Untersuchung der Wirkungsmechanismen von Ochratoxin A, Citrinin, Patalin und Penicillsaeure. Ochratoxin A, ein nephrotoxisches Mycotoxin aus Aspergrelus ochraceus hemmt die Phenylalanyl-t RNA-Synthetase von Enkarykuoten und Prokaryonten. Der Hemmungstyp ist kompetitiv. Daher kann die Hemmwirkung auf Hepatom-Gewebekulturzellen, der letale Effekt auf Maeuse und der Effekt auf Makrophagen-Migration und Immunosuppression durch Phenylalanin aufgehoben werden. Citrinin, ein nephrotoxisches Mycotoxin aus Penicillium citrinum, hemmt in vivo vor allem RNA und DNA-Synthese. Patulin und Penicillsaeure reagieren mit SH- und NH2-Gruppen und haben deshalb vielfaeltige Wirkungen. Plasmid-DNA und t-RNA reagieren mit diesen Mycotoxinen.
Wir untersuchen, wie funktionell unterschiedliche M1- und M2-Makrophagen-Phänotypen miteinander kommunizieren, um mikrobielle Infektionen abzuwehren und die Gewebshomöostase im Wirt wiederherzustellen. Dabei konzentrieren wir uns auf Lipidmediatoren als Signalmoleküle, die durch mikrobielle Exotoxine in Makrophagen gebildet werden und damit Phagozyten und andere Immunzellen steuern. Wir prüfen, ob die gezielte Manipulation von Lipidmediatoren mit Wirkstoffen, insb. Naturstoffe aus anderen Organismen, genutzt werden kann, um zelluläre Wirtsfunktionen so zu modulieren, dass mikrobielle Infektionen effektiv bekämpft werden und die Homöstase wiederhergestellt wird.
Strahlentherapien (inklusive Strahlendiagnostik) in Kombination mit Chemo-/Immuntherapien oder anderen Neurotoxinen verursachen schwere Nebenwirkungen wie kognitive Beeinträchtigungen. Die zugrunde liegenden Mechanismen sind nicht bekannt, korrelieren aber mit einer gestörten Neurogenese/-regeneration. Im Forschungsvorhaben wird basierend auf humanen embryonalen Stammzellen eine in vitro (organoide) Kultur etabliert, die die Neurogenese/-regeneration mit den beteiligten Zelltypen des Gehirns wie Neurone, Gliazellen und Mikroglia/Makrophagen nachbildet. Klinisch relevante Kombinationen von Strahlen- (Röntgen und Kohlenstoffionen) und Chemo-/oder Immuntherapien und andere Neurotoxine (z.B. Antikonvulsiva) werden anhand des Brain-Radiation-Assays getestet und die Signalkaskaden und Regulatoren identifiziert, die für die eingeschränkte neuronale Funktion verantwortlich sind. AP2.1 Transfer des neuronalen Differenzierungssystems für die MEA Methode; AP2.2 Elektrophysiologische von aus Stammzellen differenzierten neuronalen Zellen nach kombinierter Strahlen- und Medikamenteneinwirkung; AP2.3 Elektrophysiologische und immunchemische Untersuchung von Neuronen/Mikroglia Ko-Kulturen nach kombinierter Strahlen- und Medikamenteneinwirkung.
Strahlentherapien (inclusive Strahlendiagnostic) in Kombination mit Chemo-/Immuntherapien oder anderen Neurotoxinen verursachen schwere Nebenwirkungen wie kognitive Beeinträchtigungen. Die zugrundeliegenden Mechanismen sind nicht bekannt, korrelieren aber mit einer gestörten Neurogenese/-regeneration. Im Forschungsvorhaben wird basierend auf humanen embryonalen Stammzellen eine in vitro (organoide) Kultur etabliert, die die Neurogenese/-regeneration mit den beteiligten Zelltypen des Gehirns wie Neurone, Gliazellen und Mikroglia/Makrophagen nachbildet. Klinisch relevante Kombinationen von Strahlen- (Röntgen und Kohlenstoffionen) und Chemo-/oder Immuntherapien und andere Neurotoxine (z.B. Antikonvulsiva) werden anhand des Brain-Radiation-Assays getestet und die Signalkaskaden und Regulatoren identifiziert, die für die eingeschränkte neuronale Funktion verantwortlich sind.
Ziel dieses Projektes ist die Untersuchung des Einflusses von Radonbehandlungen auf das cholinerge System. Dabei soll in erster Linie geklärt werden, inwieweit die Exposition mit ionisierender Strahlung die Expression und die Aktivität einzelner Komponenten des cholinergen Systems beeinflusst. Dafür sollen die Folgen der Exposition gegenüber unterschiedlichen Strahlenqualitäten wie Röntgen-, Ionen- und Alphastrahlung mit einer Radonexposition verglichen werden. Darüber hinaus soll untersucht werden, ob mögliche Wechselwirkungen zwischen Strahlung und dem cholinergen System zu einer Modifikation der Entzündungsreaktion im Körper von bestrahlten Patienten führt. Für dieses Projekt werden neben Wildtyp-Mäusen auch arthritische Mäuse und AChE-Knockout-Mäuse bestrahlt werden und im Anschluss daran die Expression und die Aktivität verschiedener Komponenten des cholinergen Systems untersucht werden. Zusätzlich dazu sollen ähnliche Untersuchungen in vitro an Osteoblasten, Makrophagen und Endothelzellen durchgeführt werden. Zuletzt werden aus den Extremitätenknospen der oben genannten Tiermodelle Micromass-Kulturen angelegt, mit deren Hilfe die Differenzierung von Knorpel- und Knochenzellen analysiert werden sollen. Alle in vitro durchgeführten Experimente werden zusätzlich in Anwesenheit von Inhibitoren des cholinergen Systems durchgeführt werden.