Die Holozänbasisfläche stellt für Bereiche mit mehr als 10 m Wassertiefe in ihrer jetzigen Ausdehnung eine komplette Neuerung dar. Gegenüber der von Figge (1980) erstellten holozänen Basiskarte mit ca. 7.100 km² wird eine deutlich größere Fläche von nun 31.650 km² abgedeckt. Die Mächtigkeitskarte zeigt Mächtigkeit und Verbreitung des Holozäns im offshore-Bereich zwischen der Meeresoberfläche (Bathymetrie) und der Basisfläche des Holozäns in 5 m Intervallen.
Die Holozänbasisfläche stellt für Bereiche mit mehr als 10 m Wassertiefe in ihrer jetzigen Ausdehnung eine komplette Neuerung dar. Gegenüber der von Figge (1980) erstellten holozänen Basiskarte mit ca. 7.100 km² wird eine deutlich größere Fläche von nun 31.650 km² abgedeckt. Die Mächtigkeitskarte zeigt Mächtigkeit und Verbreitung des Holozäns im offshore-Bereich zwischen der Meeresoberfläche (Bathymetrie) und der Basisfläche des Holozäns in 2 m Intervallen.
The AVHRR Mulitchannel Sea Surface Temperature Map (MCSST) was the first result of DLR's AVHRR pathfinder activities. The goal of the product is to provide the user with actual Sea Surface Temperature (SST) maps in a defined format easy to access with the highest possible reliability on the thematic quality. After a phase of definition, the operational production chain was launched in March 1993 covering the entire Mediterranean Sea and the Black Sea. Since then, daily, weekly, and monthly data sets have been available until September 13, 1994, when the AVHRR on board the NOAA-11 spacecraft failed. The production of daily, weekly and monthly SST maps was resumed in February, 1995, based on NOAA-14 AVHRR data. The NOAA-14 AVHRR sensor became some technical difficulties, so the generation was stopped on October 3, 2001. Since March 2002, NOAA-16 AVHRR SST maps are available again. With the beginning of January 2004, the data of AVHRR on board of NOAA-16 exhibited some anormal features showing strips in the scenes. Facing the “bar coded” images of NOAA16-AVHRR which occurred first in September 2003, continued in January 2004 for the second time and appeared in April 2004 again, DFD has decided to stop the reception of NOAA16 data on April 6th, 2004, and to start the reception of NOAA-17 data on this day. On April 7th, 2004, the production of all former NOAA16-AVHRR products as e.g. the SST composites was successully established. NOAA-17 is an AM sensor which passes central Europe about 2 hours earlier than NOAA-16 (about 10:00 UTC instead of 12:00 UTC for NOAA-16). In spring 2007, the communication system of NOAA-17 has degraded or is operating with limitations. Therefore, DFD has decided to shift the production of higher level products (NDVI, LST and SST) from NOAA-17 to NOAA-18 in April 2007. In order to test the performance of our processing chains, we processed simultaneously all NOAA-17 and NOAA-18 data from January 1st, 2007 till March 29th, 2007. All products are be available via EOWEB. Please remember that NOAA-18 is a PM sensor which passes central Europe about 1.5 hours later than NOAA-17 (about 11:30 UTC instead of 10:00 UTC for NOAA17). The SST product is intended for climate modelers, oceanographers, and all geo science-related disciplines dealing with ocean surface parameters. In addition, SST maps covering the North Atlantic, the Baltic Sea, the North Sea and the Western Atlantic equivalent to the Mediterranean MCSST maps are available since August 1994. The most important aspects of the MCSST maps are a) correct image registration and b) reasonable cloud screening to ensure that only cloud free pixels are taken for the later processing and compositing c) for deriving MCSST, only channel 4 and 5 are used.. The SST product consists of one 8 bit channel. For additional information, please see: https://wdc.dlr.de/sensors/avhrr/
Das Projekt "International Surface Ocean - Lower Atmosphere Study (SOLAS)" wird/wurde ausgeführt durch: Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Forschungsbereich 2: Marine Biogeochemie, Forschungseinheit Chemische Ozeanographie.Since 2004, the International Surface Ocean - Lower Atmosphere Study (SOLAS) project is an international research initiative aiming to understand the key biogeochemical-physical interactions and feedbacks between the ocean and atmosphere. Achievement of this goal is important to understand and quantify the role that ocean-atmosphere interactions play in the regulation of climate and global change. SOLAS celebrated its 10 year anniversary in 2014. In the first decade, the SOLAS community has accomplished a great deal towards the goals of the original Science Plan & Implementation Strategy and Mid-term Strategy (Law et al. 2013) as highlighted by the open access synthesis book on 'Ocean Atmosphere Interactions of Gases and Particles' edited by Liss and Johnson and the synthesis article in Anthropocene from Brévière et al. 2015. However there are still major challenges ahead that require coordinated research by ocean and atmospheric scientists. With this in mind, in 2013, SOLAS has started an effort to define research themes of importance for SOLAS research over the next decade. These themes form the basis of a new science plan for the next phase of SOLAS 2015-2025. SOLAS being a bottom-up organisation, a process in which community consultation play a central role was adopted. After two sets of reviews by our four sponsors (SCOR, Future Earth, WCRP and iCACGP), the SOLAS 2015-2025 Science Plan and Organisation (SPO) was officially approved.
The SXMM41 TTAAii Data Designators decode as: T1 (S): Surface data T1T2 (SX): Miscellaneous A1A2 (MM): Mediterranean area (Remarks from Volume-C: NAVTEX SYNOPTIC REPORT FOR THE MEDITERIAN SEA(IN GERMAN))
The PJXI88 TTAAii Data Designators decode as: T1 (P): Pictorial information (Binary coded) T1T2 (PJ): Wave height + combinations A1 (X): Global Area (area not definable) A2 (I): 48 hours forecast T1ii (P88): Ground or water properties for the Earth's surface (ie snow cover, wave and swell) (Remarks from Volume-C: H+48 (GSM) sea and swell, wind (10 m) and direction of swell)
The PJXM88 TTAAii Data Designators decode as: T1 (P): Pictorial information (Binary coded) T1T2 (PJ): Wave height + combinations A1 (X): Global Area (area not definable) A2 (M): 96 hours forecast T1ii (P88): Ground or water properties for the Earth's surface (ie snow cover, wave and swell) (Remarks from Volume-C: H+96 (GSM) sea and swell, wind (10 m) and direction of swell)
The PJXE88 TTAAii Data Designators decode as: T1 (P): Pictorial information (Binary coded) T1T2 (PJ): Wave height + combinations A1 (X): Global Area (area not definable) A2 (E): 24 hours forecast T1ii (P88): Ground or water properties for the Earth's surface (ie snow cover, wave and swell) (Remarks from Volume-C: H+24 (GSM) sea and swell, wind (10 m) and direction of swell)
The PJXK88 TTAAii Data Designators decode as: T1 (P): Pictorial information (Binary coded) T1T2 (PJ): Wave height + combinations A1 (X): Global Area (area not definable) A2 (K): 72 hours forecast T1ii (P88): Ground or water properties for the Earth's surface (ie snow cover, wave and swell) (Remarks from Volume-C: H+72 (GSM) sea and swell, wind (10 m) and direction of swell)
Das Projekt "Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Temperatursaisonalität des tropischen Pazifiks um den Schmelzwasserpuls 1A herum rekonstruiert anhand von Korallen der IODP Expedition 310" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bremen, Zentrum für marine Umweltwissenschaften.Saisonalität spielt eine fundamentale Rolle im Erdklima, aber die Entwicklung des Jahresgangs der Temperatur an der Erdoberfläche ist für die Vergangenheit nicht hinreichend bekannt - insbesondere nicht für den tropischen Ozean, der eine Schlüsselrolle in der globalen Klimadynamik spielt. Es wird angenommen, dass die Amplitude des Temperaturjahresgangs auf längeren Zeitskalen durch Änderungen der Erdbahnparameter moduliert wird. Die Saisonalität ist von großer Bedeutung für verbesserte Modellprojektionen zukünftiger Klimaentwicklung anhand retrospektiver Simulationen vergangener Klimazustände, aber quantifizierbare Informationen des Temperaturjahresgangs aus geologischen Archiven sind spärlich. Fossile Flachwasserkorallen liefern ein einzigartiges, aber relativ seltenes Archiv für die Saisonalität der Meeresoberflächentemperaturen im tropischen Ozean und können mit der U-Th Methode präzise datiert werden. Aufkommende Korallenarbeiten aus dem Atlantik zeigen, dass die Temperatursaisonalität des tropischen Oberflächenozeans während Interglazialen in erster Linie durch Veränderungen der Sonneneinstrahlung aufgrund Änderungen der Erdbahnparameter gesteuert wird, selbst in Perioden erheblicher Klimaschwankungen und abrupten Meeresspiegelanstiegs. Vergleichbare Informationen zu Glazialen und Deglazialen fehlen jedoch bisher. Wir schlagen vor, die Temperatursaisonalität des tropischen Pazifiks während des letzten Deglazials, mit einem speziellen Fokus auf den Schmelzwasserpuls (MWP) 1A (ca. 14,5 ka vor heute), zu rekonstruieren und zu quantifizieren, indem geochemische Proxies in den Skeletten fossiler Flachwasserkorallen (Porites) der IODP Expedition 310 'Tahiti Sea Level' gemessen werden. Ergänzt durch eine neue Sammlung rezenter Tahiti Porites Korallen aus der Nähe der Expedition 310 Bohrlokationen, die als rezente Messlatte dienen um die Unsicherheiten in unseren Rekonstruktionen besser abzuschätzen, wollen wir folgende Hypothesen testen. Wurde die Temperatursaisonalität des tropischen Pazifiks (1) während des letzten Deglazials und insbesondere (2) während des MWP-1A, einem Zeitraum, der durch abrupten Meeresspieganstieg und Klimawandel sowie erhebliche Klimaschwankungen gekennzeichnet war, hauptsächlich durch Veränderungen der Sonneneinstrahlung aufgrund von Änderungen der Erdbahnparameter gesteuert. Unsere zu erwartenden Korallenergebnisse werden wertvolle Proxydaten für den Vergleich mit modernsten Klimamodellsimulationen liefern, z.B. denen der Deutschen Klimamodellierungsinitiative PALMOD 'Vom letzten Interglazial zum Anthropozän - Modellierung eines kompletten glazialen Zyklus', und werden zu einem verbesserten Verständnis der saisonalen Reaktion tropischer pazifischer Klimavariabilität auf abrupte Störungen auf Glazial-Interglazial Zeitskalen beitragen. Dies ist von großer Bedeutung für verbesserte Projektionen zukünftiger pazifischer Klimavariabilität und ihrer globalen Fernwirkungen auf gesellschaftsrelevanten Zeitskalen.
Origin | Count |
---|---|
Bund | 347 |
Land | 17 |
Schutzgebiete | 1 |
Wirtschaft | 2 |
Wissenschaft | 21 |
Type | Count |
---|---|
Ereignis | 8 |
Förderprogramm | 320 |
Text | 9 |
unbekannt | 15 |
License | Count |
---|---|
geschlossen | 12 |
offen | 331 |
unbekannt | 9 |
Language | Count |
---|---|
Deutsch | 253 |
Englisch | 153 |
Resource type | Count |
---|---|
Archiv | 2 |
Datei | 8 |
Dokument | 6 |
Keine | 190 |
Webdienst | 4 |
Webseite | 159 |
Topic | Count |
---|---|
Boden | 281 |
Lebewesen & Lebensräume | 317 |
Luft | 307 |
Mensch & Umwelt | 351 |
Wasser | 352 |
Weitere | 348 |