API src

Found 4098 results.

Related terms

Änderung des Potenziellen Zusatzwasserbedarfs für den 30-jährigen Zeitraum 2031-2060 zu 1971-2000, Klimaschutz-Szenario (RCP2.6)

Die Karte zeigt die mittlere Veränderung des potenziellen Zusatzwasserbedarfs (in mm) 2031-2060 gegenüber 1971-2000 unter dem „Klimaschutz“-Szenario (RCP2.6). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Klimaschutz“-Szenario (RCP2.6) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches deutliche Anstrengungen beim Klimaschutz und niedrigen Emissionen bedeutet. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.

Bioenergieanlagen (Landkreis Göttingen)

Standorte der vorhandenen Bioenergieanlagen im Landkreis Göttingen. Es handelt sich um Anlagen zur Erzeugung regenerativer Energien (Biogas) aus Biomasse durch Vergärung. Biogas stellt eine wichtige und vielseitige Form der Bioenergie aus der Landwirtschaft dar. Die neuen Anlagen setzen fast ausnahmslos nachwachsende Rohstoffe (NaWaRo) wie Mais, Getreide, Hirse, Zuckerrüben, Sonnenblumen und teilweise Aufwuchs von Grünland mit oder ohne Gülle ein. Biogas wird derzeit überwiegend dezentral produziert und als Strom- und Wärmelieferant genutzt. Aufgrund dieser Dezentralität der Anlagen, die dadurch begründet ist, dass das primäre Ausgangsmaterial für die Biogaserzeugung wie Gülle oder Energiepflanzen aufgrund der niedrigen Energiedichte aus ökonomischen Gründen in der Regel nicht über längere Distanzen transportiert werden kann, ist die Integration guter Wärmenutzungskonzepte nicht immer möglich.

Niedersächsischer Bodenfeuchteinformationsdienst - Tagesaktueller Wassergehalt der Böden in Niedersachsen in % der nutzbaren Feldkapazität (%nFK)

Der Niedersächsische Bodenfeuchteinformationsdienst (NIBOFID) des LBEG zeigt den tagesaktuellen Wassergehalt für alle Böden in Niedersachsen. Darüber hinaus lässt sich der Verlauf des Bodenwassergehalts für die letzten 10 Tage abrufen. Die Bodenfeuchte wird in % der nutzbaren Feldkapazität (%nFK) angegeben. Die nFK beschreibt die Wassermenge, die ein Boden maximal pflanzenverfügbar speichern kann. Die Werte des Bodenfeuchtemonitors sind berechnet und nicht gemessen. Die Berechnung erfolgt mit dem Bodenwasserhaushaltsmodell BOWAB und wird täglich mit Klimakennwerten (Niederschlag, Temperatur, Wind, Globalstrahlung und relative Luftfeuchte) des Vortages durchgeführt. Es werden für die jeweilige Landnutzung (Acker, Grünland, Laubwald, Nadelwald, Sonstiges) und den Boden spezifisch Parametern abgeleitet. BOWAB nutzt die hochaufgelösten Bodendaten der Bodenkarte 1:50.000 (BK50) von Niedersachsen und leitetet bodenwasserhaushaltliche Kennwerte, wie nFK, FK etc. ab. Die Berechnung erfolgt für die Flächen der BK50. Der Einfluss des Grundwassers wird in Form von kapillarem Aufstieg und durch den Grundwasserstand aus der BK50 berücksichtigt. Eine Bodenfeuchte von 100 %nFK zeigt an, dass der Bodenwasserspeicher gefüllt ist. Bei Werten oberhalb von 100 % entsteht Sickerwasser oder es steht Grundwasser innerhalb der betrachteten Bodenschicht. Werte kleiner als 100 %nFK zeigen an, dass die Pflanzen Bodenwasser entnommen haben und der Boden allmählich austrocknet. Ab Bodenfeuchtewerten unterhalb von 40 - 50 %nFK reagieren Pflanzen auf die Trockenheit und verringern ihre Verdunstung. Bei Werten von < 30 % nFK kann von Trockenstress ausgegangen werden. Im Kartenbild ist die Bodenfeuchte für den Boden von 0 – 60 cm Tiefe dargestellt, der dem Hauptwurzelraum bei den meisten Böden und Nutzungsformen entspricht. Standortbezogene Informationen liefert ein Maptip. Durch das Klicken auf einen Standort wird der aktuelle Bodenwassergehalt für den Hauptwurzelraum in %nFK angezeigt. Zusätzlich können auf der Detailseite weiterführende Informationen abgerufen werden. Als Grafik wird der Verlauf der mittleren Bodenfeuchte für die vergangenen 10 Tage für die Tiefenbereiche 0 - 30 cm (Oberboden), 0 - 60 cm (Hauptwurzelraum) und, sofern der Boden mächtiger ist, 0 - 90 cm (gesamte Betrachtungstiefe) dargestellt. Zudem wird die Sickerwassermenge unterhalb von 90 cm Tiefe für den betrachteten Standort angegeben. Falls Sie noch genauere Informationen zum Wassergehalt für Ihren Boden mit einer bestimmten Anbaukultur (Weizen, Mais, Grünland) benötigen, nutzen Sie gerne die Fachanwendung „Bodenwasserhaushalt“ im NIBIS® Kartenserver. Sie bietet die Möglichkeit den Verlauf der Bodenfeuchte für einzelne oder mehrere Flächen über einen längeren Zeitraum mit verschiedenen Fruchtfolgen (z.B. 1 Jahr oder länger) zu ermitteln.

Änderung des Potenziellen Zusatzwasserbedarfs für den 30-jährigen Zeitraum 2071-2100 zu 1971-2000, Kein-Klimaschutz-Szenario (RCP8.5)

Die Karte zeigt die mittlere Veränderung des potenziellen Zusatzwasserbedarfs (in mm) 2071-2100 gegenüber 1971-2000 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.

Änderung des Potenziellen Zusatzwasserbedarfs für den 30-jährigen Zeitraum 2031-2060 zu 1971-2000, Kein-Klimaschutz-Szenario (RCP8.5)

Die Karte zeigt die mittlere Veränderung des potenziellen Zusatzwasserbedarfs (in mm) 2031-2060 gegenüber 1971-2000 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.

Potenzieller Zusatzwasserbedarf für den 30-jährigen Zeitraum 2031-2060, Kein-Klimaschutz-Szenario (RCP8.5)

Die Karte zeigt den mittleren potenziellen Zusatzwasserbedarf (in mm) für den 30-jährigen Zeitraum 2031-2060 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.

Potenzieller Zusatzwasserbedarf für den 30-jährigen Zeitraum 2031-2060, Klimaschutz-Szenario (RCP2.6)

Die Karte zeigt den mittleren potenziellen Zusatzwasserbedarf (in mm) für den 30-jährigen Zeitraum 2031-2060 unter dem „Klimaschutz“-Szenario (RCP2.6). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Klimaschutz“-Szenario (RCP2.6) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches deutliche Anstrengungen beim Klimaschutz und niedrigen Emissionen bedeutet. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.

Tongehalte (25%) des obersten Mineralbodenhorizonts für alle Feldblöcke in Niedersachsen, Bremen und Hamburg gemäß § 16 der GAP-Konditionalitäten-Verordnung (GAPKondV) GLÖZ 5 (WMS Dienst)

Tongehalte des obersten Mineralbodenhorizonts für Feldblöcke mit der Einstufung KWasser1 und KWasser2 in Niedersachsen, Bremen und Hamburg gemäß GLÖZ 5 GAPKondV § 16 „Bodenbearbeitung zur Begrenzung von Erosion“. In dieser Karte sind die Tongehalte des obersten Mineralbodenhorizonts nach Bodenkundlicher Kartieranleitung 5. Auflage (KA5) für die Feldblöcke mit der Einstufung KWasser1 und KWasser2 dargestellt. Basis für Niedersachsen sind die übersetzten Bodenschätzungsdaten 2018. Bereiche ohne Bodenschätzung sind durch die Bodenkarte 1:50.000 (BK50) aufgefüllt. Für Bremen werden die Bodendaten aus der Bodenschätzung und der Bodenübersichtskarte 1:50.000 (BÜK50) zu Grunde gelegt. Für Hamburg stammen die Bodendaten aus der Bodenübersichtskarte 1:200.000 (BÜK200). Diese Karte gilt als Hinweiskarte für eine Ausnahme vom Pflugverbot über Winter für wassererosionsgefährdete Flächen (GLÖZ 5, KWasser1 und KWasser2) und ist geregelt in § 3 der niedersächsischen Erosionsschutzverordnung. Rechtsgrundlage: Nach den Abweichenden Anforderungen (§ 3 Abs. 3) der niedersächsischen Verordnung über erosionsgefährdete landwirtschaftliche Flächen, die am 15. Februar 2024 in Kraft getreten ist. (3) Auf Ackerflächen, die der Erosionsgefährdungsklasse KWasser1 oder KWasser2 zugehören und auf denen der Oberboden einen Tongehalt von mehr als 25 Prozent hat, ist das Pflügen abweichend von § 16 Abs. 2 und 3 Sätze 1, 2 und 4 GAPKondV zulässig, wenn 1. die Pflugfurche nach dem 15. Februar weiter bearbeitet wird und 2. unmittelbar danach mit einem Reihenabstand von weniger als 45 cm Sommergetreide, Körnerleguminosen, Sommerraps, Feldfutter, Zuckerrüben oder Mais angebaut werden oder Grünland angelegt wird. Um diese "Abweichende Anforderung" zu erfüllen, müssen alle Bodenareale auf dem jeweiligen Ackerschlag einen Tongehalt von mehr als 25 % aufweisen. Für eine erste Einschätzung, ob diese Bedingung auf einem Ackerschlag erfüllt ist, sind in der abgebildeten Karte die Flächen der Bodenschätzung bzw. der BK50 nach dem Tongehalt des obersten Mineralbodenhorizonts für alle KWasser1 und KWasser2 eingestuften Feldblöcke in Niedersachsen dargestellt. Bei der Bodenart Lu (schluffiger Lehm) mit Tongehalten zwischen 17-30 %, muss der Nachweis erbracht werden, dass der Tongehalt im betreffenden Bodenareal über 25 % liegt.

Kalkduengung mit Huetten- und Mischkalk

Das Projekt "Kalkduengung mit Huetten- und Mischkalk" wird/wurde ausgeführt durch: Christian-Albrechts-Universität Kiel, Institut für Pflanzenbau und Pflanzenzüchtung.Durch unterschiedliche Kalkgaben von Huetten- und Mischkalk wurden Standorte ueber mehrere Rotationen konditioniert. Ertragsuntersuchungen an Weizen, Gerste und Mais werden unter Beruecksichtigung der Entwicklung von Ertragskomponenten vorgenommen. Nebenwirkungen des Huettenkalkes auf die Gesunderhaltung von Aehren werden gesondert ueberprueft.

Greenhouse Gas Emission of Different Crop Rotations of Rice (flooded and non-flooded) and Maize

Das Projekt "Greenhouse Gas Emission of Different Crop Rotations of Rice (flooded and non-flooded) and Maize" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Sondervermögen Großforschung, Institut für Meteorologie und Klimaforschung - Atmosphärische Umweltforschung (IMK-IFU).This subproject will assess net-fluxes of CH4 and N2O as well as soil CO2 emissions from flooded and non-flooded rice as well as maize grown in different rotations and under different management practices. SP5 will encompass two research tasks, (i) automated chamber measurements and (ii) soil gas concentration measurements of different crop rotations. In total 36 automated chambers will be placed in two large field blocks (18 chambers each) divided into fields representing three crop-rotations: R-WET (rice flooded - rice flooded), R-MIX (rice flooded - rice non-flooded), M-MIX (maize - rice flooded) experiencing three differ-ent crop management practices: a control with no fertilizer application (zero-N), site specific nutrient management (site-spec) and conventional fertilizer application (conv). In the fields of conventional fertilization SP5 will also conduct soil concentration measurements of CO2, N2O and CH4 for identification of the main production and/ or consumption horizons which may differ between the three crop rotation systems which will allow identification of the dominating processes responsible for GHG exchange with the atmosphere. Emissions of different greenhouse gases together with data on biomass production/ yields (conducted by IRRI) will be aggregated to compile the total GHG exchange of different crop rotations and management practices. Thus, the data obtained in SP5 will create a sound basis for projecting the environmental consequences of different land use options in rice-based systems with respect to the net GHG exchange. Moreover, data obtained in SP5 will be linked in particular with results from C and N process studies of SP1-SP4 and will form a sound base for further development, testing and valida-tion of the process based model applied in SP6/ 7.

1 2 3 4 5408 409 410