API src

Found 5202 results.

Related terms

Methanproduktion durch Mikrophytobenthos und dessen Beitrag am benthischen Methanfluss in der Küstenzone der Ostsee

Der Anstieg natürlicher Emissionen des Treibhausgases Methan haben einen bedeutenden Einfluss auf das Klima der Erde. Als Methanquelle nehmen küstennahe Gewässer eine besondere Stellung ein, da die Methankonzentration im Wasser hier wesentlich höher ist als im offenen Ozean. Trotz der Bedeutung der Küstengebiete ist bisher nur wenig bekannt über die hier zu findenden Methanemittenten und ihr jeweiliger Beitrag am atmosphärischen Methanfluss. Zudem zeigen eine Reihe aktueller Untersuchungen, dass Methan nicht nur unter anoxischen Bedingungen mikrobiell gebildet werden kann, sondern dass dies auch in einer oxischen Umgebung möglich ist. Eine solche Methanproduktion nahe der Meeresoberfläche würde den Weg zwischen Methanquelle und Atmosphäre wesentlich verkürzen und damit den Methanfluss in die Atmosphäre verstärken. Aufgrund einiger Untersuchungen, die eine Verknüpfung zwischen Primär- und Methanproduktion aufzeigen, stellen wir die Hypothese auf, dass Mikrophytobenthos (MPB)-Gemeinschaften eine wichtige, aber bisher nicht bearbeitete Stellung in der Flachwasser-Methandynamik zukommen. MPB-Gemeinschaften nehmen eine herausragende Rolle in der Primärproduktion von Küstensedimenten ein. Um die Bedeutung der MPB-assoziierten Methanproduktion besser einordnen zu können, werden wir das Potential dieser Methanquelle in Inkubationsexperimenten detailliert untersuchen. Zur Bestimmung der hierbei wichtigen Effektoren und Mikrophytobenthosarten werden wir an verschiedenen axenischen und xenischen klonalen Kulturen benthischer Diatomeen-Spezies die Primär- und Methanproduktion unter kontrollierten Temperatur- und Lichtbedingungen bestimmen. Mit Hilfe einer neuen Cavity-Ring-Down-Spektroskopie basierten Methode planen wir an geschlossenen Inkubationen die Methankonzentrationsentwicklung in hoher zeitlicher Auflösung über Tag/Nacht Zyklen zu erfassen. Zusätzliche Inkubationen mit 13C-markierten Substraten werden es uns erlauben, den Weg der Methanproduktion in den Diatomeen einzugrenzen. Bisher wurde der Prozess der oxischen Methanproduktion nur in Kulturexperimenten untersucht. Ob die hier ermittelten Raten auch in die natürliche Umgebung übertragbar sind, wurde hingegen nicht geprüft. Um diese Wissenslücke zu schließen, planen wir neben den Experimenten an klonalen Kulturen auch Studien an natürlichen MPB-Gemeinschaften durchzuführen. Diese Gemeinschaften werden wir im Flachwasser vor der Insel Askö (schwedische Ostseeküste) und dem inneren Küstengewässer vor Zingst (Darßer-Zingst-Bodden, deutsche Ostseeküste) beproben, um ein möglichst breites Spektrum an Sedimenten, hydrodynamischen Bedingungen und MPB-Gemeinschaften abzudecken. Um die in unseren Experimenten ermittelten Methanproduktionsraten in die benthischen und atmosphärischen Methanflüsse besser einordnen zu können, werden wir in beiden Untersuchungsgebieten die Methanflüsse zwischen Sediment, dem Wasser und der Atmosphäre bestimmen.

Erschließung von Unterbodenressourcen durch Zwischenfruchtanbau und Lebendmulchsysteme, Teilprojekt B

Triefenstein, Gemarkung Lengfurt - Änderungsgenehmigungsverfahren (§ 16 BImSchG) - wesentliche Änderung einer Anlage zur Herstellung von Zement, Heidelberg Materials AG

Die Heidelberg Materials AG betreibt auf ihrem Betriebsgelände Fl.-Nr. 7312, Gemarkung Lengfurt ein Zementwerk. Die Anlage zur Herstellung von Zementklinker oder Zementen mit einer Produktionskapazität von 500 Tonnen oder mehr je Tag ist nach Nr. 2.3.1 des Anhanges 1 der 4. BImSchV immissionsschutzrechtlich genehmigt. Die Cap2U GmbH (ein Gemeinschaftsunternehmen der Linde GmbH und der Heidelberg Materials AG) plant im Bereich des Bauhof-Gebäudes im Nordwesten des Werksgeländes des Zementwerks in Lengfurt die Errichtung und den Betrieb einer eigenständig betriebenen CO2-Produktionsanlage. Zweck dieser Neuanlage ist die Abscheidung von CO2 aus einem Teil-Abgasstrom (ca. 10 % des Ofenabgas-Volumenstroms bei Volllast) des Zementwerks sowie dessen Veredlung (Reinigung), Verflüssigung und anschließende kommerzielle Nutzung in der Industrie, insb. der Getränke- und Lebensmittelindustrie. Das CO2 aus den Lagertanks wird über Tankwagen an die Kunden verteilt. Ein weiteres Ziel des Vorhabens ist die großtechnische Demonstration der Abscheidung, Aufbereitung, Verbringung und Nutzung von CO2 mittels Aminwäsche aus dem Abgasstrom eines Zementklinkerofens zur Vorbereitung der zukünftigen Verbreitung dieser Technologie zu ökonomischen Konditionen in der Zementindustrie als Grundlage für den Aufbau einer klimafreundlichen Kohlenstoff-Kreislaufwirtschaft. Für die CO2-Produktionsanlage selbst hat die Cap2U GmbH als Errichter- und Betreiberin eine eigenständige Genehmigung nach Baurecht beantragt. Das mit Schreiben der Heidelberg Materials AG vom 13.12.2023 beantragte immissionsschutzrechtliche Genehmigungsvorhaben beschränkt sich auf die Änderungen am bestehenden, immissionsschutzrechtlich genehmigten Zementwerk zur Anpassung an den geplanten Betrieb der als Neuanlage zu errichtenden CO2-Produktionsanlage („Schnittstellen“). Im Wesentlichen umfasst der Antragsgegenstand das Ausschleusen von Ofenabgasen zur Anlage der Cap2U GmbH und die Rückführung des nach erfolgter CO2-Abscheidung verbleibenden Rest-Abgases in das Ofenabgassystem. Zur Dampferzeugung soll in der CO2-Produktionsanlage Wärme aus dem bestehenden Thermalölkreislauf, der bis zur CO2-Produktionsanlage erweitert werden soll, genutzt werden. Weiterhin ist es geplant, dass bestimmte in der CO2-Produktionsanlage anfallenden Prozesskondensate und Flüssigkeiten aus der Amin-Aufbereitungsanlage (flüssige Abfälle) übernommen und ggf. zwischengepuffert werden, bevor sie an Stelle von bisher eingesetztem Brauchwasser (Grundwasser bzw. Mainwasser) im Bereich des Bypasses in das Ofensystem eingedüst und verdampft werden. Der Abfallkatalog bei der Klinkerherstellung soll für den Einsatz der neuen flüssigen Abfälle entsprechend erweitert werden. Zudem soll der in der CO2-Produktionsanlage in einem Filter abgeschiedene Staub aus dem Ofenabgas vom Zementwerk übernommen und im Produktionsprozess eingesetzt werden. Weiterhin soll durch das Zementwerk die Brauchwasserversorgung der CO2-Produktionsanlage erfolgen. Im Durchschnitt werden hierfür durch das Zementwerk ca. 3 m³/h Wasser aus dem Main entnommen und in dem bestehenden Sandfilter vorgereinigt. Das Brauchwasser wird über eine neue, begleitbeheizte und isolierte Rohrleitung der CO2-Produktionsanlage zugeführt. Die Brauchwasserbelieferung selbst soll im Rahmen der für das Zementwerk der Heidelberg Materials AG erteilten wasserrechtlichen Entnahmeerlaubnis für Grund- und Mainwasser (Bescheid des LRA Main-Spessart vom 03.05.2016, Az. 41-641-K) erfolgen. Eine Erhöhung der genehmigten Entnahmemenge aufgrund der Belieferung der CO2-Produktionsanlage ist nicht erforderlich. Zusammenfassend erstreckt sich der immissionsschutzrechtliche Genehmigungsantrag auf: • Ausschleusen von bis zu 100 % der Ofenabgase (max. 296.000 m³/h i.N. fe im Jahresmittel) nach dem SCR-Reaktor (SCR - selektive katalytische Reduktion) zur geplanten CO2-Produktionsanlage der Cap2U GmbH (zum Zwecke der dort erfolgenden CO2-Abscheidung mittels Aminwäsche) und Rückführung des nach erfolgter CO2-Abscheidung verbleibenden Rest-Abgases (bis zu 290.000 m³/h i.N. fe im Jahresmittel) in das Ofenabgassystem unmittelbar hinter dem Ausschleusepunkt Anmerkung: Innerhalb der baurechtlich zu genehmigenden CO2-Produktionsanlage der Cap2U GmbH erfolgen dann zum einen die Entnahme von Abwärme zur Dampferzeugung aus dem Gesamt-Abgasstrom sowie anschließend die Ausschleusung eines Teilabgasstroms von bis zu 34.000 m³/h i.N. fe im Jahresmittel, die CO2-Abscheidung mittels Aminwäsche aus diesem Teilabgasstrom und die Rückführung des danach verbleibenden Rest-Teilabgasstroms mit bis zu 28.000 m³/h i.N. fe im Jahresmittel in den Gesamt-Abgasstrom. • Erweiterung des bestehenden Thermalölkreislaufes der SCR-Anlage (Thermoöl-Wärmeverschiebesystem) zur Dampferzeugung in der CO2-Produktionsanlage • Übernahme und Zwischenlagerung (max. 25 m³) sowie Dosierung (max. 2,7 m³/h) von Prozesskondensaten der CO2-Produktionsanlage (AVV-Nr. 16 10 02) über die vorhandenen 8 Düsen in den Bypass-Verdampfungskühler oder im Falle einer Betriebsstörung über die SNCR-Anlage in den Steigschacht des Wärmetauscherturms • Übernahme und Zwischenlagerung (max. 1,5 m³) sowie Dosierung (max. 0,7 m³/h) von Flüssigkeit aus der Amin-Aufbereitungsanlage der CO2-Produktionsanlage (AVV-Nr. 16 10 02) in die vorhandene Eindüsung in die Bypass-Mischkammer vor dem By-pass-Verdampfungskühler (Bypass-VDK) oder im Falle einer Betriebsstörung in die vorhandene Eindüsung im Steigschacht des Wärmetauscherturms • Übernahme und Dosierung von in der CO2-Produktionsanlage abgeschiedenem Filterstaub (überwiegend unreagiertes Kalkhydrat, max. 0,05 t/h, AVV-Nr. 10 13 04) aus dem Ofenabgas über das Kalkhydratsilo in die Ofenanlage Ergänzende materielle Anträge für das Vorhaben: • Antrag auf Festlegung eines Überwachungswerts von 40 mg/m³ im ersten Betriebsjahr nach Inbetriebnahme (Einfahrbetrieb) und eines Überwachungswerts von 20 mg/m³ nach Abschluss des Einfahrbetriebes für die Schadstoffe nach Nr. 5.2.5 Klasse I i.V.m. Anhang 3 TA Luft 2021 für den aus der CO2-Produktionsanlage kommenden Teil-Abgasstrom vor dessen Einleitung in den Haupt-Abgasstrom des Zementwerks. • Antrag auf Festlegung eines Emissionsgrenzwert für Formaldehyd in Höhe von 5 mg/m³ gemäß Nr. 5.2.7.1.1 Abs. 10 TA Luft 2021 für das Ofenabgas am Schornstein der Ofenanlage. • Antrag auf Festlegung eines Emissionsgrenzwerts für Acetaldehyd in Höhe von 10 mg/m³ im Ofenabgas am Schornstein der Ofenanlage gemäß LAI-Vollzugsempfehlung vom 21.06.2023 für Acetaldehyd.

Batterien und Akkus

<p>Batterien und Akkus richtig nutzen und fachgerecht entsorgen</p><p>So handeln Sie nachhaltig beim Umgang mit Batterien und Akkus</p><p><ul><li>Kaufen Sie nach Möglichkeit netzbetriebene und batteriefreie Geräte und verringern Sie so ihren Batterieverbrauch.</li><li>Sofern es nicht ohne Energiespeicher geht, sind Akkus anstelle von Batterien in der Regel die bessere Wahl.</li><li>Achten Sie beim Kauf neuer Geräte auf die einfache Austauschbarkeit der Akkus. Fragen Sie nach der Verfügbarkeit von Ersatzakkus.</li><li>Kaufen Sie Akkus und Batterien ohne giftige Schwermetalle.</li><li>Verlängern Sie die Lebensdauer von Akkus durch "richtige" Handhabung.</li><li>Entsorgen Sie Akkus und Batterien aufgrund von Brand- und Umweltgefahren nie im Hausmüll, Verpackungsmüll, Sperrmüll oder Metallschrott.</li><li>Entsorgen Sie Altbatterien und Altakkus sachgerecht in den Sammelboxen im Handel oder bei kommunalen Sammelstellen.</li><li>Entnehmen Sie vor der Rückgabe alter Elektrogeräte die Batterien und Akkus, wenn es durch einfache Handgriffe möglich ist.</li><li>Weitere Informationen über das richtige Entsorgen von Batterien erhalten Sie über die Kampagne<a href="https://www.batterie-zurueck.de/">"Batterie Zurück"</a>.</li></ul></p><p>Gewusst wie</p><p>Energie- und Kosteneffizienz:Batterien (nicht wiederaufladbar) und Akkus (wiederaufladbar) liefern – "jenseits der Steckdose" – Strom für mobile Anwendungen. Nicht wiederaufladbare Batterien tun dies allerdings auf sehr ineffiziente Art und Weise. Denn Batterien benötigen für ihre eigene Herstellung 40- bis 500-mal mehr Energie, als sie bei der Nutzung später zur Verfügung stellen. Ähnlich ungünstig sieht es mit den Kosten aus.</p><p>Eine Beispielrechnung zeigt dies sehr eindrucksvoll: Aktuell müssen Verbraucher*innen ca. 0,35 € für eine Kilowattstunde (kWh) elektrische Energie aus der Steckdose zahlen. Möchte man die gleiche Energiemenge (1 kWh) durch Batterien bereitstellen, z.B. mit AA-Batterien, müssten hingegen rund 75 € ausgegeben werden (AA-Batterie: 2.600 mAh * 1,5 V = 0,0039 kWh/ Batterie, 0,30 €/Stück). Vereinfacht bedeutet das:Energie aus Batterien ist mindestens 200-mal teurer, als Energie aus der Steckdose.Noch ungünstiger fällt der Vergleich aus, wenn die kleineren AAA-Batterien eingesetzt werden (AAA-Batterie: 1.250 mAh * 1,5 V = 0,0019 kWh/ Batterie, 0,30 €/Stück): Hier müssen ca. 150 € ausgegeben werden, um 1 kWh elektrische Energie aus der Steckdose zu ersetzen bzw. ca. 400-mal mehr, als für Strom aus der Steckdose.</p><p>Netzbetriebene statt batteriebetriebene Geräte:Wenn Geräte eigentlich nur stationär genutzt werden, sollten sie auch über die Steckdose betrieben werden. Überlegen Sie daher vor einer Anschaffung, wie oft Sie Geräte wie z.B. Tastatur, Maus, elektrische Rasierer, Stabmixer aber auch Staubsauger und Bohrmaschinen außerhalb der Reichweite von Steckdosen benutzen werden und ob Sie dafür bereit sind, wesentliche Nachteile in Kauf zu nehmen. In der Regel sind netzbetriebene Geräte ohne Akku leistungsfähiger und kostengünstiger. Oft ist allein die abnehmende Akkuleistung für das (verfrühte) Lebensdauerende der Geräte verantwortlich. Lange Lebensdauern helfen hingegen, die negativen Umweltauswirkungen durch unsere Verbräuche zu verringern. Dazu werden für die Herstellung netzbetriebener Geräte ohne Akku in der Regel weniger Rohstoffe verbraucht.</p><p>Batteriefreie oder solare mobile Produkte:Es gibt auch mobile Produkte und Geräte, die ohne Batterien auskommen (z.B. mechanische Salz-/ Pfeffermühlen oder automatische Uhren) oder solarbetrieben sind (z.B. Solar-Taschenrechner oder Solar-Uhren).</p><p>Akkus statt Batterien für mobile Geräte:Falls die technischen Voraussetzungen Ihres Gerätes eine Wahl zwischen Batterien oder Akkus erlauben, dann sind Akkus die bessere Alternative. Durch das mehrfache Wiederaufladen Ihres Akkus mildern Sie die ineffiziente Art der Energieversorgung durch Batterien. Je nach Art und Handhabung können Akkus ca. 200 - 1.000-mal wiederaufgeladen werden, bevor sie das Lebensdauerende erreichen. Eine entsprechend hohe Anzahl an Einwegbatterien lässt sich so einsparen.<br>Die typischen Merkmale der aktuell gängigen Akkutypen sind im Folgenden – unterteilt nach Bauformen/ Baugrößen – aufgelistet. In der Regel finden Sie auf dem Akku oder auch auf der Verpackung eine Kennzeichnung, um welchen Akkutyp es sich handelt.<p>Akkus der Standardbaugrößen AAA (Micro), AA (Mignon), C (Baby), D (Mono), 1604 D (9 V Block) und Akkupacks:</p><p>Gute und preisgünstige Alternative zu nicht wiederaufladbaren Batterien. Ihre hohe Selbstentladungsrate von ca. 25 Prozent pro Monat beeinträchtigt jedoch den Einsatz in Geräten. Werden Geräte beispielsweise nur selten genutzt (z.B. Kinderspielzeug oder Taschenlampen), sind die Akkus oft leer, wenn man sie braucht. Die üblichen Spannungen der Akkus dieses Typs sind mit ca. 1,2 V etwas geringer als bei Batterien (1,5 V).</p><p>Sie zeichnen sich durch sehr geringe Selbstentladungsraten aus (ca. 4 Prozent pro Monat). Die Kapazitäten dieser Akkus sind mit einer Höhe von ca. 2.000 mAh (Baugröße: AA) mit denen der NiMH-Standardakkus vergleichbar. Die üblichen Spannungen der Akkus dieses Typs sind mit ca. 1,2 V etwas geringer als bei Batterien (1,5 V). Für diese Akkus der neueren Generation werden im Handel oft die Bezeichnungen "ready to use" / "precharged" / "vorgeladen" / "geringe Selbstentladung" verwendet.<br>⁠UBA⁠-Empfehlung: Akkus ohne Selbstentladung haben gegenüber den einfachen NiMH-Akkus entscheidende Vorteile. Zum einen geht die geladene Energie weit weniger ungenutzt verloren, zum anderen sind sie selbst nach längerer Lagerung sofort einsatzfähig, beispielsweise bei seltener Nutzung in Taschenlampen. Manche Geräte wie elektrische Zahnbürsten, Haarschneidemaschinen und ältere Akkuschrauber können auch NiMH-Akkupacks enthalten.<p>Sie werden aufgrund ihrer hohen Energiedichte, hohen Leistungsfähigkeit und geringen Selbstentladung überwiegend als Akkupacks in Haushalts-, Küchen- und Gartengeräten wie Mobiltelefonen, Laptops, Kameras, Spielekonsolen, kabellosen Kopfhörern, Saugrobotern, Elektrowerkzeugen, Sägen, E-Zigaretten, etc. eingesetzt. Typisch sind individuelle Bauformen und auch die hohen Spannungen, je nach Ausführung im Bereich von 3,8 – 4,0 V. Mittlerweile sind Lithium-Ionen-Akkus auch in diversen Standardgrößen im Spannungsbereich von 1,5 Volt oder als 9-Voltblocks erhältlich.</p><p>Austauschbarkeit und Interoperabilität von Akkus:Die Langlebigkeit mobiler Geräte wird häufig durch das Lebensdauerende der verbauten Akkus begrenzt. Dies gilt vor allem bei intensiv bzw. häufig genutzten Elektrogeräten, da jeder Lade- und Entladevorgang die Lebensdauer der Akkus verkürzt. Achten Sie daher bereits beim Kauf mobiler Geräte, auf eine möglichst einfache und zerstörungsfreie Austauschbarkeit des Akkus. Defekte oder schwache Akkus führen dann nicht dazu, dass Sie ihr Gerät entsorgen müssen. Prüfen Sie bitte auch die Möglichkeit eines Akkuaustauschs durch Fachbetriebe: Das Elektro- und Elektronikgerätegesetz (ElektroG) enthält die Vorgabe, dass die Entnehmbarkeit von Akkus und Batterien nach Möglichkeit problemlos für Endnutzer, mindestens jedoch für herstellerunabhängiges Fachpersonal möglich sein muss.</p><p>Langlebige Geräte und Akkus helfen nicht nur Kosten einzusparen sondern tragen auch dazu bei, Ressourcen zu schonen und Abfall zu vermeiden. Typische Geräte bei denen sich Akkus häufig nur schwer oder gar nicht im Haushalt austauschen lassen, sind beispielsweise Smartphones, Tablets und sogenannte Ultrabooks, elektrische Zahnbürsten, Haar- und Bartschneider, MP3 Player und Navigationsgeräte. Achten Sie daher bewusst auf leicht austauschbare Akkus und die Möglichkeit, Ersatzakkus nachkaufen zu können.</p><p>Erfreulicherweise werden Elektrogeräte, insbesondere in den Segmenten Elektrowerkzeuge und Gartengeräte, verstärkt mit interoperablen austauschbaren Akkusystemen angeboten. Der Vorteil interoperabler Akkusysteme besteht darin, dass ein Akku in mehreren unterschiedlichen Produkten (eines Herstellers) genutzt werden kann. Da sich deren Kapazität nun weniger durch die zeitliche Alterung, sondern vielmehr durch die Anzahl der Einsätze (Zyklisieren) verringert, werden insgesamt weniger Akkus benötigt. Häufig ist nicht bekannt, dass Li-Ion-Akkus auch ohne Nutzung altern bzw. an Kapazität verlieren. Diesen Vorgang nennt man kalendarische Alterung. Durch die optimierte Akkunutzung ergeben sich enorme ökologische Einsparpotenziale. Darüber hinaus ist die Verfügbarkeit von Ersatzakkus in diesem Produktbereich außerordentlich gut.</p><p>Akkus pfleglich behandeln:Die Nutzung von Akkus anstelle von Batterien trägt zur Verringerung von Umweltauswirkungen bei. Jede Akkuladung hilft, Batterien einzusparen und je länger die Nutzungsdauer eines Akkus ist, umso größer ist der Einspareffekt.<br>Sie können die Lebensdauer Ihrer Akkus verlängern, indem Sie einige einfach umzusetzende Dinge bei der Handhabung, Lagerung sowie beim Laden und Entladen beachten. Die folgenden Empfehlungen sind nach Akkutypen untergliedert:<p>Der Einsatz des Akkus bei Umgebungstemperaturen größer 40° C ist nachteilig und kann den Akku beschädigen; das gilt selbst für die zwischenzeitliche Lagerung (z.B. Aufbewahrung des Laptops, des Smartphones oder der Powerbank im Auto bei Hitze oder beim Liegenlassen in der Wärme in Verbindung mit praller Sonne). Laden und Entladen Sie ihre Akkus nie vollständig: Dies kann die Lebensdauer ihrer Li-Ion-Akkus deutlich verlängern. Vermeiden Sie daher Tiefenentladungen und warten Sie nicht, bis Ihr Akku fast oder vollständig leer ist. Den Ladevorgang sollten Sie, soweit möglich, spätestens bei ca. 20 Prozent Rest-Ladestand (Restkapazität) starten und beenden, wenn der Akku einen Ladestand von ca. 90 Prozent erreicht hat. Bleibt Ihr Akku für längere Zeitdauer ungenutzt, ist ein Nachladen nach spätestens 6 Monaten empfehlenswert (bspw. beim Überwintern elektrischer Gartengeräte).&nbsp;Bei richtiger Verwendung und sorgsamen Gebrauch sind lithiumhaltige Batterien und Akkus sicher; bei falschem Umgang können sie jedoch auch während der Anwendung und des Ladens zur Gefahr werden. Beachten Sie deshalb unsere Hinweise zum sicheren Umgang mit Li-Ion-Akkus auf unsererRatgeberseite<a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/elektrogeraete/lithium-batterien-lithium-ionen-akkus">Lithium-Batterien und Lithium-Ionen-Akkus</a>.Der von anderen (älteren) Akkutypen teilweise bekannte Memory- oder Lazy-Effekt tritt bei Li-Ion-Akkus nicht auf.</p><p>Hohe Umgebungstemperaturen ab ca. 40° C verringern auch die Lebensdauer der NiMH-Akkus. Teilentladungen führen im Gegensatz zuLi-Ion-Akkuszum sogenannten Lazy-Effekt, d.h. die entnehmbare Kapazität verringert sich zunächst für die Nutzer. Wir empfehlen dennoch, NiMH-Akkus trotz des Lazy-Effekts nur teilweise zu entladen (geringe Zyklentiefen), da hohe Zyklentiefen (geringe Rest-Ladestände) – im Gegensatz zum "heilbaren" Lazy-Effekt – die Lebensdauer dauerhaft verkürzen. Den Lazy-Effekt bzw. die Kapazitätsminderung können Sie heilen, indem sie Akkus dieses Typs mit dem Ladegerät in gewissen Abständen vollständig Laden und Entladen.</p><p>Umgang mit ausgelaufenen Batterien:</p><p>Weitere Infos finden Sie auf unserer Themenseite<a href="https://www.umweltbundesamt.de/themen/ausgelaufene-batterien-akkus">Ausgelaufene Batterien: Gefahrenpotenzial und sicherer Umgang</a>.</p><p>Findet sich die durchgestrichene Abfalltonne auf dem alten Gerät, gehört es auf keinen Fall in die Hausmülltonne, sondern auf den Wertstoffhof oder zurück in den Handel.</p><p>Richtige Entsorgung:Batterien und Akkus gehören keinesfalls in den Hausmüll (Restmüll), Sperrmüll, Verpackungsmüll (gelbe Tonne/ gelber Sack), Metallschrott oder gar achtlos in die Umwelt! Darauf weist auch das Symbol der durchgestrichenen Mülltonne auf den Batterien und Akkus sowie der Verpackung hin (vgl. Abbildung 1). Geben Sie Ihre verbrauchten Batterien und Akkus kostenfrei in den Batterie-Sammelboxen im Handel oder den weiteren Rücknahmestellen ab. Verbraucher*innen sind hierzu gesetzlich verpflichtet. Die getrennte Sammlung hält zum einen die Schadstoffe aus Hausmüll und Umwelt fern. Zum anderen ermöglicht sie die Verwertung der Batterien und damit die Rückgewinnung wertvoller Stoffe wie z.B. Zink, Stahl/Eisen, Aluminium, Nickel, Kupfer, Silber, Mangan sowie Lithium und Kobalt.</p><p>Händler (Vertreiber) sind zur kostenfreien Rücknahme von Altbatterien der Art verpflichtet, die sie im Sortiment führen oder geführt haben. Beispielsweise müssen Vertreiber von Gerätebatterien vom Endnutzer Geräte-Altbatterien unabhängig von deren chemischer Zusammensetzung, Marke, Herkunft, der Baugröße und Beschaffenheit im Handelsgeschäft oder in unmittelbarer Nähe hierzu unentgeltlich zurücknehmen (Bsp.: Supermärkte oder Discounter, Warenhäuser, Drogeriemärkte, Elektro-Fachgeschäfte oder Baumärkte). Die Rücknahme erfolgt in der Regel über eigens dafür bereitgestellte Sammelbehältnisse. Vertreiber von Starterbatterien, Batterien für leichte Verkehrsmittel (sog. "LV-Batterien" wie E-Fahrrad- oder E-Scooter-Akkus), Elektrofahrzeugbatterien (Traktionsbatterien) und Industriebatterien müssen für diese Altbatteriearten ebenfalls kostenfreie Rückgabemöglichkeiten anbieten (Bsp.: Fachgeschäfte für Autoteile, Auto-Werkstätten, Baumärkte, Fahrrad-Fachhandel). Auch Kommunen nehmen bestimmte Altbatterien (z.B. Gerätebatterien oder Batterien für leichte Verkehrsmittel) zurück, beispielsweise über Schadstoffmobile oder auf Wertstoffhöfen.</p><p>Vertreiber müssen die Batterien auch zurücknehmen, wenn diese beschädigt (z.B. ausgelaufen, aufgebläht, aufgeplatzt) sind. Wenden Sie sich in diesem Fall am besten an das Personal für die Rückgabe und transportieren Sie die Batterie in einem geeigneten Transportbehältnis zur Sammelstelle.</p><p>Achtung hohe Brandgefahr durch<a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/elektrogeraete/lithium-batterien-lithium-ionen-akkus">lithiumhaltige Batterien und Akkus</a>in den Bereichen Sammlung und Behandlung!Mechanische Beschädigungen und thermische Einwirkungen können zu inneren und äußeren Kurzschlüssen in der Batterie oder dem Akku führen. Ein Kurzschluss kann zum Brand oder zur Explosion führen und schwerwiegende Folgen für Mensch und Umwelt haben.&nbsp;Vor allem in Abfallbehandlungs- und Recyclinganlagen haben solche Brände in den vergangenen Jahren stark zugenommen. Umso wichtiger ist es, die Sicherheitsaspekte in allen Abschnitten des Entsorgungspfades zu berücksichtigen.</p><p>Wegweiser für Sammelstellen:Sammelstellen für Geräte-Altbatterien finden sie überall dort, wo Sie neue Gerätebatterien kaufen können, bspw. im:</p><p>Die Sammelboxen im Handel befinden sich oftmals im Eingangs- oder Ausgangsbereich, oftmals im Bereich der Einpacktische, dort wo auch anderer Abfall wie Altpapier und Verpackungsabfälle getrennt gesammelt werden.</p><p>Außerdem können Geräte-Altbatterien auch an den Sammelstellen der Kommunen zurückgegeben werden, bspw.:</p><p>Viele Sammelstellen sind auch an dem einheitlichen Sammelstellenlogo für Batterien zu erkennen (vgl. Abbildung 2: Einheitliches Sammelstellenlogo für Batterie-Rücknahmestellen). Wo immer Sie das Zeichen "Batterie-Rücknahme" sehen, z. B. im Handel oder am Wertstoff- oder Recyclinghof, können Sie sich sicher sein, dass man alte Batterien zurückgeben kann.</p><p><p>Für alle– egal&nbsp;ob Kinder, Jugendliche oder Erwachsene –die sich informieren und zum Umweltschutz beitragen wollen, gibt es hier Informationen und Wissen zur Entsorgung von alten Batterien, Akkus und Elektroaltgeräten sowie Schulmaterial, mehrsprachige Flyer, Plakate, Videos etc.:</p><ul><li><a href="https://www.batterie-zurueck.de/">Batterie Zurück</a></li><li><a href="https://e-schrott-entsorgen.org/index.html">Plan E "E-Schrott einfach &amp; richtig entsorgen"</a></li></ul></p><p>Für alle– egal&nbsp;ob Kinder, Jugendliche oder Erwachsene –die sich informieren und zum Umweltschutz beitragen wollen, gibt es hier Informationen und Wissen zur Entsorgung von alten Batterien, Akkus und Elektroaltgeräten sowie Schulmaterial, mehrsprachige Flyer, Plakate, Videos etc.:</p><p>Was Sie noch tun können:</p><p>Hintergrund</p><p>Umweltrelevanz:In Batterien und Akkus stecken Wertstoffe wie Zink, Eisen, Aluminium, Lithium, Nickel, Kobalt, Mangan und Silber. Einige der möglichen Inhaltsstoffe wie Quecksilber, Cadmium, Blei sowie Leitsalze und Lösungsmittel sind giftig und gefährden bei einer unsachgemäßen Entsorgung die Umwelt. So können Schwermetalle gesundheitsschädigende Wirkungen auf Menschen, Tiere und Pflanzen haben und sich in der Nahrungskette sowie in der Umwelt anreichern. Gelangen sie beispielsweise in Gewässer und reichern sich in Fischen an, können die Schwermetalle auf indirektem Weg über die Nahrungskette in den menschlichen Körper gelangen. Quecksilber und seine Verbindungen sind hochgiftig für den Menschen. Sie führen bei hohen und länger auftretenden Belastungen zu Beeinträchtigungen, insbesondere des Nerven-, des Immun- und des Fortpflanzungssystems. Cadmiumverbindungen können beispielsweise Nierenschäden hervorrufen und stehen im Verdacht, krebserregend zu sein, wenn sie über die Atemluft aufgenommen werden. Blei kann auf verschiedene Organe und das zentrale Nervensystem schädigend wirken. Es lagert sich in den Knochen ab und kann biochemische Prozesse im Körper stören. Auf Wasserorganismen wirkt es ebenfalls hochgiftig. Falsch entsorgte lithiumhaltige Altbatterien und Altakkus sind des Öfteren verantwortlich für schwere Brände, die Mensch und Umwelt gefährden.</p><p>Aufgrund der hohen Umweltrelevanz sind Batterien mit Quecksilber (Hg), unabhängig davon, ob die Batterien in Geräte, leichte Verkehrsmittel oder sonstige Fahrzeuge eingebaut sind, verboten. Höchstens eine minimale Verunreinigung (Belastung) von maximal 0,0005 Prozent Quecksilber ist noch zulässig. Auch für Cadmium (Cd) in Batterien gilt ein sehr strenger Grenzwert: So sind Gerätebatterien mit mehr als 0,002 Gewichtsprozent Cadmium, unabhängig davon, ob die Batterien in Geräte, leichte Verkehrsmittel oder sonstige Fahrzeuge eingebaut sind, verboten.</p><p>Ab dem 18. August 2024 darf auch der Bleigehalt (Pb-Anteil) in Gerätebatterien nicht mehr als 0,01 Prozent betragen, unabhängig davon, ob die Batterien in Geräte eingebaut sind. Ausgenommen hiervon sind Zink-Luft-Gerätebatterien in Form von Knopfzellen.</p><p>Geregelt werden die aufgezählten Stoffverbote für Quecksilber, Cadmium und Blei in der neuen EU-Batterieverordnung.</p><p>Gesetzliche Grundlage: Den gesamten Lebensweg von der Produktgestaltung, Beschaffung der Rohstoffe, Produktion, Vertrieb und Nutzung bis hin zur Sammlung, der Vorbereitung der Wiederverwendung und dem Recycling von Altbatterien am Lebensdauerende regelt die neue<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32023R1542">EU-Batterieverordnung (EU) 2023/1542</a>, die am 12. Juli 2023 verabschiedet wurde und am 18. Februar 2024 in großen Teilen in Kraft trat. Die Verordnung ersetzt in Teilen das in Deutschland geltende Batteriegesetz (BattG). Aktuell wird das BattG zur Anpassung an die neue EU-Batterieverordnung vom Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BMUV#alphabar">BMUV</a>⁠) zur Anpassung an die neuen Anforderungen überarbeitet. Das BattG richtet sich vor allem an Hersteller, Vertreiber, Endverbraucher, Organisationen für Herstellerverantwortung, Abfallbewirtschafter, öffentlich-rechtliche Entsorgungsträger sowie Behandler und Recyclingbetreiber von Altbatterien.</p><p>Im Rahmen der Produktverantwortung sollen Hersteller und Vertreiber von Batterien potenzielle Umweltbelastungen auf ein Minimum reduzieren. Hohe Sammelmengen und Entsorgungsanforderungen sollen dies sicherstellen. Die Vertreiber (Händler) sind verpflichtet, Altbatterien und Altakkus kostenlos zurückzunehmen. Auch Kommunen sind verpflichtet, Geräte-Altbatterien aus Elektrogeräten kostenlos zurückzunehmen. Die gesammelten Geräte-Altbatterien/ Altakkus werden über die Vertreiber, Kommunen oder Behandlungseinrichtungen den<a href="https://www.ear-system.de/ear-verzeichnis/battgruecknahmesysteme#no-back">Rücknahmesystemen für Geräte-Altbatterien</a>zur Verfügung gestellt. Im Auftrag der verpflichteten Hersteller sorgen die Rücknahmesysteme für die Verwertung der Geräte-Altbatterien und Altakkus.</p><p>Marktbeobachtung:Daten zum Batterie- und Altbatterieaufkommen Deutschlands, insbesondere zu den in Verkehr gebrachten und zurückgenommen Massen, Sammelquoten, Verwertungsquoten und Recyclingeffizienzen, veröffentlicht das ⁠UBA⁠ jährlich neu auf der Internetseite<a href="https://www.umweltbundesamt.de/daten/ressourcen-abfall/verwertung-entsorgung-ausgewaehlter-abfallarten/altbatterien">Daten zum Batteriemarkt, zur Altbatterierücknahme und -verwertung</a>. Verschiedene Grafiken veranschaulichen dort Jahresergebnisse und Entwicklungen, die sich im Bereich der Batterien aufzeigen.</p><p>Weiterführende Informationen:</p>

Bioenergieanlagen (Landkreis Göttingen)

Standorte der vorhandenen Bioenergieanlagen im Landkreis Göttingen. Es handelt sich um Anlagen zur Erzeugung regenerativer Energien (Biogas) aus Biomasse durch Vergärung. Biogas stellt eine wichtige und vielseitige Form der Bioenergie aus der Landwirtschaft dar. Die neuen Anlagen setzen fast ausnahmslos nachwachsende Rohstoffe (NaWaRo) wie Mais, Getreide, Hirse, Zuckerrüben, Sonnenblumen und teilweise Aufwuchs von Grünland mit oder ohne Gülle ein. Biogas wird derzeit überwiegend dezentral produziert und als Strom- und Wärmelieferant genutzt. Aufgrund dieser Dezentralität der Anlagen, die dadurch begründet ist, dass das primäre Ausgangsmaterial für die Biogaserzeugung wie Gülle oder Energiepflanzen aufgrund der niedrigen Energiedichte aus ökonomischen Gründen in der Regel nicht über längere Distanzen transportiert werden kann, ist die Integration guter Wärmenutzungskonzepte nicht immer möglich.

Niedersächsischer Bodenfeuchteinformationsdienst - Tagesaktueller Wassergehalt der Böden in Niedersachsen in % der nutzbaren Feldkapazität (%nFK)

Der Niedersächsische Bodenfeuchteinformationsdienst (NIBOFID) des LBEG zeigt den tagesaktuellen Wassergehalt für alle Böden in Niedersachsen. Darüber hinaus lässt sich der Verlauf des Bodenwassergehalts für die letzten 10 Tage abrufen. Die Bodenfeuchte wird in % der nutzbaren Feldkapazität (%nFK) angegeben. Die nFK beschreibt die Wassermenge, die ein Boden maximal pflanzenverfügbar speichern kann. Die Werte des Bodenfeuchtemonitors sind berechnet und nicht gemessen. Die Berechnung erfolgt mit dem Bodenwasserhaushaltsmodell BOWAB und wird täglich mit Klimakennwerten (Niederschlag, Temperatur, Wind, Globalstrahlung und relative Luftfeuchte) des Vortages durchgeführt. Es werden für die jeweilige Landnutzung (Acker, Grünland, Laubwald, Nadelwald, Sonstiges) und den Boden spezifisch Parametern abgeleitet. BOWAB nutzt die hochaufgelösten Bodendaten der Bodenkarte 1:50.000 (BK50) von Niedersachsen und leitetet bodenwasserhaushaltliche Kennwerte, wie nFK, FK etc. ab. Die Berechnung erfolgt für die Flächen der BK50. Der Einfluss des Grundwassers wird in Form von kapillarem Aufstieg und durch den Grundwasserstand aus der BK50 berücksichtigt. Eine Bodenfeuchte von 100 %nFK zeigt an, dass der Bodenwasserspeicher gefüllt ist. Bei Werten oberhalb von 100 % entsteht Sickerwasser oder es steht Grundwasser innerhalb der betrachteten Bodenschicht. Werte kleiner als 100 %nFK zeigen an, dass die Pflanzen Bodenwasser entnommen haben und der Boden allmählich austrocknet. Ab Bodenfeuchtewerten unterhalb von 40 - 50 %nFK reagieren Pflanzen auf die Trockenheit und verringern ihre Verdunstung. Bei Werten von < 30 % nFK kann von Trockenstress ausgegangen werden. Im Kartenbild ist die Bodenfeuchte für den Boden von 0 – 60 cm Tiefe dargestellt, der dem Hauptwurzelraum bei den meisten Böden und Nutzungsformen entspricht. Standortbezogene Informationen liefert ein Maptip. Durch das Klicken auf einen Standort wird der aktuelle Bodenwassergehalt für den Hauptwurzelraum in %nFK angezeigt. Zusätzlich können auf der Detailseite weiterführende Informationen abgerufen werden. Als Grafik wird der Verlauf der mittleren Bodenfeuchte für die vergangenen 10 Tage für die Tiefenbereiche 0 - 30 cm (Oberboden), 0 - 60 cm (Hauptwurzelraum) und, sofern der Boden mächtiger ist, 0 - 90 cm (gesamte Betrachtungstiefe) dargestellt. Zudem wird die Sickerwassermenge unterhalb von 90 cm Tiefe für den betrachteten Standort angegeben. Falls Sie noch genauere Informationen zum Wassergehalt für Ihren Boden mit einer bestimmten Anbaukultur (Weizen, Mais, Grünland) benötigen, nutzen Sie gerne die Fachanwendung „Bodenwasserhaushalt“ im NIBIS® Kartenserver. Sie bietet die Möglichkeit den Verlauf der Bodenfeuchte für einzelne oder mehrere Flächen über einen längeren Zeitraum mit verschiedenen Fruchtfolgen (z.B. 1 Jahr oder länger) zu ermitteln.

Änderung des Potenziellen Zusatzwasserbedarfs für den 30-jährigen Zeitraum 2031-2060 zu 1971-2000, Kein-Klimaschutz-Szenario (RCP8.5)

Die Karte zeigt die mittlere Veränderung des potenziellen Zusatzwasserbedarfs (in mm) 2031-2060 gegenüber 1971-2000 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.

Änderung des Potenziellen Zusatzwasserbedarfs für den 30-jährigen Zeitraum 2071-2100 zu 1971-2000, Kein-Klimaschutz-Szenario (RCP8.5)

Die Karte zeigt die mittlere Veränderung des potenziellen Zusatzwasserbedarfs (in mm) 2071-2100 gegenüber 1971-2000 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.

Änderung des Potenziellen Zusatzwasserbedarfs für den 30-jährigen Zeitraum 2031-2060 zu 1971-2000, Klimaschutz-Szenario (RCP2.6)

Die Karte zeigt die mittlere Veränderung des potenziellen Zusatzwasserbedarfs (in mm) 2031-2060 gegenüber 1971-2000 unter dem „Klimaschutz“-Szenario (RCP2.6). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Klimaschutz“-Szenario (RCP2.6) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches deutliche Anstrengungen beim Klimaschutz und niedrigen Emissionen bedeutet. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.

Potenzieller Zusatzwasserbedarf für den 30-jährigen Zeitraum 2031-2060, Kein-Klimaschutz-Szenario (RCP8.5)

Die Karte zeigt den mittleren potenziellen Zusatzwasserbedarf (in mm) für den 30-jährigen Zeitraum 2031-2060 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.

1 2 3 4 5519 520 521