API src

Found 32 results.

Markt für Blei

technologyComment of gold mine operation and refining (SE): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. HEAP LEACHING: The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: Some types of ore require further processing before gold is recovered. In this case, the slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. References: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp technologyComment of primary lead production from concentrate (GLO): There are two basic pyrometallurgical processes available for the production of lead from lead or mixed lead-zinc-sulphide concentrates: sinter oxidation / blast furnace reduction route or Direct Smelting Reduction Processes. Both processes are followed by a refining step to produce the final product with the required purity, and may also be used for concentrates mixed with secondary raw materials. SINTER OXIDATION / BLAST FURNACE REDUCTION: The sinter oxidation / blast furnace reduction involves two steps: 1) A sintering oxidative roast to remove sulphur with production of PbO; and 2) Blast furnace reduction of the sinter product. The objective of sintering lead concentrates is to remove as much sulphur as possible from the galena and the accompanying iron, zinc, and copper sulphides, while producing lump agglomerate with appropriate properties for subsequent reduction in the blast furnace (a type of a shaft furnace). As raw material feed, lead concentrates are blended with recycled sinter fines, secondary material and other process materials and pelletised in rotating drums. Pellets are fed onto sinter machine and ignited. The burning pellets are conveyed over a series of wind-boxes through which air is blown. Sulphur is oxidised to sulphur dioxide and the reaction generates enough heat to fuse and agglomerate the pellets. Sinter is charged to the blast furnace with metallurgical coke. Air and/or oxygen enriched air is injected and reacts with the coke to produce carbon monoxide. This generates sufficient heat to melt the charge. The gangue content of the furnace charge combines with the added fluxes or reagents to form a slag. For smelting bulk lead-zinc-concentrates and secondary material, frequently the Imperial Smelting Furnace is used. Here, hot sinter and pre-heated coke as well as hot briquettes are charged. Hot air is injected. The reduction of the metal oxides not only produces lead and slag but also zinc, which is volatile at the furnace operating temperature and passes out of the ISF with the furnace off-gases. The gases also contain some cadmium and lead. The furnace gases pass through a splash condenser in which a shower of molten lead quenches them and the metals are absorbed into the liquid lead, the zinc is refined by distillation. DIRECT SMELTING REDUCTION: The Direct Smelting Reduction Process does not carry out the sintering stage separately. Lead sulphide concentrates and secondary materials are charged directly to a furnace and are then melted and oxidised. Sulphur dioxide is formed and is collected, cleaned and converted to sulphuric acid. Carbon (coke or gas) and fluxing agents are added to the molten charge and lead oxide is reduced to lead, a slag is formed. Some zinc and cadmium are “fumed” off in the furnace, their oxides are captured in the abatement plant and recovered. Several processes are used for direct smelting of lead concentrates and some secondary material to produce crude lead and slag. Bath smelting processes are used: the ISA Smelt/Ausmelt furnaces (sometimes in combination with blast furnaces), Kaldo (TBRC) and QSL integrated processes are used in EU and Worldwide. The Kivcet integrated process is also used and is a flash smelting process. The ISA Smelt/Ausmelt furnaces and the QSL take moist, pelletised feed and the Kaldo and Kivcet use dried feed. REFINING: Lead bullion may contain varying amounts of copper, silver, bismuth, antimony, arsenic and tin. Lead recovered from secondary sources may contain similar impurities, but generally antimony and calcium dominate. There are two methods of refining crude lead: electrolytic refining and pyrometallurgical refining. Electrolytic refining uses anodes of de-copperised lead bullion and starter cathodes of pure lead. This is a high-cost process and is used infrequently. A pyrometallurgical refinery consists of a series of kettles, which are indirectly heated by oil or gas. Over a series of separation processes impurities and metal values are separated from the lead bouillon. Overall waste: The production of metals is related to the generation of several by-products, residues and wastes, which are also listed in the European Waste Catalogue (Council Decision 94/3/EEC). The ISF or direct smelting furnaces also are significant sources of solid slag. This slag has been subjected to high temperatures and generally contains low levels of leachable metals, consequently it may be used in construction. Solid residues also arise as the result of the treatment of liquid effluents. The main waste stream is gypsum waste (CaSO4) and metal hydroxides that are produced at the wastewater neutralisation plant. These wastes are considered to be a cross-media effect of these treatment techniques but many are recycled to pyrometallurgical process to recover the metals. Dust or sludge from the treatment of gases are used as raw materials for the production of other metals such as Ge, Ga, In and As, etc or can be returned to the smelter or into the leach circuit for the recovery of lead and zinc. Hg/Se residues arise at the pre-treatment of mercury or selenium streams from the gas cleaning stage. This solid waste stream amounts to approximately 40 - 120 t/y in a typical plant. Hg and Se can be recovered from these residues depending on the market for these metals. Overall emissions: The main emissions to air from zinc and lead production are sulphur dioxide, other sulphur compounds and acid mists; nitrogen oxides and other nitrogen compounds, metals and their compounds; dust; VOC and dioxins. Other pollutants are considered to be of negligible importance for the industry, partly because they are not present in the production process and partly because they are immediately neutralised (e.g. chlorine) or occur in very low concentrations. Emissions are to a large extent bound to dust (except cadmium, arsenic and mercury that can be present in the vapour phase). Metals and their compounds and materials in suspension are the main pollutants emitted to water. The metals concerned are Zn, Cd, Pb, Hg, Se, Cu, Ni, As, Co and Cr. Other significant substances are fluorides, chlorides and sulphates. Wastewater from the gas cleaning of the smelter and fluid-bed roasting stages are the most important sources. References: Sutherland C. A., Milner E. F., Kerby R. C., Teindl H. and Melin A. (1997) Lead. In: Ullmann's encyclopedia of industrial chemistry (ed. Anonymous). 5th edition on CD-ROM Edition. Wiley & Sons, London. IPPC (2001) Integrated Pollution Prevention and Control (IPPC); Reference Document on Best Available Techniques in the Non Ferrous Metals Industries. European Commission. Retrieved from http://www.jrc.es/pub/english.cgi/ 0/733169 technologyComment of primary zinc production from concentrate (RoW): The technological representativeness of this dataset is considered to be high as smelting methods for zinc are consistent in all regions. Refined zinc produced pyro-metallurgically represents less than 5% of global zinc production and less than 2% of this dataset. Electrometallurgical Smelting The main unit processes for electrometallurgical zinc smelting are roasting, leaching, purification, electrolysis, and melting. In both electrometallurgical and pyro-metallurgical zinc production routes, the first step is to remove the sulfur from the concentrate. Roasting or sintering achieves this. The concentrate is heated in a furnace with operating temperature above 900 °C (exothermic, autogenous process) to convert the zinc sulfide to calcine (zinc oxide). Simultaneously, sulfur reacts with oxygen to produce sulfur dioxide, which is subsequently converted to sulfuric acid in acid plants, usually located with zinc-smelting facilities. During the leaching process, the calcine is dissolved in dilute sulfuric acid solution (re-circulated back from the electrolysis cells) to produce aqueous zinc sulfate solution. The iron impurities dissolve as well and are precipitated out as jarosite or goethite in the presence of calcine and possibly ammonia. Jarosite and goethite are usually disposed of in tailing ponds. Adding zinc dust to the zinc sulfate solution facilitates purification. The purification of leachate leads to precipitation of cadmium, copper, and cobalt as metals. In electrolysis, the purified solution is electrolyzed between lead alloy anodes and aluminum cathodes. The high-purity zinc deposited on aluminum cathodes is stripped off, dried, melted, and cast into SHG zinc ingots (99.99 % zinc). Pyro-metallurgical Smelting The pyro-metallurgical smelting process is based on the reduction of zinc and lead oxides into metal with carbon in an imperial smelting furnace. The sinter, along with pre-heated coke, is charged from the top of the furnace and injected from below with pre-heated air. This ensures that temperature in the center of the furnace remains in the range of 1000-1500 °C. The coke is converted to carbon monoxide, and zinc and lead oxides are reduced to metallic zinc and lead. The liquid lead bullion is collected at the bottom of the furnace along with other metal impurities (copper, silver, and gold). Zinc in vapor form is collected from the top of the furnace along with other gases. Zinc vapor is then condensed into liquid zinc. The lead and cadmium impurities in zinc bullion are removed through a distillation process. The imperial smelting process is an energy-intensive process and produces zinc of lower purity than the electrometallurgical process. technologyComment of treatment of electronics scrap, metals recovery in copper smelter (SE, RoW): Conversion of Copper in a Kaldo Converter and treatment in converter aisle. technologyComment of treatment of scrap lead acid battery, remelting (RoW): The referred operation uses a shaft furnace with post combustion, which is the usual technology for secondary smelters. technologyComment of treatment of scrap lead acid battery, remelting (RER): The referred operation uses a shaft furnace with post combustion, which is the usual technology for secondary smelters. Typically this technology produces 5000 t / a sulphuric acid (15% concentration), 25’000 t lead bullion (98% Pb), 1200 t / a slags (1% Pb) and 3000 t / a raw lead matte (10% Pb) to be shipped to primary smelters. Overall Pb yield is typically 98.8% at the plant level and 99.8% after reworking the matte. The operation treats junk batteries and plates but also lead cable sheathing, drosses and sludges, leaded glass and balancing weights. From this feed it manufactures mainly antimonial lead up to 10% Sb, calcium-aluminium lead alloys with or without tin and soft lead with low and high copper content. All these products are the result of a refining and alloying step to meet the compliance with the designations desired. The following by products are reused in the process: fine dust, slag, and sulfuric acid. References: Quirijnen L. (1999) How to implement efficient local lead-acid battery recycling. In: Journal of Power Sources, 78(1-2), pp. 267-269.

Markt für Zink

technologyComment of gold mine operation and refining (SE): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. HEAP LEACHING: The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: Some types of ore require further processing before gold is recovered. In this case, the slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. References: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp technologyComment of primary zinc production from concentrate (CA-QC): Hydrometallurgical process Sulphide concentrates are roasted first in fluidized bed roasters to produce zinc oxide (calcine) and sulphur dioxide. Roasting is an exothermic process and no additional fuel is used to sustain the reaction, the heat generated is recovered to produce steam. Calcine is then sent to the leaching step. Roaster gases are treated in hot electrostatics precipitators to remove dust. The remaining dust and volatile metals such as mercury and selenium are removed in the wet section of the acid plant through a cooling tour, a mist precipitator and a mercury tower (Boliden mercury removal processs). The sulphur dioxide is then converted to sulphuric acid in a conventional recovery system (converted and absorbing tower). Leaching of the calcine is carried out in a number of successive stages using a gradually increasing strength of hot sulphuric acid. The initial stages dissolve the major part of the zinc oxide and the other stages dissolve the zinc ferrite (ZnO.Fe2O3) and convert iron into Jarosite (sodium Jarosite). Zinc sulfate (ZnSO4) entering the electrolysis stage produce electrolyte (H2SO4) that is returned to leaching plant. Other metals are also dissolved during the process and are removed after leaching. Iron is the major impurity, which is precipitated in the form of Jarosite. Overall waste: The production of metals is related to the generation of several by-products, residues and wastes. Relatively large quantities of iron based solids, depending on the iron content, are generated by the leaching process (6.14E-1 kg Jarosite/kg zinc). Cement is added to the Jarosite to produce Jarofix (an inert waste). Solid residues also arise as the result of the liquid effluents treatment. The main waste stream is gypsum (CaSO4) and metal hydroxides that are produced at the wastewater neutralization plant. Mercury and selenium residues arise from the weak acid bleed treatment from the acid plant. Selenium can be recovered from these residues depending on the market demand for this metal. Overall emissions: The emissions to air can either be stack emissions or fugitive emissions. Stack emissions are normally monitored continuously (SO2) or periodically (other emissions) and reported. The main emissions to air from zinc production are sulphur dioxide (SO2) and particulate matters including metals. Main emissions to water are metals and their compounds. The monitored metals are zinc, cadmium, lead, mercury, selenium, copper and arsenic. technologyComment of primary zinc production from concentrate (RoW): The technological representativeness of this dataset is considered to be high as smelting methods for zinc are consistent in all regions. Refined zinc produced pyro-metallurgically represents less than 5% of global zinc production and less than 2% of this dataset. Electrometallurgical Smelting The main unit processes for electrometallurgical zinc smelting are roasting, leaching, purification, electrolysis, and melting. In both electrometallurgical and pyro-metallurgical zinc production routes, the first step is to remove the sulfur from the concentrate. Roasting or sintering achieves this. The concentrate is heated in a furnace with operating temperature above 900 °C (exothermic, autogenous process) to convert the zinc sulfide to calcine (zinc oxide). Simultaneously, sulfur reacts with oxygen to produce sulfur dioxide, which is subsequently converted to sulfuric acid in acid plants, usually located with zinc-smelting facilities. During the leaching process, the calcine is dissolved in dilute sulfuric acid solution (re-circulated back from the electrolysis cells) to produce aqueous zinc sulfate solution. The iron impurities dissolve as well and are precipitated out as jarosite or goethite in the presence of calcine and possibly ammonia. Jarosite and goethite are usually disposed of in tailing ponds. Adding zinc dust to the zinc sulfate solution facilitates purification. The purification of leachate leads to precipitation of cadmium, copper, and cobalt as metals. In electrolysis, the purified solution is electrolyzed between lead alloy anodes and aluminum cathodes. The high-purity zinc deposited on aluminum cathodes is stripped off, dried, melted, and cast into SHG zinc ingots (99.99 % zinc). Pyro-metallurgical Smelting The pyro-metallurgical smelting process is based on the reduction of zinc and lead oxides into metal with carbon in an imperial smelting furnace. The sinter, along with pre-heated coke, is charged from the top of the furnace and injected from below with pre-heated air. This ensures that temperature in the center of the furnace remains in the range of 1000-1500 °C. The coke is converted to carbon monoxide, and zinc and lead oxides are reduced to metallic zinc and lead. The liquid lead bullion is collected at the bottom of the furnace along with other metal impurities (copper, silver, and gold). Zinc in vapor form is collected from the top of the furnace along with other gases. Zinc vapor is then condensed into liquid zinc. The lead and cadmium impurities in zinc bullion are removed through a distillation process. The imperial smelting process is an energy-intensive process and produces zinc of lower purity than the electrometallurgical process.

Markt für Mangan

technologyComment of manganese production (RER): The metal is won by electrolysis (25%) and electrothermic processes (75%). ELECTROLYSIS OF AQUEOUS MANGANESE SALTS The production of manganese metal by the electrolysis of aqueous manganese salts requires at first a milling of the manganese ore. Milling increases the active surface and ensures sufficient reactivity in both the reduction and the subsequent leaching steps. After milling the manganese ore is fed to a rotary kiln where the reduction and calcination takes place. This process is carried out at about 850 - 1000 ºC in a reducing atmosphere. As a reducing agent, several carbon sources can be used e.g. anthracite, coal, charcoal and hydrocarbon oil or natural gas. The cal-cined ore needs to be cooled below 100 ºC to avoid a further re-oxidation. The subsequent leaching process is carried out with recycled electrolyte, mainly sulphuric acid. After leaching and filtration the iron content is removed from the solution by oxidative precipitation and the nickel and cobalt are removed by sulphide precipitation. The purified electrolyte is then treated with SO2 in order to ensure plating of γ-Mn during electrolysis. Electrolysis is carried out in diaphragm cells. The cathode is normally made of stainless steel or titanium. For the anode lead-calcium or lead-silver alloy can be used. After an appropriate reaction time the cathodes are removed from the electrolysis bath. The manganese that is deposited on the cathode starter-sheet is stripped off mechanically and then washed and dried. The metal is crushed to produce metal flakes or powder or granulated, depending on the end use. ELECTROTHERMAL DECOMPOSITION OF MANGANESE ORES The electrothermal process is the second important process to produce manganese metal in an industrial scale. The electrothermal process takes place as a multistage process. In the first stage manganese ore is smelted with only a small amount of reductant in order to reduce mostly the iron oxide. This produces a low-grade ferro-manganese and a slag that is rich in Mn-oxide. The slag is then smelted in the second stage with silicon to produce silicomanganese. The molten silicomanganese can be treated with liquid slag from the fist stage to obtain relatively pure manganese metal. For the last step a ladle or shaking ladle can be used. The manganese metal produced by the electrothermal process contains up to 98% of Mn. Overall emissions and waste: Emissions to air consist of dust and fume emissions from smelting, hard metal and carbide production; Other emissions to air are ammonia (NH3), acid fume (HCl), hydrogen fluoride (HF), VOC and heavy metals. Effluents are composed of overflow water from wet scrubbing systems, wastewater from slag and metal granulation, and blow down from cooling water cycles. Waste includes dust, fume, sludge and slag. References: Wellbeloved D. B., Craven P. M. and Waudby J. W. (1997) Manganese and Manganese Alloys. In: Ullmann's encyclopedia of industrial chemistry (ed. Anonymous). 5th edition on CD-ROM Edition. Wiley & Sons, London. IPPC (2001) Integrated Pollution Prevention and Control (IPPC); Reference Document on Best Available Techniques in the Non Ferrous Metals Industries. European Commission. Retrieved from http://www.jrc.es/pub/english.cgi/ 0/733169 technologyComment of manganese production (RoW): The metal is won by electrolysis (assumption: 25%) and electrothermic processes (assumption: 75%). No detailed information available, mainly based on rough estimates. technologyComment of treatment of non-Fe-Co-metals, from used Li-ion battery, hydrometallurgical processing (GLO): The technique SX-EW is used mainly for oxide ores and supergene sulphide ores (i.e. ores not containing iron). It is assumed to be used for the treatment of the non-Fe-Co-metals fraction. The process includes a leaching stage followed by cementation or electro-winning. A general description of the process steps is given below. In the dump leaching step, copper is recovered from large quantities (millions of tonnes) of strip oxide ores with a very low grade. Dilute sulphuric acid is trickled through the material. Once the process starts it continues naturally if water and air are circulated through the heap. The time required is typically measured in years. Sulphur dioxide is emitted during such operations. Soluble copper is then recovered from drainage tunnels and ponds. Copper recovery rates vary from 30% to 70%. Cconsiderable amounts of sulphuric acid and leaching agents emit into water and air. No figures are currently available on the dimension of such emissions. After the solvent-solvent extraction, considerable amounts of leaching residues remain, which consist of undissolved minerals and the remainders of leaching chemicals. In the solution cleaning step occur precipitation of impurities and filtration or selective enrichment of copper by solvent extraction or ion exchange. The solvent extraction process comprises two steps: selective extraction of copper from an aqueous leach solution into an organic phase (extraction circuit) and the re-extraction or stripping of the copper into dilute sulphuric acid to give a solution suitable for electro winning (stripping circuit). In the separation step occurs precipitation of copper metal or copper compounds such as Cu2O, CuS, CuCl, CuI, CuCN, or CuSO4 • 5 H2O (crystallisation) Waste: Like in the pyrometallurgical step, considerable quantities of solid residuals are generated, which are mostly recycled within the process or sent to other specialists to recover any precious metals. Final residues generally comprise hydroxide filter cakes (iron hydroxide, 60% water, cat I industrial waste).

Markt für Chrom

technologyComment of chromium production (RoW): Metallic chromium is produced by aluminothermic process (75%) and electroylsis of dissolved ferrochromium (25%) technologyComment of chromium production (RER): Metallic chromium is produced by aluminothermic process (75%) and electroylsis of dissolved ferrochromium (25%) ALUMINOTHERMIC PROCESS The thermic process uses aluminium as a reducing agent for chromium hydroxide. The charge is weighed and loaded into a bin, which is taken to an enclosed room to mix the contents. The firing pot is prepared by ramming refractory sand mixed with water around a central former. After ramming the firing pot, the inner surface is coated with a weak binder solution and dried under a gas fired hood before being transferred to the firing station. The raw material mix is automatically fed at a controlled rate into the firing pot, where the exothermic reaction takes place. When the metal has solidified following the reaction, the firing pot is removed and transferred by crane to a cooling conveyor. On removal from the cooling conveyor (by crane), the firing pot is placed on a stripping bogie for transferral to a stripping booth. Inside the closed booth, the pot casing is hoisted off the solidified metal/slag. The slag is separated from the Chromium metal “button” and sent to a despatch storage area. Water is used to reduce button temperature to below 100 ºC. After cooling the metal button is transferred to other departments on site for cleaning, breaking, crushing and grinding to achieve the desired product size. ELECTROLYTIC PROCESS In the electrolytic process normally high carbon ferrochrome is used as the feed material which is then converted into chromium alum by dissolution with sulphuric acid at temperatures at about 200 ºC. After several process steps using crystallisation filtration ageing, a second filtration and a clarifying operation the alum becomes the electrolyte for a diaphragm cell. Chromium is plated onto stainless steel cathodes until it attains a thickness of ca. 3 mm. The process is very sensitive. The additional de-gassing (heating at 420 °C) stage is necessary because the carbon content of the electrolytic chromium is sometimes too high for further industrial applications. The cooled chromium metal is fragmented with a breaker prior to crushing and drumming. The generated slag can be reused as refractory lining or sold as abrasive or refractory material. Overall emissions and waste: Emissions to air consist of dust and fume emissions from smelting, hard metal and carbide production; other emissions to air are ammonia (NH3), acid fume (HCl), hydrogen fluoride (HF), VOC’s and heavy metals. Emissions to water are overflow water from wet scrubbing systems, wastewater from slag and metal granulation, and blow down from cooling water cycles. Solid waste is composed of dust, fume and sludge, and slag. References: IPPC (2001) Integrated Pollution Prevention and Control (IPPC); Reference Document on Best Available Techniques in the Non Ferrous Metals Industries. European Commission. Retrieved from http://www.jrc.es/pub/english.cgi/ 0/733169

Markt für Platin

technologyComment of platinum group metal mine operation, ore with high palladium content (RU): imageUrlTagReplace6250302f-4c86-4605-a56f-03197a7811f2 technologyComment of platinum group metal, extraction and refinery operations (ZA): The ores from the different ore bodies are processed in concentrators where a PGM concentrate is produced with a tailing by product. The PGM base metal concentrate product from the different concentrators processing the different ores are blended during the smelting phase to balance the sulphur content in the final matte product. Smelter operators also carry out toll smelting from third part concentrators. The smelter product is send to the Base metal refinery where the PGMs are separated from the Base Metals. Precious metal refinery is carried out on PGM concentrate from the Base metal refinery to split the PGMs into individual metal products. Water analyses measurements for Anglo Platinum obtained from literature (Slatter et.al, 2009). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” Water share between MC and EC from Mudd (2010). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” technologyComment of treatment of automobile catalyst (RoW): After collection and transportation to the intermediary dealer, the scrap is ground in a mill. The resulting material is fed to specialised refineries. The metallurgical step consists of an arc-furnace. Same refining process as in primary production assumed (selective precipitation) technologyComment of treatment of automobile catalyst (RER): The production process consists of three steps: Collection, Beneficiation and Refining. COLLECTION: Spoiled automotive catalysts are bought by specialised enterprises from different origins. Part of it originates from scrap dealer recycling end-of-life cars. Further more during the cars operating phase, defective catalysts are exchanged in garages. The third sources is the production waste, i. e. defective catalysts which do not reach market. In most cases, there are fix agreements between the different supplier and the intermediary trade. Although the trade with PGM containing scrap is risky. Motor car manufacturer built up their own internal recycling systems with their contractor garages and gained access to exchanged catalysts. Emissions: Emissions during collection are gases from transportation and dust from dismantling. Also in this step the combustion leads to emissions of SO2. No serious water emissions are reported. BENEFICIATION: The catalysts are dismantled and then sold to refining companies. Refineries too have long-term contracts with the intermediary trade. Emissions: Emissions during beneficiation are gases from transportation and dust from dismantling. Also in this step the combustion leads to emissions of SO2. No serious water emissions are reported. REFINING: The scrap first is shredded and then pyrometallurgicaly processed: The scrap is smelted in an electric arc furnace, and the ceramic wafer is slagged. The PGMs are concentrated in the collector metal, usually copper. Low-content PGM scrap is often smelted together with other non-ferrous metal matte. This is cheap, but effects a high loss in PGM. The collector matte from the furnace then is treated hydrometallurgically by re-precipitation. In this step usually production scrap from other industries (glass, chemical laboratories) is joined. The overall PGM-yield is 98 % for platinum and 85 % for rhodium. Emissions: Dust and metals are generally emitted from incinerators and furnaces. VOC can be emitted from solvent extraction processes, while organic compounds, namely dioxins, can be emitted from smelting stages resulting from the poor combustion of oil and plastic in the feed material. All these emissions are subject to abatement technologies and controlling. Effluents from refining contain considerable amounts of metals and organic substances. Waste: Solid residues from pyrometallurgical step are usually re-used in copper facilities, final residues generally comprise hydroxide filter cakes. References: Hagelücken C. (2001b) Die Märkte der Katalysatormetalle Platin, Palladium und Rhodium. In: Autoabgaskatalysatoren, Vol. 612. pp. 95-115. Expert Verlag, Renningen. Online-Version under: http://www.dmc-2.de/pmc_eng/Veroeffentlichungen_2/Die%20M%C3%A4rkte%20der%20Katalysatormetalle%20Pt%20Pd%20Rh.pdf.

Markt für Selen

technologyComment of processing of anode slime from electrorefining of copper, anode (GLO): Based on typical current technology. Anode slime treatment by pressure leaching and top blown rotary converter. Production of Silver by Möbius Electrolysis, Gold by Wohlwill electrolysis, copper telluride cement and crude selenium to further processing. technologyComment of selenium production (RER, RoW): Production from selenium is based on simplified roasting process with sodium carbonate. The inventory is based on stoechiometric calculations, according to the following equations: 2 X-Se + 2 Na2CO3 + 3 CO2 -> 2 Na2O4Se + 2 CO2 + 2 X (with X = compounds that were connected to Se - e.g. Cu2, CuAg, ....) 2 Na2O4Se + 4 HCl -> 2 H2O3Se + 4 NaCl + O2 2 H2O3Se + 2 SO2 -> 2 Se + 2 H2SO4 + O2 A surplus input of 25% is assumed. The air emissions occurring from the process are estimated to 0.2% of the raw material input. The remaining amount of unreacted raw materials is assumed to leave the production process to 95% as a solid waste and to 5% in the wastewater. Further it is assumed that this wastewater is treated in an internal wastewater plant. The carbonate is dissolved in the water and not shown anymore in the dataset. Sodium and chloride are assumed to be neutralized within the waste water treatment plant, leading to emissions of Cl- and Na+ in the water outflow. Sodium dioxide will be reacted into sulphuric acid and therefore leads to emissions of SO42- in the water outflow.

Markt für Nickel, Klasse 1

technologyComment of cobalt production (GLO): Cobalt, as a co-product of nickel and copper production, is obtained using a wide range of technologies. The initial life cycle stage covers the mining of the ore through underground or open cast methods. The ore is further processed in beneficiation to produce a concentrate and/or raffinate solution. Metal selection and further concentration is initiated in primary extraction, which may involve calcining, smelting, high pressure leaching, and other processes. The final product is obtained through further refining, which may involve processes such as re-leaching, selective solvent / solution extraction, selective precipitation, electrowinning, and other treatments. Transport is reported separately and consists of only the internal movements of materials / intermediates, and not the movement of final product. Due to its intrinsic value, cobalt has a high recycling rate. However, much of this recycling takes place downstream through the recycling of alloy scrap into new alloy, or goes into the cobalt chemical sector as an intermediate requiring additional refinement. Secondary production, ie production from the recycling of cobalt-containing wastes, is considered in this study in so far as it occurs as part of the participating companies’ production. This was shown to be of very limited significance (less than 1% of cobalt inputs). The secondary materials used for producing cobalt are modelled as entering the system free of environmental burden. technologyComment of platinum group metal mine operation, ore with high palladium content (RU): imageUrlTagReplace6250302f-4c86-4605-a56f-03197a7811f2 technologyComment of platinum group metal, extraction and refinery operations (ZA): The ores from the different ore bodies are processed in concentrators where a PGM concentrate is produced with a tailing by product. The PGM base metal concentrate product from the different concentrators processing the different ores are blended during the smelting phase to balance the sulphur content in the final matte product. Smelter operators also carry out toll smelting from third part concentrators. The smelter product is send to the Base metal refinery where the PGMs are separated from the Base Metals. Precious metal refinery is carried out on PGM concentrate from the Base metal refinery to split the PGMs into individual metal products. Water analyses measurements for Anglo Platinum obtained from literature (Slatter et.al, 2009). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” Water share between MC and EC from Mudd (2010). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” technologyComment of processing of nickel-rich materials (GLO): Based on typical current technology. technologyComment of smelting and refining of nickel concentrate, 16% Ni (GLO): Extrapolated from a typical technology for smelting and refining of nickel ore. MINING: 95% of sulphidic nickel ores are mined underground in depths between 200m and 1800m, the ore is transferred to the beneficiation. Widening of the tunnels is mainly done by blasting. The overburden – material, which does not contain PGM-bearing ore – is deposed off-site and is partially refilled into the tunnels. Emissions: The major emissions are due to mineral born pollutants in the effluents. The underground mining operations generate roughly 80 % of the dust emissions from open pit operations, since the major dust sources do not take place underground. Rain percolate through overburden and accounts to metal emissions to groundwater. Waste: Overburden is deposed close to the mine. Acid rock drainage occurs over a long period of time. BENEFICIATION: After mining, the ore is first ground. In a next step it is subjected to gravity concentration to separate the metallic particles from the PGM-bearing minerals. After this first concentration step, flotation is carried out to remove the gangue from the sulphidic minerals. For neutralisation lime is added. In the flotation several organic chemicals are used as collector, frother, activator, depressor and flocculant. Sometimes cyanide is used as depressant for pyrite. Tailings usually are led to tailing heaps or ponds. As a result, nickel concentrates containing 7 - 25% Ni are produced. Emissions: Ore handling and processing produce large amounts of dust, containing PM10 and several metals from the ore itself. Flotation produce effluents containing several organic agents used. Some of these chemicals evaporate and account for VOC emissions to air. Namely xanthates decompose hydrolytically to release carbon disulphide. Tailings effluent contains additional sulphuric acid from acid rock drainage. Waste: Tailings are deposed as piles and in ponds. Acid rock drainage occurs over a long period of time. METALLURGY AND REFINING: There are many different process possibilities to win the metal. The chosen process depends on the composition of the ore, the local costs of energy carrier and the local legislation. Basically two different types can be distinguished: the hydrometallurgical and the pyrometallurgical process, which paired up with the refining processes, make up five major production routes (See Tab.1). All this routes are covered, aggregated according to their market share in 1994. imageUrlTagReplace00ebef53-ae97-400f-a602-7405e896cb76 Pyrometallurgy. The pyrometallurgical treatment of nickel concentrates includes three types of unit operation: roasting, smelting, and converting. In the roasting step sulphur is driven off as sulphur dioxide and part of the iron is oxidised. In smelting, the roaster product is melted with a siliceous flux which combines with the oxidised iron to produce two immiscible phases, a liquid silicate slag which can be discarded, and a solution of molten sulphides which contains the metal values. In the converting operation on the sulphide melt, more sulphur is driven off as sulphur dioxide, and the remaining iron is oxidised and fluxed for removal as silicate slag, leaving a high-grade nickel – copper sulphide matte. In several modern operations the roasting step has been eliminated, and the nickel sulphide concentrate is treated directly in the smelter. Hydrometallurgy: Several hydrometallurgical processes are in commercial operation for the treatment of nickel – copper mattes to produce separate nickel and copper products. In addition, the hydrometal-lurgical process developed by Sherritt Gordon in the early 1950s for the direct treatment of nickel sulphide concentrates, as an alternative to smelting, is still commercially viable and competitive, despite very significant improvements in the economics and energy efficiency of nickel smelting technology. In a typical hydrometallurgical process, the concentrate or matte is first leached in a sulphate or chloride solution to dissolve nickel, cobalt, and some of the copper, while the sulphide is oxidised to insoluble elemental sulphur or soluble sulphate. Frequently, leaching is carried out in a two-stage countercurrent system so that the matte can be used to partially purify the solution, for example, by precipitating copper by cementation. In this way a nickel – copper matte can be treated in a two-stage leach process to produce a copper-free nickel sulphate or nickel chloride solution, and a leach residue enriched in copper. Refining: In many applications, high-purity nickel is essential and Class I nickel products, which include electrolytic cathode, carbonyl powder, and hydrogen-reduced powder, are made by a variety of refining processes. The carbonyl refining process uses the property of nickel to form volatile nickel-carbonyl compounds from which elemental nickel subsides to form granules. Electrolytic nickel refineries treat cast raw nickel anodes in a electrolyte. Under current the anode dissolves and pure nickel deposits on the cathode. This electrorefining process is obsolete because of high energy demand and the necessity of building the crude nickel anode by reduction with coke. It is still practised in Russia. Most refineries recover electrolytic nickel by direct electrowinning from purified solutions produced by the leaching of nickel or nickel – copper mattes. Some companies recover refined nickel powder from purified ammoniacal solution by reduction with hydrogen. Emissions: In all of the metallurgical steps, sulphur dioxide is emitted to air. Recovery of sulphur dioxide is only economic for high concentrated off-gas. Given that In the beneficiation step, considerable amounts of lime are added to the ore for pH-stabilisation, lime forms later flux in the metallurgical step, and decomposes into CO2 to form calcite. Dust carry over from the roasting, smelting and converting processes. Particulate emissions to the air consist of metals and thus are often returned to the leaching process after treatment. Chlorine is used in some leaching stages and is produced during the subsequent electrolysis of chloride solution. The chlorine evolved is collected and re-used in the leach stage. The presence of chlorine in wastewater can lead to the formation of organic chlorine compounds (AOX) if solvents etc. are also present in a mixed wastewater. VOCs can be emitted from the solvent extraction stages. A variety of solvents are used an they contain various complexing agents to form complexes with the desired metal that are soluble in the organic layer. Metals and their compounds and substances in suspension are the main pollutants emitted to water. The metals concerned are Cu, Ni, Co, As and Cr. Other significant substances are chlorides and sulphates. Wastewater from wet gas cleaning (if used) of the different metallurgical stages are the most important sources. The leaching stages are usually operated on a closed circuit and drainage systems, and are therefore regarded as minor sources. In the refining step, the combustion of sulphur leads to emissions of SO2. Nitrogen oxides are produced in significant amounts during acid digestion using nitric acid. Chlorine and HCl can be formed during a number of digestion, electrolytic and purification processes. Chlorine is used extensively in the Miller process and in the dissolution stages using hydrochloric acid and chlorine mixtrues respectively. Dust and metals are generally emitted from incinerators and furnaces. VOC can be emitted from solvent extraction processes, while organic compounds, namely dioxins, can be emitted from smelting stages resulting from the poor combustion of oil and plastic in the feed material. All these emissions are subject to abatement technologies and controlling. Large quantities of effluents contain amounts of metals and organic substances. Waste: Regarding the metallurgical step, several co-products, residues and wastes, which are listed in the European Waste Catalogue, are generated. Some of the process specific residues can be reused or recovered in preliminary process steps (e. g. dross, filter dust) or construction (e. g. cleaned slag). Residues also arise from the treatment of liquid effluents, the main residue being gypsum waste and metal hydroxides from the wastewater neutralisation plant. These residuals have to be disposed, usually in lined ponds. In the refining step, quantities of solid residuals are also generated, which are mostly recycled within the process or sent to other specialists to recover any precious metals. Final residues generally comprise hydroxide filter cakes (ironhydroxide, 60% water, cat I industrial waste). References: Kerfoot D. G. E. (1997) Nickel. In: Ullmann's encyclopedia of industrial chemis-try (ed. Anonymous). 5th edition on CD-ROM Edition. Wiley & Sons, London. technologyComment of smelting and refining of nickel concentrate, 7% Ni (CN): The nickel concentrate (6.78% beneficiated - product of the mining and beneficiation processes) undergoes drying, melting in flash furnace and converting to produce high nickel matte. The nickel matte undergoes grinding-floating separation and is refined through anode plate casting and electrolysis in order to produce electrolytic nickel 99.98% pure. Deng, S. Y., & Gong, X. Z. (2018). Life Cycle Assessment of Nickel Production in China. Materials Science Forum, 913, 1004-1010. doi:10.4028/www.scientific.net/MSF.913.1004 technologyComment of treatment of metal part of electronics scrap, in copper, anode, by electrolytic refining (SE, RoW): Production of cathode copper by electrolytic refining.

Markt für Kobalt

technologyComment of cobalt production (GLO): Cobalt, as a co-product of nickel and copper production, is obtained using a wide range of technologies. The initial life cycle stage covers the mining of the ore through underground or open cast methods. The ore is further processed in beneficiation to produce a concentrate and/or raffinate solution. Metal selection and further concentration is initiated in primary extraction, which may involve calcining, smelting, high pressure leaching, and other processes. The final product is obtained through further refining, which may involve processes such as re-leaching, selective solvent / solution extraction, selective precipitation, electrowinning, and other treatments. Transport is reported separately and consists of only the internal movements of materials / intermediates, and not the movement of final product. Due to its intrinsic value, cobalt has a high recycling rate. However, much of this recycling takes place downstream through the recycling of alloy scrap into new alloy, or goes into the cobalt chemical sector as an intermediate requiring additional refinement. Secondary production, ie production from the recycling of cobalt-containing wastes, is considered in this study in so far as it occurs as part of the participating companies’ production. This was shown to be of very limited significance (less than 1% of cobalt inputs). The secondary materials used for producing cobalt are modelled as entering the system free of environmental burden. technologyComment of primary zinc production from concentrate (RoW): The technological representativeness of this dataset is considered to be high as smelting methods for zinc are consistent in all regions. Refined zinc produced pyro-metallurgically represents less than 5% of global zinc production and less than 2% of this dataset. Electrometallurgical Smelting The main unit processes for electrometallurgical zinc smelting are roasting, leaching, purification, electrolysis, and melting. In both electrometallurgical and pyro-metallurgical zinc production routes, the first step is to remove the sulfur from the concentrate. Roasting or sintering achieves this. The concentrate is heated in a furnace with operating temperature above 900 °C (exothermic, autogenous process) to convert the zinc sulfide to calcine (zinc oxide). Simultaneously, sulfur reacts with oxygen to produce sulfur dioxide, which is subsequently converted to sulfuric acid in acid plants, usually located with zinc-smelting facilities. During the leaching process, the calcine is dissolved in dilute sulfuric acid solution (re-circulated back from the electrolysis cells) to produce aqueous zinc sulfate solution. The iron impurities dissolve as well and are precipitated out as jarosite or goethite in the presence of calcine and possibly ammonia. Jarosite and goethite are usually disposed of in tailing ponds. Adding zinc dust to the zinc sulfate solution facilitates purification. The purification of leachate leads to precipitation of cadmium, copper, and cobalt as metals. In electrolysis, the purified solution is electrolyzed between lead alloy anodes and aluminum cathodes. The high-purity zinc deposited on aluminum cathodes is stripped off, dried, melted, and cast into SHG zinc ingots (99.99 % zinc). Pyro-metallurgical Smelting The pyro-metallurgical smelting process is based on the reduction of zinc and lead oxides into metal with carbon in an imperial smelting furnace. The sinter, along with pre-heated coke, is charged from the top of the furnace and injected from below with pre-heated air. This ensures that temperature in the center of the furnace remains in the range of 1000-1500 °C. The coke is converted to carbon monoxide, and zinc and lead oxides are reduced to metallic zinc and lead. The liquid lead bullion is collected at the bottom of the furnace along with other metal impurities (copper, silver, and gold). Zinc in vapor form is collected from the top of the furnace along with other gases. Zinc vapor is then condensed into liquid zinc. The lead and cadmium impurities in zinc bullion are removed through a distillation process. The imperial smelting process is an energy-intensive process and produces zinc of lower purity than the electrometallurgical process. technologyComment of treatment of used Li-ion battery, hydrometallurgical treatment (GLO): Shredder, followed by a chemical treatment in order to separate the various fractions produced technologyComment of treatment of used Li-ion battery, pyrometallurgical treatment (GLO): Crushing of the batteries, followed by a neutralization and a processing step.

Markt für Titan

technologyComment of titanium production (GLO): Primary titanium metal is produced mainly by Kroll process. In this batch process, titanium tetrachloride (TiCl4) is reduced with magnesium under inert atmosphere creating a sponge like titanium metal solid which is refined by vaccum arc remelting. The Kroll process is characterized by multiple steps for which many are energy and labor intensive. Main steps include batch reduction, processing, vaccum distillation and remelting. Main batch reduction takes place in a steel reactor filled with argon where the magnesium is melt at temperature between 850°C-950°C. The titanium chloride (TiCl4) is fed, or blown in as vapor, into the reactor. The reduction is a highly exothermic reaction, thus little energy input is required for it to take place. Reaction is as follow: TiCl4(l or g) + 2 Mg(l) = Ti(s) + 2 MgCl2(l). During the processing the reaction by-product, molten magnesium chloride (MgCl2), is remove from the reator periodically during the reaction. The magnesium and clhoride from this by-product are recovered using electrolysis and re-used. Main product from the process is a sponge like titanium (Ti(0)). Vaccum distillation is then use to purified the crude sponge removing residual metal chlorides and magnesium. This process takes place at temperature between 900°C and 1000°C. The residuals are recovered by condensation. The purified titanium sponge is refined using vacuum arc remelting.

Markt für Messing

technologyComment of brass production (CH): Production is basically done by melting the different metals. Due to the high vapour pressure of zinc and tin, parts of these inputs arise as air emissions. Filters are commonly used to abate these emissions.

1 2 3 4