Das Projekt "Optimierte Eisen-Biokohle-Komposite zum Abbau von halogenierten Verbindungen in Umweltmedien: Synthese-Strategien und Reaktionsmechanismen" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Technische Umweltchemie durchgeführt. Die rasante Urbanisierung und Industrialisierung in den vergangenen Jahrzehnten hat zu einer Vielzahl von Umweltkontaminationen mit halogenierten organischen Verbindungen (HOCs) sowohl in China als auch Europa geführt. Ziel des vorgeschlagenen Projektes ist es, neue Erkenntnisse und ein vertieftes Prozessverständnis für die Synthese von biobasierten nFe(0)/Pd/C-Kompositen und deren Reaktionen mit HOCs in der Grundwasserreinigung zu gewinnen. Dies beinhaltet die Identifizierung von Synthese-optionen für Partikel mit maßgeschneiderten und verbesserten Eigenschaften mithilfe der Hydrothermalen Karbonisierung (HTC). Ein tiefgreifendes mechanistisches Verständnis der beteiligten Prozesse, d.h. Sorption, Reaktion und Transport reaktiver Spezies so-wie Katalyse sowie deren Synergien dient einer zielgerichteten Optimierung der Partikel und der Erkundung ihrer Anwendungsgebiete. Die nFe(0)/Pd/C-Komposite sollen speziell für die in-situ Grundwasserreinigung geeignet sein und verbesserte Eigenschaften insbesondere für solche Anwendungsfälle besitzen, bei denen bekannte Konzepte der in-situ-Sanierung mit Nanopartikeln (Nanoremediation) nicht greifen. Die synergistische Kombination verschiedener Wirkprinzipien erlaubt Multikatalyse-Prozesse sowie die sequentielle Behandlung von verschiedenen Kontaminanten. Zunächst werden verschiedene Optionen für die Einbettung von Metallen in oder auf die Kohlepartikel untersucht, die erhaltenen Produkte detailliert durch physikalisch-chemische Methoden charakterisiert und auf ihre Reaktivität getestet. Danach werden Reaktionen in Batch-Ansätzen für die Aufklärung der zugrundeliegenden Mechanismen, wie das Zusammenspiel von Pd, Kohleoberfläche und Fe-Spezies, der beteiligten Reaktionswege und reaktiven Spezies, durchgeführt. Weiterhin werden Optionen für Multikatalyse und sequentielle Reduktions-/Oxidationsprozesse untersucht. Abschließend werden die entwickelten Materialien und Prozesse im Labor für die Behandlung von Wasser von kontaminierten Standorten in Deutschland und China erprobt. Dieses kooperative Forschungsvorhaben von chinesischen und deutschen Partnern wird zu einem signifikanten Fortschritt in der Sanierungsforschung für industriell kontaminierte Standorte, insbesondere auch in China, führen.
Das Projekt "Teilprojekt C 02: Abbau von biologisch abbaubaren Polymeren und deren Tonmineral-Nanokompositen unter umweltrelevanten Bedingungen" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Fachgruppe Chemie, Lehrstuhl Makromolekulare Chemie II durchgeführt. Bioabbaubare Polymere können eine elegante Lösung für das Mikroplastik-Problem darstellen. Für den Verpackungsbereich sind diese Polymere aber oftmals zu spröde und zu permeabel für Gase. Außerdem ist deren Abbau in relevanten Habitaten und unter realen natürlichen Bedingungen häufig zu langsam. Das langfristige Ziel dieses Forschungsprojektes ist es daher, zunächst ein umfassendes Verständnis des Abbauverhaltens konventioneller und maßgeschneiderter bioabbaubarer Polymere und Tonmineral-Nanokomposite in limnischen und terrestrischen Systemen zu erarbeiten. Dies wird uns dann in die Lage versetzen, Materialien zu entwickeln, die kein persistentes Mikroplastik generieren und gleichzeitig die technischen Anforderungen für Lebensmittelverpackungen erfüllen.
Das Projekt "Aufklärung von Degradationsmechanismen in Polymer-basierten Dual-Ionen-Batterien und Entwicklung von Strategien zur Leistungsoptimierung" wird vom Umweltbundesamt gefördert und von Westfälische Wilhelms-Universität Münster, MEET Batterieforschungszentrum durchgeführt. Polymer-basierte Batterien gelten als aussichtsreiche Kandidaten für eine nachhaltige Energiespeicherung, was u.a. motiviert wird durch einen reduzierten Energieverbrauch bei der Herstellung, eine einfachere Recyclingfähigkeit sowie die Verwendung leicht zugänglicher Materialien und dem Austausch kritischer Metalle. Aktuell leiden Polymer-basierte Batterien jedoch unter diversen Herausforderungen hinsichtlich ihrer elektrochemischen Performanz, insbesondere einer geringen Energiedichte oder nicht ausreichender Zyklenstabilität. Zudem fehlt aktuell noch ein grundlegendes Verständnis bzgl. der Kapazitätsverluste der Zellen sowie der auftretenden Alterungsmechanismen an den Elektroden/Elektrolyt-Grenzflächen. In diesem Projekt soll ein Spezialtyp einer Polymer-basierten Batterie systematisch untersucht werden, eine sogenannte Polymer-basierte Dual-Ionen-Batterie (DIB), welche organische Materialien des n- und p-Typs zur simultanen Speicherung von Kationen und Anionen verwendet. Das DIB-System unterscheidet sich von klassischen Polymer-Batterien basierend auf dem Kationen- oder Anionen-'Rocking-Chair'-Prinzip, da hier nicht nur eine Ionensorte, sondern sowohl Kationen als auch Anionen beteiligt sind. Dieses Speicherprinzip bietet verschiedene Vorteile, wie u.a. eine hohe Variabilität möglicher Kation-Anion-Paare sowie typischerweise eine hohe Zellspannung, die durch geeignete Polymermaterialien erreicht werden kann. Zur Entwicklung Polymer-basierter DIB-Systeme mit verbesserter Energiedichte und Stabilität werden in diesem Projekt verschiedene Strategien adressiert: (I) Design neuartiger Polymermaterialien mit höherem Arbeitspotential für die positive Elektrode ('Spannungstuning'), (II) Entwicklung von Hybridsystemen wie Graphit / Polymer mit hoher Zellspannung, (III) Entwicklung von 'All-Polymer'-DIB-Systemen, mit verschiedenen Konzepten wie der Entwicklung ambipolarer Polymersysteme sowie sogenannter 'Reverse-All-Polymer-DIB-Systeme'. Die verschiedenen Polymer-DIB-Systeme sollen hinsichtlich ihrer elektrochemischen Performanz umfassend untersucht werden, wobei der Einfluss der Elektrolytformulierung und der gebildeten 'Interphasen' auf die reversible Kapazität und Stabilität während der Lade-/Entladezyklisierung im Vordergrund der Untersuchungen stehen. Zu diesem Zweck werden verschiedene ex-situ und in-situ Analysen durchgeführt, um wichtige und umfassende Einblicke in die mechanistischen Eigenschaften der Kationen- bzw. Anionen-Speicherung, die Stabilität der Polymermaterialien und die Rolle der 'Interphasen' zu erhalten. Es wird erwartet, dass die in diesem Projekt gewonnenen grundlegenden Erkenntnisse für die Entwicklung verbesserter polymerer Aktivmaterialien und optimierter Elektrolyte für Polymer-basierte DIB-Zellen mit hoher Energiedichte und Zyklenstabilität von großer Bedeutung sind.
Das Projekt "Koordinationsfonds" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Fachrichtung Chemie und Lebensmittelchemie, Professur für Anorganische Chemie 2 durchgeführt. Das Schwerpunktprogramm 1708 bündelt und koordiniert die Forschungsaktivitäten zur wissenschaftlichen und technologischen Entwicklung von Niedertemperatursynthesen anorganischer Materialien in Ionischen Flüssigkeiten (ILs). Das Schwerpunktprogramm hat drei Hauptziele: (A) Etablierung IL-basierter ressourceneffizienter Synthesen für bekannte Funktionsmaterialien. (B) Entdeckung neuer, möglicherweise unorthodoxer Materialien, die erst durch die besonderen, milden Synthesebedingungen in ILs zugänglich werden. (C) Verstehen der Prinzipien der Auflösung, Reaktion und Kristallisation von anorganischen Feststoffen in ILs. Das Koordinatorprojekt stellt die zentrale Plattform für Zusammenarbeit im SPP bereit. Dies umfasst die Organisation und Durchführung von Workshops und Arbeitstreffen, die Förderung von Nachwuchswissenschaftlern, die Betreuung von Mercator Fellows, Öffentlichkeitsarbeit und Gleichstellungsmaßnahmen.
Das Projekt "Elektrochemische Synthese von III-V (GaN, InN, GaSb, InSb, AlSb) und Metallsulfid (ZnS, GaS) Verbindungshalbleitern und deren Nanostrukturen aus ionischen Flüssigkeiten" wird vom Umweltbundesamt gefördert und von Technische Universität Clausthal, Institut für Elektrochemie durchgeführt. Das Projekt beabsichtigt die Entwicklung von III-V-Verbindungshalbleitern (GaN, InN, GaSb, InSb und AlSb) und Metallsulfid-Verbindungshalbleitern (ZnS- und GaS) Dünnfilmen und Nanostrukturen (Nanoröhrchen, Nanodrähte und makroporöse Strukturen) bei elektrochemischer Abscheidung/stromloser Abscheidung in verschiedenen ionischen Flüssigkeiten nahe Raumtemperatur. Der Hauptfokus wird auf das Verständnis des Reaktionsmechanismus der Bildung der Verbindungshalbleiter gesetzt. Die Reaktionsmechanismen werden anhand von IL-Salz-Mischungen, Elektrode/Elektrolyt-Grenzfläche und der hergestellten Strukturen und Schichten analysiert. Der Einfluss der IL-Zusammensetzung auf die Morphologie und die optischen Eigenschaften der erhaltenen Halbleiter wird untersucht. Zusätzlich werden die Halbleiternanostrukturen Templat-basiert und Templat-frei elektrochemisch hergestellt, was eine neue Methode zur Synthese von Halbleiternanostrukturen nahe Raumtemperatur eröffnet.
Das Projekt "Nanostrukturen unedler Metalle durch Synthese in Ionischen Flüssigkeiten (BaseMet-IL)" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Sondervermögen Großforschung, Institut für Katalyseforschung und -technologie durchgeführt. Im Hinblick auf intermetallische Cluster und Nanopartikel konnten wir hochreaktive Carbonylcluster (z. B. (BMIm)2((PbMn(CO)5))6I8), (GeI3Fe(CO)3)2FeI4, (GeI3)2Fe(CO)4, Ge12(Fe(CO)3)8I4, (EMIm)(Sn2I7Fe(CO)3), (Co(1,4-C6H4(CN)2)2(NTf2)2)(SnI(Co(CO)4)3)2) und intermetallische Nanopartikel (z. B. Systeme Fe-Sn, Co-Sn, Ni-Ir, Ni-Os, Pd-Sn, Pt-Sn) durch IF-basierte Synthese erhalten. Weiterhin konnten wir die Bildung bimetallischer Nanopartikel über direkte IF-basierte Synthese oder durch Zersetzung von in IF hergestellten Carbonylclustern zeigen. Neben der detaillierten Charakterisierung von Zusammensetzung und Struktur haben wir schließlich die katalytischen Eigenschaften der genannten bimetallischen Nanopartikel verifiziert. Die spezifischen Eigenschaften der IF (d. h. Redoxstabilität, thermische Stabilität, schwach koordinierende Eigenschaften) stellten sich für den Zugang zu reaktiven Carbonylclustern und bimetallischen Nanopartikeln als essentiell heraus.Basierend auf unseren Resultaten der ersten Förderperiode werden wir die IF-basierte Synthese hochreaktiver, stark oxophiler unedler Metallnanostrukturen adressieren. Konkret fokussieren wir dabei auf metalloide Cluster und Nanopartikel von Ti, Nb, Si und Ge. Neben der explorativen Synthese und der fundamentalen strukturellen Charakterisierung werden wir die Materialeigenschaften untersuchen, wobei insbesondere Größenquantisierungseffekte und Fluoreszenz (z. B. für Si, Ge, Si-Ge) sowie die katalytischen Eigenschaften (z. B. für bimetallische Ti-Pd, Ti-Pt, Nb-Pd, Nb-Pt Systeme) am Beispiel von Hydrierungen als Testreaktion von Interesse sind. Im Hinblick auf oxophile und hochreaktive, unedle Metalle wie Ti, Nb, Si und Ge sind IF-basierte Synthesen grundsätzlich ideal, wurden bislang jedoch wenig untersucht. IF-basierte Synthesestrategien können hier somit einen neuen und verlässlichen Zugang zu hoch reaktiven, unedlen Metallnanostrukturen eröffnen.
Das Projekt "Synthese neuartiger poröser Koordinationspolymere aus strukturgebenden und funktionalisierten Ionischen Flüssigkeiten" wird vom Umweltbundesamt gefördert und von Universität Erlangen-Nürnberg, ECRC - Erlangen Catalysis Resource Center durchgeführt. Ziel des Vorhabens ist die Synthese neuartiger, poröser Koordinationspolymere (metallorganische Gerüstverbindungen, MOF) durch Verwendung von Ionischen Flüssigkeiten (IL) als Basiskomponente. Die IL dient hierbei sowohl als Präkursor für das Koordinationspolymer als auch als strukturgebendes Element und Lösungsmittel. In der zweiten Förderperiode soll verstärkt der Einfluss der Struktur der IL auf die Struktur des MOFs untersucht werden. Hierbei stehen die Synthese und Syntheseentwicklung flüssig kristalliner und chiraler Ionischer Flüssigkeiten im Fokus. Neben der Synthese und Charakterisierung der sich daraus ergebenden neuartigen MOF-Strukturen wird insbesondere auch der Syntheseweg zu den MOFs eingehend untersucht. Die Entwicklung der Synthesestrategie zielt insbesondere auf nachhaltigere Prozesse ab, mit dem Ziel einen geringeren Energieeintrag (niedrige Reaktionstemperatur) und eine Reduktion bzw. Substitution nicht-nachhaltiger Lösungsmittel zu erreichen. Für ersteres soll die Synthese mit Ultraschall durchgeführt werden. Dieser Einsatz erwirkt zusätzlich eine kinetische Kontrolle der Synthese, was neue Phasen und Strukturen der so hergestellten MOFs erwarten lässt.
Das Projekt "Chalkogenid-basierte Ionische Flüssigkeiten in der Synthese von Metallchalkogenid- und Interchalcogenid-Materialien nahe Raumtemperatur" wird vom Umweltbundesamt gefördert und von Universität Marburg, Fachbereich Chemie, Fachgebiet Anorganische Chemie, Arbeitsgruppe Sundermeyer durchgeführt. Das Projekt untersucht die Anwendung Ionischer Flüssigkeiten (IL) Chalcogen-basierter Anionen vom Typ Hydrochalcogenid (EH), Trimethylsilylchalcogenid (E-TMS) oder Polychalcogenid (Ex) (E = S, Se, Te) in der Synthese ausgewählter 2D- und 3D-Metal-Chalcogenid- oder Poly- bzw. Interchalcogenid-Materialien. Das Vorhaben wird klare Vorteile der Nutzung derart hochreaktiver Synthone für den Chalkogen-Transfer herausarbeiten, die einen einfachen Zugang, höchste Reinheit, perfekte Löslichkeit in organischen Cosolventien, niedrige Schmelzpunkte (in einigen Fällen) und eine äußerst hohe Reaktivität gegenüber Elektrophilen und Lewis-Säuren aufweisen. Eine Strategie verfolgt Protolysereaktionen ausgewählter Metallorganyle und Amide in Ionischen Flüssigkeiten Cat (EH) (E = S, Se), eine weitere komplementäre Strategie die Anionmetathese von Metallhalogeniden, die in Cat (E-TMS) and Cat (EH) ILs gelöst werden. In dieser Hinsicht werden Reaktivitätsmuster ausgewählter Metall-Vorläuferverbindungen des p-Blocks, Ga(III), In(III), In(II) and Sn(II), in ihren Reaktivitätsmustern mit ausgewählten Startverbindungen der f-Block Elemente, Ln(II) and Ln(III), verglichen. Neue Klassen thermolabiler Chalcogenido-Organometallate ((RxM)yEz)n- (M = Ga, In, La und Ln; E = S, Se) und Trimethylsilylchalcogenido-Metallate (M(E-TMS)4)- (M = Ga, In, La) werden erschlossen. Sie stellen labile Intermediate in der Gewinnung von Halbleitermaterialien ME, M2S3 und ME2 nahe Raumtemperatur oder knapp darüber dar. Reaktionen mit oben genannten ILs bei Raumtemperatur erlauben die Isolierung neuer Zinn(II)- und Zinn(IV)-Vorläuferverbindungen, Cat(SnE2) und Sn(E-TMS)4 (E = S, Se), deren Kondensation zu SnE und SnE2 Halbleitermaterialien untersucht wird. Die Reaktion von (NH4)2(MoS4) mit Methylcarbonat-ILs Cat(MeCO3) bietet einen Zugang zu Zwischenprodukten Cat2(MoS4), die über zwei Strategien in MoS2 überführt werden sollen: 1) Thermolye im IL-Flux und 2) Reaktionen mit Elektrophilen, gefolgt von reduktiver Eliminierung von Disulfiden. Eine dritte Strategie untersucht die Thiolyse von (MoX4) Komplexen in Cat(SH) oder Cat(S-TMS) ILs. Schließlich ist geplant, die Vorteile Chalcogenid-basierter ILs in der Synthese von Chalcogen-reichen Polychalcogenid-, Interchalcogenid- und Interchalcogen-Materialien zu erforschen.
Das Projekt "Löslichkeit von molekularen und ionischen Präkursoren in ionischen Flüssigkeiten" wird vom Umweltbundesamt gefördert und von Technische Universität Dortmund, Lehrstuhl für Thermodynamik durchgeführt. Der Erfolg der ionothermalen Synthese ist entscheidend von der Auswahl geeigneter Precursors abhängig. Das Hauptziel dieses Forschungsvorhabens ist die Entwicklung eines allgemeinen thermodynamischen Verfahrens basierend auf der prädiktiven Zustandsgleichung electrolyte PC-SAFT (ePC-SAFT). Es wird eine Modellstrategie entwickelt und angewendet, die es erlaubt, die Löslichkeit von flüssigen oder festen Präkursoren in ionischen Flüssigkeiten (ILs), die als geeignete Lösungsmittel für ionothermale Synthesen verwendet werden, vorauszusagen. Als feste Präkursoren betrachten wir anorganische Salze; dies ist an die Synthese von Metallnanopartikeln in ILs angelehnt. Als flüssige Präkursoren werden homologe Reihen organischer Verbindungen (Alkane, Alkene, Aromaten, Alkohole, Ether, Ester) untersucht Die Entwicklung und Parametrisierung von ePC-SAFT wird mit Hilfe von zuverlässigen experimentellen Daten aus Literatur, aber auch anhand neuer Daten durchgeführt. In diesem Zusammenhang experimentelle Studien zu thermodynamischen Eigenschaften reiner ILs und Präkursoren sowie der Eigenschaften ihrer binären Mischungen durchgeführt. Die daraus entstandenen Daten dienen als Inputdatensätze der Entwicklung und Validierung des zu entwickelnden Modellansatzes innerhalb ePC-SAFT. Dies ermöglicht Modellvorhersagen, um letztendlich ILs als Synthesemedium für feste und flüssige Präkursoren zu screenen. Um die Anwendung von thermodynamischen Parametern, die aus binären Mischungen Präkursor-IL zu Mehrkomponenten-Systemen erhalten werden, weiter voranzutreiben, wird eine zusätzliche Validierung des ePC-SAFT Modells durch experimentelle und theoretische Untersuchung von zwei reaktiven Systemen durchgeführt. Diese Systeme bestehen aus den Reaktionsteilnehmern sowie dem Lösungsmittel (auch ILs).Die Erstellung von thermodynamischen Ergebnissen in Systemen Präkursor-IL ermöglicht die Entwicklung einer allgemeinen Löslichkeits-Skala mit dem Ziel ILs hinsichtlich ihrer Leistungsfähigkeit für die ionothermale Synthese und deren Verwendung als Lösungsmittel in reaktiven Systemen prädiktiv auszuwählen. Die so entwickelte Skala hat ein enormes Potenzial, die Anwendung von Ils auf eine breite Palette von molekularen und ionischen Präkursoren zu verbreitern und zu verbessern.
Das Projekt "ILPIN: Ionische Flüssigkeiten als Vorläufer für anorganische Nanomaterialien" wird vom Umweltbundesamt gefördert und von Universität Potsdam, Institut für Chemie, Lehrstuhl für Theoretische Chemie durchgeführt. Das Projekt befasst sich mit der Untersuchung ionischer Flüssigkeiten (ionic liquids, ILs) und ionischer Flüssigkristalle als Vorläufer anorganischer Materialien. Die in der Literatur als ionic liquid precursors (ILPs, ionisch-flüssige (Material)präkursoren) bekannten Verbindungen weisen ein großes Anwendungspotential auf, aber die Bildung anorganischer Materialien aus ILPs ist nicht ausreichend verstanden und es ist daher schwierig, a priori eine Voraussage zu Materialeigenschaften oder Materialstrukturen (und damit zu spezifischen Anwendungen) zu machen. Hier setzt das Projekt an: es wird vorgeschlagen, ausgehend von einer Reihe von ILPs, die Bildung einiger anorganischer Nanomaterialien exemplarisch zu untersuchen. Dazu werden ILPs hergestellt, ihre Struktur und Eigenschaften untersucht und die Umsetzung zu anorganischen Stoffen, speziell der anorganischen Sulfide, im Detail untersucht. Weitere Fragen befassen sich mit der Aufarbeitung, der Struktur-Eigenschaftskorrelation und der Korrelation der photophysikalischen Eigenschaften mit der atomaren und Mesostruktur der erhaltenen anorganischen Nanopartikel. Ein besonderer Fokus liegt auf der Untersuchung der Bildungskinetik und der (Kristall)phasenselektion im Lauf der Mineralisationsreaktionen - diese Untersuchungen werden komplettiert durch eine detaillierte Untersuchung der photophysikalischen Eigenschaften und der Korrelation dieser Eigenschaften mit den strukturellen Besonderheiten der erzeugten Nanomaterialien. Das Team ist interdisziplinär zusammengesetzt und bringt Expertise in den Bereichen Materialsythese und IL-basierte Mineralisation, Photochemie und Photophysik sowie theoretische Chemie in das Projekt ein; die oben kurz dargelegten Fragen können daher mit komplementären Methoden wissenschaftlich bearbeitet werden.
Origin | Count |
---|---|
Bund | 20 |
Type | Count |
---|---|
Förderprogramm | 20 |
License | Count |
---|---|
offen | 20 |
Language | Count |
---|---|
Deutsch | 20 |
Englisch | 18 |
Resource type | Count |
---|---|
Webseite | 20 |
Topic | Count |
---|---|
Boden | 6 |
Lebewesen & Lebensräume | 7 |
Luft | 12 |
Mensch & Umwelt | 20 |
Wasser | 5 |
Weitere | 20 |