern der Eisen- und Stahlindustrie mittels Magnetfilterung" wird vom Umweltbundesamt gefördert und von UVR-FIA GmbH Verfahrensentwicklung-Umweltschutztechnik-Recycling- GmbH durchgeführt. Mit dem Vorhaben soll ein magnetisches Verfahren zur Abscheidung feiner Fe-haltiger Feststoffe aus besonders problematischen Abwaessern und Prozesswaessern entwickelt werden. Als Modellfaelle sind Stahlwerke des Raumes Dresden und Magdeburg vorgesehen. Es werden vier Hauptzielstellungen verfolgt: 1. Senkung des Fe-Gehaltes im Klarwasser unter den vom Wasserhaushaltsgesetz vorgeschriebenen Wert. 2. Absenkung der notwendigen Induktion im Prozessraum auf 0,1 t (1000 Gauss) durch geeignet gestaltete Matrixelemente. 3. Minimierung des Energieaufwandes durch Dauermagneteinsatz. 4. Verbesserung des Ausspuelverhaltens von Magnetfiltern durch geeignete Matrixwerkstoffe und Matrixformen. Mit der Versuchsanlage sind die Prozessparameter zu optimieren und die Verfahrenskosten zu ermitteln.
Das Projekt "Entschwefelung von Kraftwerkskohle (Trockenverfahren im Kraftwerk)" wird vom Umweltbundesamt gefördert und von Krupp Forschungsinstitut durchgeführt. Der Stand der Technik soll weiterentwickelt werden mit dem Ziel der Fortschreibung der TA-Luft oder der Verwendung fuer Rechtsverordnungen im Rahmen des BImSchG. Im Zuge der Bemuehungen um eine Entschwefelung von Steinkohle sollen Untersuchungen angestrebt werden, den Schwefelanteil von Kraftwerkskohle, der in Form von Pyrit vorliegt, durch eine Magnetscheidung abzutrennen.
Das Projekt "Aufarbeitung von Batterieschrott und buntmetallhaltigen Schlaemmen" wird vom Umweltbundesamt gefördert und von Air Liquide Global E&C Solutions Germany GmbH durchgeführt. Zielsetzung: Die Altbatterien, so wie sie in den Sammelstellen z.B. der Stadt Frankfurt anfallen, sollen in moeglichst kostenguenstiger Weise in verkaeufliche Produkte augearbeitet werden. Dadurch muessten die derzeit hohen Aufwendungen fuer die Sonderdeponie weitgehend vermieden und die Werttraeger in den Altbatterien einer sinnvollen Wiederverwendung zugefuehrt werden. Durch Versuche und Projektstudien soll ein realisierbares Konzept erarbeitet werden. Vom BMFT erhielten wir eine von Fa. Goldschmidt angefertigte Studie ueber eine Anlage, die verschiedene komplexe Abfallstoffe aufarbeiten sollte. Wir sollten pruefen, ob diese Problemstellung mit den Altbatterien in Einklang gebracht werden koennte. Arbeitsprogramm: Die Zusammenstellung der verfuegbaren Literatur wird stets auf dem neuesten Stand gehalten. Als Ausgangsmaterial fuer unsere Untersuchungen bekamen wir von der Stadt Frankfurt fuenf Faesser (ca.1 Tonne) mit Altbatterien aus den ueber 200 Sammelstellen der Stadt. Mit diesem Muster haben wir mehrere Kombinationen von Verfahrensschritten durchgefuehrt, im wesentlichen: Zerkleinern, oxidierendes und reduzierendes Abroesten, Sieben, Magnetscheiden, Anwendung verschiedener Laugungsmethoden um eine Auftrennung in Produkte mit Hg, Cu, Zn, Fe, Ag zu erreichen. Zur Zeit werten wir die Ergebnisse aus, um zu entscheiden, welcher der Wege kostenmaessig untersucht werden sollte. Die in der 'Goldschmidt-Studie' aufgefuehrten Problemstoffe lassen sich kaum nach dem derzeitigen Verfahrenskonzept fuer Altbatterien mit verarbeiten.
Das Projekt "Aufbereitung von schadstoffbelasteten verbrauchten Strahlmitteln" wird vom Umweltbundesamt gefördert und von UVR-FIA GmbH Verfahrensentwicklung-Umweltschutztechnik-Recycling- GmbH durchgeführt. Nach der Beanspruchung beim Strahlprozess liegen noch 62-75 Prozent der Einweg-Strahlmittel in einer fuer den offenen Korrosionsschutz geeigneten Koernung (0,25-2 mm) und Kornstruktur vor. Als Fremdbestandteile treten je nach Art der behandelten Oberflaeche und des Untergrundes, von dem die Aufnahme erfolgt, eine grosse Palette unterschiedlicher Fremdbestandteile auf. Zum Recycling der fuer den nochmaligen Einsatz geeigneten Kornfraktion wurde die Prinziploesung eines neuartigen Verfahrens an Hand von Laborversuchen abgeleitet. Zur Abtrennung der schaedlichen Verunreinigungen in der Koernung 0,25-2 mm erwies sich eine zweistufige Magnetscheidung als am geeignetsten. In der 1. Stufe werden eisenreiche Fremdbestandteile (Verbunde Beschichtungsmaterialien mit Rost) mit Schwachfeldscheidung entfernt. In der 2. Stufe erfolgt die Trennung der schwachmagnetischen Strahlmittel durch Starkfeld-Permanentmagnetscheidung von den unmagnetischen Fremdstoffen (nichtmetallische Bestandteile der Bauwerke, des Bodens, der Anstriche). Die Recyclatausbeute betraegt 60...70 Prozent. Die Aufbereitung des Feinkorns kleiner 0,25 mm mit dem gleichen Ziel scheidet aus. Fuer eine unmittelbar an der Anfallstelle einsetzbare mobile Anlage mit einem Durchsatz von 2-3 t/h belaufen sich die nvestitionskosten auf ca. 400 TDM (ohne Fahrzeug bzw. Container). Nach einer Kostenabschaetzung ist damit gegenuber der bisher ueberwiegend praktizierten Deponierung ein wirtschaftlicher Vorteil gegeben, wenn mit einer Anlage mehr als 2.000 t/a Strahlschutt aufbereitet werden.