Das Projekt "Unterdrückung von Bremsenschwingungen durch bewusst eingebrachte Dämpfung" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Institut für Mathematik, Fachgebiet Numerische Mathematik durchgeführt. Bremsenschwingungen sind ein typisches Beispiel für NVH (noise, vibrations, harshness) Probleme in der Automobilindustrie. Die Kosten in Entwicklungsprozessen bei Kfz-Bremsen werden heute oft durch die Optimierung bzgl. dieser Komforteigenschaften dominiert. Das Ziel des Vorhabens ist es, Bremsen bezüglich der Eigenschaften calm und smooth positiv zu beeinflussen, also Bremsengeräusche und -schwingungen zu unterdrücken. Dies soll durch bewusst eingebrachte Dämpfung geschehen. Bei der Untersuchung von Dämpfungseinflüssen in Bremssystemen soll insbesondere der Einfluss von shims (Dämpfungsblechen) untersucht werden. Dies ist eine häufig in der Industrie verwendete Gegenmaßnahme gegen Quietschen, die aber nach dem Stand der Wissenschaft und Technik bisher von Ihrem Wirkprinzip nur schlecht verstanden und modelliert ist. Im Projekt sollen shims experimentell untersucht und modelliert werden. Die so entstandenen Modelle werden in FE-Gesamtmodelle der Bremse integriert um den Einfluss auf das Stabilitätsverhalten zu untersuchen.
Das Projekt "Simulationsbasierter Entwurf hybrider Partikeldämpfer mit Anwendung auf flexible Mehrkörpersysteme" wird vom Umweltbundesamt gefördert und von Technische Universität Hamburg, Studiendekanat Maschinenbau, Institut für Mechanik und Meerestechnik durchgeführt. Partikeldämpfer sind einfach zu bauende passive Dämpfungselemente. Hierbei werden Behältnisse mit granularen Partikel befüllt und an die schwingende Struktur angebracht oder darin integriert. Aufgrund der Schwingungen werden die Partikel in Bewegung versetzt und durch Reib- und Stoßvorgängen zwischen den Partikeln wird Energie dissipiert. Dies sind nichtlineare Effekte die zu einem hoch nichtlinearen Verhalten der Partikeldämpfer führen können. Partikeldämpfer sind einfach anzuwenden, auch bei schon existierenden Maschinen. Es konnte gezeigt werden, dass diese Dämpfer mindestens so effektiv wie andere Dämpfungsmethoden sein können. Die Mechanismen der Energiedissipation sind nicht auf eine einzelne Frequenz beschränkt sondern wirken über einen breiteren Frequenzbereich. Darüber hinaus sind Partikeldämpfer sehr anpassungsfähig, beispielsweise durch verschiedene Formen und Größen des Dämpferbehältnisses, der Anzahl der Partikel oder durch verschiedene Materialien. Die numerischen und experimentellen Analysen aus der ersten Projektphase haben gezeigt, dass der Großteil der dissipierten Energie durch Partikelstöße entsteht. Deshalb sollte die Stoßzahl so klein wie möglich sein, damit eine möglichst große Menge an Energie dissipiert. Um eine möglichst große Übertragung von kinetischer Energie der schwingenden Struktur auf die Partikel zu ermöglichen, sind schwere, metallische Partikel wie Stahl, Messing oder Wolfram zu bevorzugen. Für diese Materialien haben FE Simulationen gezeigt, dass die Stoßzahl für Partikel-Partikel Stöße recht hoch ist und somit die Menge an dissipierter Energie limitiert ist. Ein Weiterer großer Nachteil bei der Benutzung von metallischen Partikeln für Partikeldämpfer ist die Erzeugung von nicht unerheblichem Lärm durch die Partikelstöße. Es gibt bereits erste Versuche von Partikeldämpfern mit polymeren Granulaten. Allerdings wird aufgrund der geringeren Partikelmasse eine geringere Dämpfung der Struktur erzielt. Das Forschungsziel ist die Weiterentwicklung einer simulationsbasierten Entwicklungsmethode von verteilten Partikeldämpfern für die passive Schwingungsdämpfung von Leichtbaustrukturen und -maschinen. Dieses Projekt hat dabei das Ziel komplett neue hybride Partikeldämpfer zu entwickeln und zu bewerten. Dadurch werden weitere Freiheitsgrade bezüglich des Designs geschaffen, indem verschiedene Materialien verwendet werden und somit die Masse der Partikel und die Stoßzahl einzelner Partikelkollisionen teilweise entkoppelt voneinander sind. Hierbei sollte ein schweres metallisches Partikel mit einem viskoelastischen Material mit hoher Dämpfung gepaart werden. Durch diesen Ansatz entsteht eine komplett neue Designphilosophie, um kleine Partikeldämpfer zu erhalten, welche deutlich mehr Energie dissipieren als vergleichbare homogen Partikeldämpfer mit ähnlicher Masse. Als Nebeneffekt wird zudem erwartet, dass diese hybriden Partikeldämpfer deutlich geräuschärmer als die klassischen Partikeldämpfer sind.
Das Projekt "Intelligent vernetzte Anordnungen induktiver Elemente zur effizienten Beruhigung von Strukturschwingungen" wird vom Umweltbundesamt gefördert und von Universität Kassel, Institut für Mechanik, Fachgebiet Technische Dynamik durchgeführt. Stetig steigende Energiekosten und sich verschärfende gesetzliche Vorschriften machen es notwendig, die Wirkungsgrade in allen Arten von Maschinen und Anlagen konsequent zu erhöhen. Infolgedessen werden Strukturen immer mehr unter Aspekten des Leichtbaus ausgeführt und schwingungsdämpfende Einflüsse systematisch reduziert. Als Konsequenz dieser Maßnahmen ergibt sich eine höhere Empfindlichkeit gegenüber Vibrationen. Deswegen ist es dringend notwendig, Schwingungen mechanischer Strukturen wirksam, gezielt und situationsangepasst zu mindern, ohne dabei die Funktion oder den Wirkungsgrad der Maschine als Ganzes nennenswert zu beeinflussen. Als besonders herausfordernd stellen sich hierbei ausgedehnte Strukturen dar - wie z.B. Verkleidungen, Karosserieteile, Flugzeugflügel, etc. Solche Strukturen weisen etliche Resonanzfrequenzen auf, können über die Oberfläche besonders intensiv Schall abstrahlen und lassen sich meist durch einzelne, konzentriert aufgebrachte Maßnahmen nicht wirksam beruhigen. Flächige Dämpfungsmaßnahmen stellen daher einen naheliegenden Lösungsansatz dar. Die klassischerweise hierbei eingesetzten Dämmmatten erweisen sich jedoch in der Regel als nur bedingt effizient und lassen kaum eine differenzierte Ausgestaltung der Maßnahmen zu. Motiviert durch den vorgenannten Befund besteht das primäre Ziel dieses Antrags in der Entwicklung flächiger induktiver Dämpfungselemente ('smart arrays') mit intelligenten und adaptiven Eigenschaften. Elektromagnetische Konzepte stellen dabei eine vielversprechende Basis dar und können leicht auf Oberflächen ausgedehnter Strukturen aufgebracht werden. Im Vergleich zu klassischen, stark lokalisierten Maßnahmen bieten solche Ansätze eine Reihe von Vorteilen: neben dem Vermeiden örtlich konzentrierter Dissipationsleistung, lassen sich bspw. auch gezielt bestimmte Schwingformen bedämpfen, oder aber Strukturen ortsdifferenziert beeinflussen. Durch die Möglichkeiten zur einfachen Verschaltung und Kombination der Module sowie zur gezielten Auslegung und Nutzung physikalischer Nichtlinearitäten besteht zudem ein besonderes Potential zur Entwicklung situationsadaptiver Anordnungen. Darüber hinaus ist zu erwarten, dass induktionsbasierte Module von einer verteilten Anwendung zusätzlich profitieren: Da lokal geringere Dissipationsleistungen auftreten sinkt auch die magnetische Flussdichte und führt somit auf einen geringeren Materialbedarf und weniger Gewicht. Der vorgeschlagene Ansatz ist durch Vorarbeiten verschiedener Teilprojekte des Schwerpunktprogramms SPP 1897 'calm, smooth and smart' motiviert und fügt sich nahtlos in den Rahmen der zweiten Förderungsphase ein. Über das Schwerpunktprogramm hinaus könnten solche 'smart arrays' zukünftig vielfältige Anknüpfungspunkte für Produktentwicklung, Materialforschung, Additive Fertigung, MEMS und Energy Harvesting entstehen lassen.
Das Projekt "Granulare Mischungen mit maßgeschneiderten Dämpfungseigenschaften" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Mechanik (Bauwesen), Lehrstuhl II (Kontinuumsmechanik) durchgeführt. Lärm und unkontrollierte Vibrationen sind in vielen industriellen und geotechnischen Anwendungen problematisch. Akustische Wellen auf Straßen und Schiene, oder verursacht durch Erdbeben, pflanzen sich durch die typischerweise granularen Strukturen im Boden, in Beton, oder in Asphalt mit einer ganz eigenen Charakteristik fort, wobei das Material die Geschwindigkeit, die Dämpfung und den Frequenzbereich der transmittierten Wellen beeinflusst. In unserem innovativen Projekt wollen wir granulare Materialien in 'granulare Dämpfer' verwandeln indem wir sowohl Teilcheneigenschaften als auch die Mischungszusammensetzung der weichen bzw. steifen Teilchen einer granularen Mischung in weiten Bereichen variieren. Das Ziel ist, effektive Materialeigenschaften wie Dämpfung oder Dispersion zu optimieren, und Frequenzfilterung durch Bandlücken optimal auszunutzen. Um dieses Ziel zu erreichen werden wir das Projekt von zwei Seiten aufrollen: Einerseits werden wir physikalische Experimente durchführen in denen wir Materialien mit unterschiedlichsten dämpfenden und elastischen Eigenschaften in allen Mischverhältnissen kombinieren. Andererseits werden wir dazu komplementär auch direkte Teilchen-Simulationen (DEM) durchführen um die mikromechanischen Mechanismen abzubilden und die effektiven Eigenschaften der Mischung quantitativ zu modellieren und zu verstehen. Nach sorgfältigster Analyse werden sowohl die experimentellen als auch die numerischen Daten dazu verwendet um ein stochastisches makroskopisches Modell weiterzuentwickeln das den Transport von Energie zwischen verschiedenen Frequenzbändern mit einer Master-Gleichung beschreibt. Dies kann schlussendlich dazu verwendet werden um in vielen Anwendungen neue, bessere Materialeigenschaften zu erzielen. Vorarbeiten: In den letzten Jahren habe wir bereits Wellenausbreitung und Dämpfung in granularen Mischungen von weichen und harten Teilchen unter verschiedenen hydrostatischen Kompressionsdrücken untersucht. Bisher konzentrierten wir uns auf mono-disperse Glas-Gummi Mischungen um das Zusammenspiel von Komposition und Spannungszustand zu verstehen. Ein überraschendes Ergebnis ist dabei, dass wir leichtere Packungen mit 15-20% Gummi herstellen konnten die bessere elastische und viel bessere Dämpfungseigenschaften hatten. Arbeitsplan: Zuerst wollen wir den kombinierten Einfluss von verschieden großen weichen und harten Teilchen in Mischungen untersuchen. Nach sorgfältiger Analyse im Frequenz-Raum werden wir die komplexe Wechselwirkung zwischen Teilchen- und System-Eigenschaften, sowie zwischen Energie-Absorption und -Propagation benutzen um ein stochastisches Model reduzierter Ordnung zu formulieren, das die Fortpflanzung von Wellen für alle Frequenzen in Raum und Zeit vorhersagen kann. Innovativ ist, dass wir nicht nur die niedrigeren Eigenfrequenzen modellieren, sondern alle Frequenzen, da insbesondere die hohen Frequenzen am wichtigsten für die Dämpfungseigenschaften in der Anwendung sind.
Das Projekt "Wege zur Steigerung der Energiedissipation und Dämpfung in selbsterregten Strukturen mit irregulären Schwingungsantworten - Kombination datenbasierter Verfahren mit modellbasierten Zugängen" wird vom Umweltbundesamt gefördert und von Technische Universität Hamburg (TUHH), Studiendekanat Maschinenbau, Institut für Strukturdynamik (M-14) durchgeführt. Der Fokus des Projektes liegt auf der Entwicklung von Methoden zur Analyse und Charakterisierung von Dämpfungselementen in selbsterregten Mehrkomponentensystemen mit irregulärer Schwingungsantwort unter vielfältigen Betriebsbedingungen. Dämpfungselemente und ihre Wirkungsmechanismus können im Falle regulärer Lösungen, d.h. periodische oder transiente Schwingungen, mit Standardtechniken beschrieben werden, wohingegen die Identifikation und Beschreibung der Energiequellen und Energiesenken sowie des Energieflusses im Falle von irregulären Schwingungen ein ungelöstes Problem darstellt. Außerdem enthalten die meisten technischen Systeme eine Vielzahl von lokalen Nichtlinearitäten und Dämpfern, u.a. die Kontakt- und Fügestellen des Systems, und werden unter zahlreichen verschiedenen Bedingungen betrieben. Daher stellt die Charakterisierung von Dämpfungselementen unter diesen Randbedingungen eine große Herausforderung dar. Im Zustand irregulärer Schwingungen sind die zahlreichen Energiesenken in stetiger Interaktion. Spätestens die zusätzliche Komplexitätserhöhung durch die Berücksichtigung der zahlreichen Lastfälle macht eine physikalische Beschreibung der Energiedissipation und somit die Bewertung von Dämpfungsmaßnahmen unmöglich. Aus diesem Grunde sind neue Methoden zur Bewertung und Charakterisierung von Dämpfungsmaßnahmen notwendig. In diesem Zusammenhang schlagen wir die Entwicklung von Methoden und Werkzeugen zur eingehenden Analyse der Schwingungsantwort sowie der Struktur-, Dämpfungs- und Lastparameter vor. Der erste Teil setzt sich mit der Entwicklung von Methoden zur Analyse und numerischen Betrachtung von Dämpfungselementen im Umfeld von reiberregten Systemen mit irregulären Schwingungsantworten auseinander. Grundlage für diese Untersuchungen sind numerisch erzeugte Daten. Es kommen Werkzeuge aus dem Feld der nichtlinearen Zeitreihenanalyse und der multivariaten Statistik zum Einsatz. Das zentrale Element ist die Datenmatrix M, die mit charakteristischen Größen aus unterschiedlichen Klassen für unterschiedliche Lastszenarien gefüllt wird. Das abschließende Ergebnis ist eine Prozedur zur Bewertung und Optimierung von Dämpfungselementen und Dissipationsmechanismen in Systemen mit irregulärer Schwingungsantwort. Beim zweiten Teil handelt es sich um eine konsequente Fortsetzung des Vorgehens in dem Sinne, dass nun Daten aus Experimenten als Eingangsgrößen für das Verfahren gewählt werden. Somit handelt es sich um eine Validierung des Verfahrens. Die Daten stammen von einem Pin-on-Disk System und einer Reibungsbremse. Das Projekt versucht existierende Grenzen zwischen den Bereichen physikalische Systemmodellierung, Datenanalyse, Zeitreihenanalyse und Systemauslegung zu überschreiten und Synergieeffekte aus diesen Bereichen zu nutzen. Daher hat es einen visionären und ambitionierten Charakter.
Das Projekt "Dämpfung von intelligenten miniaturisierten Systemen mit Formgedächtnislegierungen" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Mikrostrukturtechnik durchgeführt. In dem beantragten Projekt werden neuartige filmbasierte Dämpfungsmechanismen auf der Grundlage von Formgedächtnislegierungen (FGL) untersucht, numerisch erfasst und validiert, die entweder den superelastischen Effekt (SE) oder den thermischen Formgedächtniseffekt (FGE) nutzen. Dies wird eine neue Generation von intelligenten miniaturisierten Dämpfungssystemen für portable oder mobile Anwendungen ermöglichen, die einen rausch- und ruckfreien Betrieb erlauben als auch zusätzliche Detektionsmechanismen aufgrund der starken Kopplung der thermischen, mechanischen und elektrischen Eigenschaften beinhalten. FGL-Materialien und Bauelemente weisen aufgrund einer Phasenumwandlung erster Ordnung eine nichtlineare Spannungs-Dehnungs-Antwort und Hysterese auf, welche eine zielgerichtete Optimierung und Kontrolle dissipativer Prozesse bei hohen Spannungs- und Dehnungswerten von 500 MPa und 5% erlaubt. Aufgrund des großen Verhältnisses von Oberfläche zu Volumen bei FGL Dünnfilmen ist einen schnelle Wärmeabfuhr mit Zeitkonstanten im Bereich von Millisekunden möglich. Ausgangsmaterialien sind Filme basierend auf TiNi, deren SE und FGE-Eigenschaften optimiert wurden. Die dissipativen Mechanismen darauf aufbauender Teststrukturen während zyklischer Belastung werden durch finite Elemente-Simulationen beschrieben, die auf einem Phasenfeldmodell beruhen, das Phasenumwandlung, Dehnungsänderung und Wärmeströme zeitaufgelöst beschreibt. Mehrere Generationen von Film-basierten FGL-Dämpfungselementen werden entwickelt und evaluiert, die auf passiven (SE) oder aktiven Mechanismen (FGE) oder Kombinationen daraus beruhen. Strategien zur Reduktion der Freiheitsgrade der aufgestellten Modelle (Model Order Reduction) werden getestet, um die Komplexität der Simulationen zu verringern. Zur Modellintegration auf der Systemebene sind Lumped Element Models vorgesehen. Ein miniaturisiertes Kameramodul wird als Demonstrator entwickelt, um die Effizienz der filmbasierten FGL-Dämpfungsmethoden und praktikable Kontrollalgorithmen für die Systemdynamik zu untersuchen. Zusätzliche Funktionalität wie intrinsische Temperatur- und Positionskontrolle werden ebenfalls berücksichtigt.
Das Projekt "Gezielter Einsatz von Dämpfung durch Schallabstrahlung mittels tilgerbasierter Strukturen" wird vom Umweltbundesamt gefördert und von Technische Universität München, Fakultät für Maschinenwesen, Gerhard-Zeidler-Stiftungslehrstuhl für Akustik mobiler Systeme durchgeführt. Viele Leichtbaustrukturen sind steif und schwach gedämpft. Gleiches gilt für viele Musikinstrumente und Unterwasserfahrzeuge. All diesen Strukturen ist gemeinsam, dass die Dämpfung durch Schallabstrahlung in einer ähnlichen Größenordnung liegt oder sogar größer ist als die anderen Dämpfungsmechanismen. Das hierin vorgestellte Projekt zielt darauf ab, derartige Probleme zu untersuchen und mathematische Formulierungen bereitzustellen, die es erlauben, diese akustische Abstrahldämpfung in einem reinen Strukturmodell zu berücksichtigen, obwohl die zugrunde liegende Physik eigentlich ein gekoppeltes struktur-akustisches Modell erfordern würde. Rein mathematisch gesehen kann dieses gekoppelte Modell jedoch als reines Strukturmodell aufgefasst werden, indem man das Schurkomplement bildet. In diesem Projekt wird die Dämpfung durch Schallabstrahlung quantitativ untersucht und ein mathematisches Modell aufgebaut, um Dämpfung durch Schallabstrahlung zu berücksichtigen, ohne das akustische Abstrahlproblem lösen zu müssen. Die quantitative Abschätzung der tatsächlichen Dämpfung durch Schallabstrahlung erfordert zusätzlich, dass der Anteil der numerischen Dämpfung, die in akustischen BEM-Formulierungen enthalten ist, abgeschätzt werden kann und ferner die Höhe der Fluiddämpfung ermittelt wird, wobei Letztere erst bei sehr hohen Frequenzen einbezogen werden muss. Beim ungekoppelten Strukturmodell ist es die Idee, die akustischen Effekte der Schallabstrahlung entweder durch modale Dämpfung oder mit einer viskoelastischen Bettung der abstrahlenden Strukturoberfläche abzubilden. In einem abschließenden Arbeitspaket werden Strukturen entwickelt und untersucht, die die Effekte der Dämpfung durch Schallabstrahlung ausnutzen.
Das Projekt "Schwingungsreduktion durch Energietransfer mittels Formadaption" wird vom Umweltbundesamt gefördert und von Technische Universität Chemnitz, Institut für Konstruktions- und Antriebstechnik, Professur Maschinenelemente und Produktentwicklung durchgeführt. Leichtbau ist eine der wesentlichen Aufgaben im Entwurfsprozess. Das Ziel ist dabei die Reduktion der Bauteilmassen um Kosten, Energie oder andere Ressourcen bei der Herstellung oder im Betrieb zu sparen. Jedoch sind leichte Strukturen auch anfällig für unerwünschte Schwingungen. Diese Schwingungen müssen daher häufig reduziert werden, um sowohl die Struktur als auch ihre Umgebung vor Schäden zu schützen und die Lebensdauer der Struktur zu erhöhen. Eine Schwingungsreduktion kann durch passive, semi-aktive oder aktive Maßnahmen erreicht werden. Dabei meint passiv, dass keine Energie von außen zugeführt werden muss, während semi-aktive und aktive Maßnahmen äußere Energie benötigen, um entweder die Dissipation zu kontrollieren oder der Schwingungsbewegung direkt entgegen zu wirken. Da aktive Maßnahmen meist nicht auf Dissipation beruhen, fallen sie nicht in den Bereich des ausgeschriebenen Schwerpunktprogramms und werden daher hier auch nicht weiter betrachtet. Auf dem Gebiet der passiven und semi-aktiven Maßnahmen gibt es zwei grundsätzliche Möglichkeiten zur Schwingungsreduktion, nämlich zum einen Dämpfung, was die Dissipation kinetischer Energie in eine andere Energieform meint, und zum anderen Tilgung, was den Transfer kinetischer Energie aus einer kritischen Mode in eine unkritische Mode bezeichnet. Der hier vorgeschlagene Zugang kombiniert die Konzepte der Dämpfung und der Tilgung in neuartiger Weise, indem die Funktionalität eines gedämpften Tilgers in eine formadaptive Struktur integriert wird. Durch dynamische Adaption der Steifigkeit einer schlanken, balkenartigen Struktur durch Formadaption des Querschnitts soll kinetische Energie aus den kritischen, tieffrequenten Biegemoden in eine speziell entworfene, hochfrequente Tilgermode übertragen werden, um dort dann optimal gedämpft zu werden. Das optimale Design des formadaptiven Mechanismus und der Tilgermode soll im Rahmen nachgiebiger Festkörpermechanismen erfolgen, während die optimale Dissipation durch angepasste Reibdämpfer realisiert werden soll.
Das Projekt "Ein kombinierter numerisch-experimenteller Ansatz zur Dämpfungsbewertung von nichtlinearen dissipativen Schwingungssystemen" wird vom Umweltbundesamt gefördert und von Leibniz Universität Hannover, Institut für Dynamik und Schwingungen durchgeführt. Das Schwingungsverhalten mechanischer Strukturen wird ganz wesentlich beeinflusst durch die vorhandene Dämpfung, die vielerlei physikalische Ursachen haben kann. Neben der Materialdämpfung spielen Fügestellendämpfung, Reibdämpfer, Partikeldämpfer, Piezodämpfung u.v.m. eine große Rolle. Die Aufgabe, die zumeist stark nichtlinearen und amplitudenabhängigen Dämpfungswerte modellbasiert vorherzusagen, ist auch heute noch nicht befriedigend gelöst. Aus diesem Grund wird in diesem Vorhaben eine Methodik entwickelt, mit deren Hilfe auf der Basis von Modellreduktionsverfahren Ersatzmodelle geschaffen werden, an denen die Wirkungsweise so genannter nichtlinearer Energiesenken (nonlinear energy sinks, NES), die verschiedene nichtlineare Dämpfungsprinzipien repräsentieren können, untersucht wird. Im Fokus steht dabei die Anwendung und Weiterentwicklung von Verfahren, mit deren Hilfe das Lösungsverhalten der nichtlinearen Ersatzsysteme untersucht wird. Hierzu zählen Pfadverfolgungsalgorithmen, kombinierte Zeit-Frequenzbereichslösungen, multiharmonische Lösungsansätze, Bifurkationsanalysen und Stabilitätsuntersuchungen. Wichtige Ergebnisse sind insbesondere die Beurteilung der Effizienz und Robustheit nichtlinearer Absorber bei variierenden Betriebsbedingungen und multifrequenten Anregungen sowie die richtige Wahl des Reduktionsverfahrens für große Systeme mit lokalen Nichtlinearitäten. Begleitende experimentelle Untersuchungen dienen der Validierung.
Das Projekt "Partikel Dämpfer - Schwingungsbeeinflussung durch verteilte Dissipation über komplexe Partikelformen und Fluid/Festkörper Interaktionen" wird vom Umweltbundesamt gefördert und von Bayerisches Landesinstitut für Arbeitsmedizin, Strahlenbiologische Arbeitsgruppe durchgeführt. Der Einsatz von Partikeldämpfern stellt eine vielversprechende Alternative zur Schwingungsbeeinflussung dar. Partikeldämpfer decken ein großes Frequenzspektrum ab, sie übernehmen zusätzliche Funktionen wie Geräuschminderung oder tragende Funktionen, wobei sie sehr robust und über einen großen Temperaturbereich einsetzbar sind. In einem Partikeldämpfer spielen sich verschiedene physikalische Prozesse ab, die ineinander greifen und so die verschiedenen Merkmale des Dämpfers erfüllen. Es existiert bisher kein zufriedenstellender simulativer Ansatz, der das Zusammenspiel aller physikalischen Phänomene berücksichtigt und somit eine präzise Auslegung von Partikeldämpfern erlaubt. Das Ziel dieses Projekt ist das tiefere Verständnis von dissipativen Partikeldämpfern für die Schwingungsbeeinflussung. Ein wesentlicher Bestandteil für die Funktion eines Dämpfers sind die zahlreichen Kontakte zwischen den Partikeln und zur Randgeometrie. In diesem Projekt werden deswegen die Partikel mit der Diskreten Elemente Methode (DEM) abgebildet. Durch ihren gitterfreien Charakter ist sie besonders gut in der Lage die großen Verschiebungen, die alle Partikel in einem transienten Prozess zusammen durchführen, abzubilden. Für eine möglichst gute Beeinflussung der Dissipation sollen einfache Partikelformen wie Kugeln durch nicht-konvexe Partikel ersetzt werden. In einem ersten Schritt wird ein Algorithmus entwickelt, um Reibung zwischen Partikeln geeignet abzubilden. Eine fundierte wissenschaftliche Untersuchung basiert oft auf zwei Säulen: Simulation und Experiment. Zu den verschiedenen Arbeitspaketen sollen deswegen einfache Experimente durchgeführt werden, aktive Experimente durch Anregung mit einem Shaker und passive Ausdämpfversuche. Neben komplexen Partikeln wird in einem weiteren Arbeitspaket eine Methode für die Vorhersage von Geräuschen bei dem Stoß zwischen Partikeln in der DEM entwickelt. Damit ist es möglich, smartere Dämpfer, die für die Geräuschminderung von Maschinen verwendet werden, hinsichtlich ihrer eigenen Geräuschproduktion und gleichzeitiger Energiedissipation zu optimieren. Der Dämpfer erfüllt somit mehrere Funktionen für die Maschine. Ein weiterer Punkt bei Partikeldämpfern ist die Betrachtung von Füllungen, die aus einem Granulat und einem Fluid bestehen. Deswegen wird die bestehende Erfahrung bei der Kopplung von Fluiden (beschrieben durch Smoothed Particle Hydrodynamics) und Partikeln für die Entwicklung eines Algorithmus zur Kopplung eines Fluids und nicht konvexer Partikel genutzt. Damit soll untersucht werden, wie eine gewisse Menge an Fluid die Dissipation in einem Dämpfer verbessern kann. In technischen Anwendungen spielt Schädigung eine wichtige Rolle, deswegen wird in einem abschliessenden Arbeitspakt die DEM erweitert, um Schädigungen zwischen Partikeln und der Randgeometrie zu berücksichtigen und somit den Einfluss von Schädigung auf die Dämpfung zu untersuchen.
Origin | Count |
---|---|
Bund | 26 |
Type | Count |
---|---|
Förderprogramm | 26 |
License | Count |
---|---|
offen | 26 |
Language | Count |
---|---|
Deutsch | 25 |
Englisch | 16 |
Resource type | Count |
---|---|
Keine | 7 |
Webseite | 19 |
Topic | Count |
---|---|
Boden | 21 |
Lebewesen & Lebensräume | 12 |
Luft | 13 |
Mensch & Umwelt | 26 |
Wasser | 7 |
Weitere | 26 |