API src

Found 621 results.

Related terms

GRK 2043: Naturgefahren und Risiken in einer Welt im Wandel

Das Projekt "GRK 2043: Naturgefahren und Risiken in einer Welt im Wandel" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Potsdam, Institut für Geowissenschaften.Angesichts sich wandelnder Randbedingungen in Umwelt und Gesellschaft werden sich die Häufigkeiten, Intensitäten und Auswirkungen von Naturgefahren ebenfalls ändern. Dies ist von besonderer Bedeutung für Regionen, in denen Risiken durch Naturgefahren bewältigt, gesteuert und gemindert werden müssen. Dafür möchte das Graduiertenkolleg 'Naturgefahren und Risiken in einer Welt im Wandel' (NatRiskChange) die Wissensgrundlage verbessern: Hauptziel ist es, Methoden zu entwickeln, die die Analyse, Quantifizierung und Vorhersage von transienten Gefahren und Risiken verbessern, indem Wissen und Methoden zwischen Systemanalyse, Geo- und Umweltwissenschaften sowie Risikoforschung aktiv ausgetauscht werden. Die mathematisch orientierten Wissenschaftler bringen statistische Methoden, insbesondere Bayessche Statistik, die Theorie der dynamischen Systeme mit einem Schwerpunkt auf nicht-linearen Prozessen und Chaos sowie Rekurrenzplots und andere innovative Methoden zur Analyse geophysikalischer Zeitreihen ein. Die Geo- und Umweltwissenschaften steuern hingegen für verschiedene Naturgefahren Wissen über zugrundeliegende Mechanismen und Prozesse des Wandels bei, inklusive regionaler Besonderheiten, Interaktionen zwischen Gefahren und Vulnerabilitäten. Diese interdisziplinäre Forschung von NatRiskChange begann im Oktober 2015 und wird durch ein Qualifizierungsprogramm in den Bereichen der Statistik, Daten- und Risikoanalyse begleitet. Lehrkonzept und Forschungsprogramm ergänzen sich gegenseitig und sind tief in der Expertise der teilnehmenden Institutionen aus Potsdam und Berlin verankert, um den Weg für neue Forschungsstränge zur Quantifizierung von Veränderungen in Geo-, Hydro- und sozio-ökologischen Systemen zu ebnen.

Genotypische Diversität sexueller und parthenogenetischer Hornmilben (Oribatida)

Das Projekt "Genotypische Diversität sexueller und parthenogenetischer Hornmilben (Oribatida)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Darmstadt, Institut für Zoologie.In dem Vorhaben wird die genotypische Diversität bei parthenogenetischen Hornmilben (Acari, Oribatida) anhand molekularer Analysen der DNS-Regionen für die ribosomale Spacer-Region ITS l und des mitochondrialen Gens für die Cytochromaxidase I (COI) untersucht. Hierzu werden zwei Schwerpunkte gesetzt: (1) Ein evolutionsbiologischer Teil beschäftigt sich mit der weltweiten genotypischen Vielfalt einer parthenogenetischen Hornmilbenart, Platynothrus peltifer, anhand Analyse der ribosomalen ITS 1-Region und der COI-Gene. Auch sollen weitere geeignete DNS-Regionen und molekulare Arbeitsmethoden zur Identifizierung genotypischer Diversität parthenogenetischer Oribatiden identifiziert und analysiert werden. (2) In einem ökologischen Teil soll die genetische Diversität von parthenogenetischen und sexuellen Hornmilbenarten in unterschiedlichen Sukzessionsstadien verglichen werden. Innerhalb der parthenogenetischen Arten wird eine in frühen Sukzessionsstadien auftretende Art (Tectocepheus velatus) mit einer spät auftretenden Art (Platynothrus peltifer) verglichen, und es sollen in gleichen Sukzessionsstadien auftretende bisexuelle und parthenogenetische Arten verglichen werden (Steganacarus magnus als sexuelle und Platynothrus peltifer als parthenogenetische Art). Die Daten werden mit verschiedenen mathematischen Algorithmen ausgewertet und unterschiedliche phylogenetische Programme werden auf ihre Eignung zur Identifizierung genotypischer Diversität bei geringer Variabilität überprüft.

Stofftransport in geklueftetem Fels und Gebirgscharakterisierung im Stollennahbereich - Mehrphasenstroemungen

Das Projekt "Stofftransport in geklueftetem Fels und Gebirgscharakterisierung im Stollennahbereich - Mehrphasenstroemungen" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Hannover, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen.Die weiterhin aktuelle Thematik der Deponierung von gefaehrlichen Abfallstoffen erfordert die Moeglichkeit, das von diesen Deponien ausgehende Gefaehrdungspotential abschaetzen zu koennen. Zu diesem Zweck wird seit langem an numerischen Simulationsprogrammen gearbeitet, die helfen sollen, die Wirksamkeit der 'natuerlichen Barriere' einzuschaetzen und ausserdem eine Prognose ueber zukuenftige Zustaende abzugeben. In diesem Zusammenhang stehende Forschungsarbeiten im Felslabor 'Grimsel' durch die Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR) fuehrten zu dem Wunsch, neben der schon bestehenden Moeglichkeit zur Modellierung von Wasser- und Gasstroemungsprozessen auch mehrphasige Verdraengungsprozesse von Gas-Wasser-Stroemungen numerisch simulieren zu koennen. Das zu diesem Zweck von R. Helmig entwickelte numerische Modell verwendet eine Finite-Elemente-Formulierung mit frei koppelbaren 1D-Roehrenelementen (Fliesskanaele), 2D-Scheibenelementen (Kluefte) und 3D-Kontinuumselementen (Felsmatrix). Die beiden Phasen Luft und Wasser werden als nicht mischbare Fluide behandelt, zwischen denen keine Austauschprozesse stattfinden. Die verschiedenen Elementtypen erlauben es, komplexe Geometrien durch sinnvolle Abstraktion in ein diskretes Modell zu ueberfuehren. Das Fliessverhalten im Modell wird bestimmt durch die gegenseitige Behinderung der fliessenden Phasen (Permeabilitaets-Saettigungs-Beziehung) sowie die angesetzten Kapillarkraefte zwischen den Phasen (Kapillardruck-Saettigungs-Beziehung). Dadurch ist es z.B. moeglich, den Effekt einer Kapillarsperre im numerischen Modell zu erfassen. Die Simulation von Mehrphasenstroemungen und speziell Gas-Wasser-Verdraengungen fuehrt jedoch vielfach auf numerische Schwierigkeiten. Bedingt durch die enormen Unterschiede in den physikalischen Eigenschaften der betrachteten Fluide und die starke nichtlineare Kopplung der zugrundeliegenden Differentialgleichungen ergibt sich ein raeumlich und zeitlich stark variierendes Systemverhalten. Durch die nichtlineare Kopplung ist es zudem noetig, die Loesung fuer jeden Zeitschritt iterativ zu bestimmen. Die speziell fuer diese Probleme neu eingefuehrte Relaxationssteuerung ermoeglicht jetzt fuer viele derartige Probleme die Loesung oder beschleunigt den Loesungsvorgang. Dadurch wurde es moeglich, Systeme zu rechnen, bei denen die Ausbildung scharfer Saettigungsfronten sonst zur Instabilitaet des numerischen Verfahrens fuehrte. Die ebenfalls entwickelte Zeitschrittsteuerung ermoeglicht das gleitende Anpassen an die veraenderten Systembedingungen waehrend des Rechenlaufs, wodurch der zugelassene Diskretisierungsfehler in Zeitrichtung und damit der Rechenaufwand gesteuert werden kann. Die Zeitschrttweitensteuerung verbessert insbesondere bei Problemen mit starker zeitlicher Variabilitaet, wie sie z.B. bei der Gas-Wasser-Verdraengung auftreten, erheblich die Rechengeschwindigkeit.

Mathematische Erfassung des Abflussvorganges bei der pneumatischen Spuelung von Leitungen

Das Projekt "Mathematische Erfassung des Abflussvorganges bei der pneumatischen Spuelung von Leitungen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität München, Institut für Wasserwesen, Lehrstuhl und Laboratorium für Hydraulik und Gewässerkunde.Die pneumatische Spuelung stellt eine Moeglichkeit der Wasserforschung mittels Druckluft in Rohrleitungen dar. Das Wasser wird bei einer Spuelung mit Hilfe der Druckluft mit relativ hoher Geschwindigkeit ganz oder teilweise aus der Leistung gedrueckt. Der Zusammenhang zwischen Luftdruck und Abflussgeschwindigkeit bei einer pneumatischen Spuelung soll allgemeingueltig theoretisch hergeleitet werden und durch Versuche und eventuell an bestehenden Anlagen ueberprueft werden.

KI: Künstliche Intelligenz für klimaneutrale Kläranlagen

Das Projekt "KI: Künstliche Intelligenz für klimaneutrale Kläranlagen" wird/wurde ausgeführt durch: Variolytics GmbH.

Berechnung von Stroemungsfeldern mit der Randintregalmethode

Das Projekt "Berechnung von Stroemungsfeldern mit der Randintregalmethode" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Hochschule Darmstadt, Institut für Wasserbau, Fachgebiet Ingenieurhydrologie und Hydraulik.

Modellierung der CH4 und N2O Spurengasemissionen aus Reisanbaugebieten in China

Das Projekt "Modellierung der CH4 und N2O Spurengasemissionen aus Reisanbaugebieten in China" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Forschungszentrum Karlsruhe GmbH Technik und Umwelt, Institut für Meteorologie und Klimaforschung, Teilinstitut für Atmosphärische Umweltforschung.Im Rahmen des Forschungsvorhabens soll ein prozessorientiertes Modell zur Beschreibung von biogeochemischen Stoffumsetzungen in landwirtschaftlich genutzten Böden derart weiterentwickelt werden, daß es zur Prognose von CH4- und N2O-Spurengasemissionen aus dem Reisanbau eingesetzt werden kann. Insbesondere soll die numerische Beschreibung der in der CH4- und N2O-Produktion und Konsumption involvierten mikrobiologischen Prozesse Methanogenese, Methan-Oxidation, Nitrifikation und Denitrifikation und deren Abhängigkeit von Änderungen des Redoxpotentials im Boden implementiert bzw. verbessert werden. Zudem sollen die verschiedenen Mechanismen, die zur Emission von Spurengasen aus dem Reisanbau beitragen (Diffusion, Gasblasenbildung bei Überstauung, Pflanzentransport) sowie die Auswirkung von radialen Sauerstoffverlusten der Reiswurzeln auf die mikrobiologischen Prozesse in einer durch Anaerobiosis dominierten Umgebung in das Modell implementiert werden.

Neuberechnung der Anlage IV der Strahlenschutzverordnung

Das Projekt "Neuberechnung der Anlage IV der Strahlenschutzverordnung" wird/wurde gefördert durch: Bundesminister des Innern. Es wird/wurde ausgeführt durch: Bundesgesundheitsamt, Institut für Strahlenhygiene.Berechnung der 50-Jahre-Folgeaequivalentdosis fuer Organe und Gewebe, der effektiven Aequivalentdosis und der daraus resultierenden Grenzwerte der Jahresaktivitaetszufuhr fuer beruflich strahlenexponierte Personen. Ueberpruefung der metabolischen Daten, die in der Publikation ICRP 30 vorgeschlagen werden und eventuelle Unterbreitung eines Vorschlages. Vergleichsrechnungen mit alternativen metabolischen Daten. Sensitivitaetsanalyse fuer ausgewaehlte Verbindungen. Untersuchung der Relevanz kritischer Einwaende gegen die Anwendung des ICRP 30 Konzepts. Modellberechnungen der normierten Dosisleistung bei externer Bestrahlung.

Sonderforschungsbereich Transregio 165 (SFB TRR): Wellen, Wolken, Wetter; Waves to Weather - A Transregional Collaborative Research Center, Teilprojekt A02: Strukturbildung bei Wolken und deren Einfluss auf größere Skalen

Das Projekt "Sonderforschungsbereich Transregio 165 (SFB TRR): Wellen, Wolken, Wetter; Waves to Weather - A Transregional Collaborative Research Center, Teilprojekt A02: Strukturbildung bei Wolken und deren Einfluss auf größere Skalen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Mainz, Institut für Informatik, Arbeitsgruppe Software-Technik und Bioinformatik.Die Strukturbildung auf der Wolkenskala wird mit zwei Methoden untersucht. Zum einen werden hochaufgelöste numerische Wolkensimulationen durchgeführt und die Resultate auf Strukturbildung hin analysiert. Zum anderen werden die grundlegenden Gleichungen mit mathematischen Methoden untersucht, um Strukturbildung zu identifizieren. In einem Syntheseschritt werden beiderlei Resultate verwendet, um Minimalmodelle zur Beschreibung von Wolkenstrukturen zu entwickeln. Diese Modelle werden schließlich zur Bestimmung der Wirkung von Wolkenstrukturen auf größerskalige Prozesse benutzt.

Entwicklung der Fehlerschätzungsmethode für Datenassimilation für allgemeine Ozean-Zirkulationsmodelle

Das Projekt "Entwicklung der Fehlerschätzungsmethode für Datenassimilation für allgemeine Ozean-Zirkulationsmodelle" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Institut für Meereskunde (IfM).Die 4D-Var Datenassimilation (4D-var DA) ist eine spezielle Methode, die zur Initialisierung von Klima- und Wettervorsagen durch die Schätzung von Klimamodellparametern benutzt wird, in dem Modelle an beobachtende Daten angepasst werden. Aus verschiedenen Gründen führen DA unvermeidliche methodische Fehler ein, die sich auf die Genauigkeit der Modellvorhersagen auswirken. Aktuelle Methoden zur Fehlerkorrektur brauchen erhebliche Computerressourcen. Dies ist ein Grund, warum die Verwendung dieser Methoden in der Klimamodellierung begrenzt ist und sie nur in vereinfachten Versionen angewandt werden. Die Entwicklung einer konzeptuell neuartigen, robusten und effizienten, nichtlinear-variationellen Fehlerschätzungsmethode (NOVFEM) ist Ziel dieses Projekts. Diese Methode wird Fehler von DA Methoden schätzen und die notwendigen Korrekturen bestimmen. Im Besonderen ist es geplant, VOVFEM im Rahmen einer Anwendung in Klimavorhersagesystemen zu entwickeln. Der Vorteil der vorgeschlagenen Methode ist, dass der Algorithmus auf einer abstrakten mathematischen Formulierung basiert und deshalb in vielen geophysikalischen Bereichen angewandt werden kann. Eine weitere Innovation dieses Projekts ist die Entwicklung einer Methode zur schnellen und einfachen Berechnung von inversen Kovarianzmatrizen, die z. B. Anwendung in DA finden. Die vorgeschlagenen Methode ist im Vergleich mit existieren Methoden effizienter. Es wird erwartet, dass die theoretischen Ergebnisse dieses Projekt national und international veröffentlicht werden und ein freier Zugang zur NOVFEM Software wird bereitgestellt werden.

1 2 3 4 561 62 63