API src

Found 26 results.

Related terms

Seegraskartierung Niedersachsen 2019 (Punkte)

Seegrasbestände im Niedersächsischen Wattenmeer 2013. Durch Begehungen wurden in 2013 die Seegrasbestände im Eulitoral erfasst.Die Erfassung der langfristigen Entwicklung der Seegrasbestände im niedersächsischen Wattenmeer erfolgt durch Gesamtkartierungen, die im Abstand von 6 Jahren durchgeführt werden. Dabei werden Lage und Ausdehnung der Seegrasvorkommen sowie Angaben zu ihrer Artenzusammensetzung und Bewuchsdichte auf Grundlage von Geländeuntersuchungen mit begleitender Luftbildauswertung ermittelt.

Seegraskartierung Niedersachsen 2013 (Punkte)

Seegrasbestände im Niedersächsischen Wattenmeer 2013. Durch Begehungen wurden in 2013 die Seegrasbestände im Eulitoral erfasst.Die Erfassung der langfristigen Entwicklung der Seegrasbestände im niedersächsischen Wattenmeer erfolgt durch Gesamtkartierungen, die im Abstand von 6 Jahren durchgeführt werden. Dabei werden Lage und Ausdehnung der Seegrasvorkommen sowie Angaben zu ihrer Artenzusammensetzung und Bewuchsdichte auf Grundlage von Geländeuntersuchungen mit begleitender Luftbildauswertung ermittelt.

Seegraskartierung Niedersachsen 2013 (Flächen)

Seegrasbestände im Niedersächsischen Wattenmeer 2013. Durch Begehungen wurden in 2013 die Seegrasbestände im Eulitoral erfasst.Die Erfassung der langfristigen Entwicklung der Seegrasbestände im niedersächsischen Wattenmeer erfolgt durch Gesamtkartierungen, die im Abstand von 6 Jahren durchgeführt werden. Dabei werden Lage und Ausdehnung der Seegrasvorkommen sowie Angaben zu ihrer Artenzusammensetzung und Bewuchsdichte auf Grundlage von Geländeuntersuchungen mit begleitender Luftbildauswertung ermittelt.

Seegraskartierung Niedersachsen 2019 (Flächen)

Seegrasbestände im Niedersächsischen Wattenmeer 2013. Durch Begehungen wurden in 2013 die Seegrasbestände im Eulitoral erfasst.Die Erfassung der langfristigen Entwicklung der Seegrasbestände im niedersächsischen Wattenmeer erfolgt durch Gesamtkartierungen, die im Abstand von 6 Jahren durchgeführt werden. Dabei werden Lage und Ausdehnung der Seegrasvorkommen sowie Angaben zu ihrer Artenzusammensetzung und Bewuchsdichte auf Grundlage von Geländeuntersuchungen mit begleitender Luftbildauswertung ermittelt.

Bericht: "Schlacke: Vergleich Bewuchs Schlacke – natürliche Vergleichsubstrate - Norderney (1988)"

„Auf Bauwerken des Küstenschutzes und auf Hafenanlagen um den Westkopf von Norderney wurden die Bewuchsgemeinschaften (makroskopische Meerespflanzen und Meerestiere) von NA-Schlacken und natürlichen Bausteinen (Basalt, Granit, Sandstein) vergleichend untersucht. Ergebnis: Im unteren Gezeitenbereich nahe der Niedrigwasser-Linie bestehen keine Unterschiede zwischen Schlacken und Natursteinen im Hinblick auf Bewuchsdichte (Bedeckungsgrad) und Artenvielfalt. Im mittleren und oberen Gezeitenbereich hebt sich Sandstein durch überragend dichte und artenreiche Besiedlung von den übrigen Substraten ab; Basalt und Granit sind schwächer bewachsen, und auf NA-Schlacke sind Dichte und Artenvielfalt nochmals erkennbar verringert. Als Erklärung wird angenommen: Gewisse toxische Eigenschaften der Schlacke kommen im unteren Gezeitenbereich wegen ausreichender Überflutungsdauer nicht zur Wirkung. Im mittleren und oberen Bereich dagegen machen sich bei abnehmender Überflutungsdauer negative chemische Effekte bemerkbar. Sie verursachen Ausfälle bestimmter und verringerte Dichten anderer Organismenarten, die im Vergleich zu Sandstein gravierend, im Vergleich zu Basalt und Granit nicht erheblich aber deutlich sind. Es wird auf die Tatsache verwiesen, dass die vorliegende Studie von der Zahl der Stichproben her nur orientierenden Charakter hat und dass sie – neben einer experimentellen Arbeit der Forschungsstelle Norderney von 1984 und einer qualitativen Inspektion des Vereins Jordsand von 1990 – erst die dritte Untersuchung darstellt, die sich mit dem Bewuchs von NA-Schlacke an Meeresküsten auseinandersetzt.“

Umweltprobenbank Probenart Nr. ZMAR: Marine Proben

Marine Proben Erläuterung: Proben von Meerestieren, Meerespflanzen und Seevögeln

Küstengewässer Biologische Qualitätskomponenten Makrophyten Ostsee: Makrophyten

Die benthische Vegetation der Küstengewässer der Ostsee wird aus Großalgen und Angiospermen (= Bedecksamer, i. e. S. Blütenpflanzen) gebildet. Man teilt die benthischen Pflanzen in Weich- und Hartbodenvegetation ein. Erstere verankern sich mit Wurzeln bzw. wurzelähnlichen Organen im Sediment, letztere befestigen sich mit Haftscheiben oder -krallen auf dem festen = harten Untergrund. Bei Hartbodenvegetation handelt es sich ausschließlich um Großalgen der taxonomischen Gruppen Grün-, Braun- und Rotalgen (Abb. 1). Großwüchsige Formen besiedeln vorwiegend stabiles Hartsubstrat (Steine, Blöcke), während kleinwüchsige und kurzlebige Algenarten auch instabilere Substrate (z. B. Kies) sowie sekundäre Hartsubstrate wie Miesmuscheln oder auch andere Pflanzen bewachsen. Abb. 1: Hartbodenvegetation bestehend aus dem Sägetang Fucus serratus , dem Schwarzen Gabeltang Furcellaria lumbricalis und verschiedenen Rotalgenarten auf Steingrund (links) und rote braune Feinalgen auf einer Mergel-/Miesmuschelbank (rechts). Bei Weichbodenvegetation handelt es sich in erster Linie um höhere Pflanzen (Angiospermen) wie dem Gemeinen Seegras Zostera marina (Abb. 2). Armleuchteralgen (= Charophyten), eine speziell an den Weichboden angepassten Gruppe der Großalgen siedelt ebenfalls auf Weichboden, aber nur in sehr geschützten Bereichen mit reduziertem Salzgehalt. Vorzugsweise werden Sandgründe besiedelt, während reine Schlick- oder Kiesgründe nur vereinzelt, von ganz bestimmten Pflanzenarten oder -gruppen bewachsen werden. Abb. 2: Typische Weichbodenvegetation geschützter innerer Küstengewässer bestehend aus Armleuchteralgen, höheren Pflanzen des Brackwassers (Meersalden) und des Süßwassers (Laichkraut) (links) sowie eine dichte Seegraswiese der offenen Küstengewässer bestehend aus dem GemeinenSeegras Zostera marina (rechts). Die Verteilung der Weich- und Hartböden und damit der für die jeweiligen Bodenarten typischen Pflanzengruppen zeigt entlang der deutschen Außenküste, also in den offenen, „äußeren“ Küstengewässern, sehr vielfältige, kleinräumig verzahnte Substratverhältnisse in den für die Pflanzen relevanten Flachwasserzonen. Weichböden verschiedenster Ausprägung, also von Feinsand bis Grobkies, wechseln sich mit Stein- und Blockfeldern aber auch Mergel-, Kreide- oder gar Torfgründen unterschiedlichster Flächengröße ab und bilden so die Basis für ein eng verzahntes Mosaik aus unterschiedlichsten Biotoptypen. Der Meeresboden in den inneren Küstengewässer, also in den Förden, Buchten, Ästuaren, Haffs und Boddengewässern, ist dagegen fast durchgehend von Weichboden geringer Korngröße wie Feinsand- und Schlickgrund gekennzeichnet. Die geschützte Lage bedingt eine Akkumulation solcher Feinsedimente. Zusätzlich gefördert durch die meist geringe Wassertiefe und damit hohen Lichteinstrahlung dieser geschützten Küstenbereiche sind die typischen Weichbodengruppen höhere Pflanzen (Angiospermen) und Armleuchteralgen die dort dominierenden Pflanzenkomponenten, während die Großalgen eher eine untergeordnete Rolle spielen. Durch den ausgeprägten horizontalen Salzgehaltsgradienten mit ca. 18-20 psu im westlichen und ca. 6-8 psu im östlichen Teil der Küstengewässer verringert sich die Artenzahl der Hartbodenvegetation (Großalgen) sprunghaft entlang des Küstenverlaufes. Auch am Übergang zwischen den inneren und äußeren Küstengewässern ergibt sich ein Salzgehaltsgradient mit nahezu Süßwasserverhältnissen in manchen inneren Bereichen. Dort können Pflanzenarten des Süßwassers, vor allem Angiospermen und Armleuchteralgen zum Artenspektrum hinzutreten. Innerhalb dieser Salzgehaltsgradienten ergibt sich ein Artenminimum, das bei einem Salzgehalt zwischen 5 und 8 psu liegt. Weichbodenvegetation ist in der Ostsee durch ihre hohen Lichtansprüche natürlicherweise auf Tiefenbereiche oberhalb von 10–13 m beschränkt und wächst besonders dicht in inneren, geschützten Küstenbereichen wie Buchten, Fjorden oder Boddengewässern. In Abhängigkeit von geeignetem Substrat können Großalgen der westlichen Ostsee natürlicherweise bis in 30 m Wassertiefe vorkommen. Marine Pflanzen bauen langfristig existierende, hohe Biomassen auf. Sie nehmen sehr unterschiedliche Ökosystemfunktionen in den Küstengewässern ein. Insbesondere großwüchsige Formen verringern die Wellen- und Brandungsenergie. Arten, die im Weichboden wurzeln erhöhen die Stabilität dieser Sedimente. Beide Faktoren wirken sich positiv auf eine verminderte Küstenerosion aus. Die Vegetation sorgt für eine gute Wasserqualität, da sie als Primärproduzent Nährstoffe aufnimmt und Sauerstoff produziert. Natürlich dienen benthische Pflanzen auch als Nahrung vieler Wirbelloser, jedoch ist diese Rolle im Vergleich zu den einzelligen Pflanzen der Wassersäule (Phytoplankton) oder des Bodens (Mikrophytobenthos) eher untergeordnet. Die größte Bedeutung haben marine Pflanzen als Lebensraum, Nahrungsgrund, Laichgebiet und Kinderstube für Wirbellose, Fische und Vögel. Die Verbreitung und die Häufigkeit von Großalgen und Angiospermen (angegeben als Bedeckung und/oder Biomasse) werden durch verschiedenste physikalische und chemische Faktoren reguliert. Salzgehalt, Temperatur, Nährstoffverfügbarkeit sowie Art und Flächenverteilung der jeweiligen Substrate haben einen entscheidenden Einfluss auf die horizontale Verteilung der Vegetation. Für die vertikale Verbreitung sind dagegen Wellenexposition für die obere und Lichtverfügbarkeit für die untere Verbreitungsgrenze die bestimmenden Faktoren. Die Wasserrahmenrichtlinie benennt verschiedene ökologische Begriffe wie Arten-vielfalt, Abundanz und das Vorhandensein bzw. Fehlen sensitiver und toleranter Arten, mit denen die Bewertung der biologischen Qualitätskomponenten durchgeführt werden soll. Für die Küstengewässer der Ostsee, in denen vergleichsweise starke natürliche Schwankungen von Umweltfaktoren vorliegen, ist gerade die Verwendung von Begriffen wie Sensitivität bzw. Toleranz schwierig, da unter diesen Bedingungen vorwiegend tolerante Arten mit eher geringen Ansprüchen an die Umwelt vorkommen. Durch die geringe natürliche Artenvielfalt, bedingt durch den natürlichen Salzgehaltsgradienten und das ausgeprägte Artenminimum ist die Nutzung dieses Faktors als Bewertungsgrundlage ebenfalls erschwert. Veränderungen von Pflanzenbeständen durch anthropogene Beeinflussung sind seit Jahrzehnten für die Ostsee wissenschaftlich gut dokumentiert. Die Eutrophierung und die mit ihr verbundene Verschlechterung des Lichtklimas werden als Hauptfaktor für die strukturellen Veränderungen der Bestände angeführt. Als Auswirkung der Eutrophierung werden Verringerung der Tiefenausbreitung, Überwachsen mehrjähriger Makrophyten durch schnellwachsende, kurzlebige Arten und das Verschwinden mehrjähriger, habitatbildender Arten benannt. Zur Bewertung der Großalgen und Angispermen der Ostsee liegen zwei Verfahren vor: Das Bewertungsverfahren PHYBIBCO (PHYtoBenthic Indexfor Balticinner COastalwaters) bewertet die Vegetationskomponenten der inneren Küstengewässern der Ostsee. Das Bewertungsverfahren BALCOSIS (Baltic ALgae COmmunity analySIs System) bewertet die Vegetationskomponenten der äußeren, offenen Küstengewässern der Ostsee. Zur Bewertung der opportunistschen Grünalgen liegt das Verfahren OMAI (Opportunistic Macroalgae-cover/acreage on soft sediment intertidal in coastal waters) vor.

LOHAFEX

Das Projekt "LOHAFEX" wird vom Umweltbundesamt gefördert und von Stiftung Alfred-Wegener-Institut für Polar- und Meeresforschung e.V. in der Helmholtz-Gemeinschaft (AWI) durchgeführt. Vom deutschen Forschungsschiff Polarstern aus wird die Auswirkung von Eisendüngung auf Ökologie und Kohlenstoffaufnahmepotential im Südlichen Ozean untersucht. LOHA bedeutet in Hindi Eisen, FEX steht für Fertilization EXperiment (Düngungsexperiment). Durch die Düngung einer Fläche von 300 Quadratkilometern mit 20 Tonnen gelöstem Eisensulfat wird ein schnelles Wachstum von Phytoplankton (Meerespflanzen, einzellige Algen) angeregt. Ein Team aus Physikern, Chemikern, Biologen und Geochemikern untersucht dann während einer Dauer von sieben Wochen die Auswirkungen dieser Algenblüte auf den Austausch von Kohlendioxid (CO2) zwischen Meer und Atmosphäre, auf die Plankton-Nahrungsketten und auf die Organismen des darunter liegenden Meeresboden. Das Projekt soll klären, ob durch Düngung ausgelöste Algenblüten dazu beitragen können, der Atmosphäre das Treibhausgas CO2 über einen langen Zeitraum zu entziehen. Die Auswirkung der Düngung auf das Zooplankton ist ein weiterer Untersuchungsaspekt. Untersucht wird, ob die Eisendüngung auch zu einer Vermehrung der Krillbestände führen kann und somit eine Zunahme der Großwalbestände ermöglicht. Das Projekt ist umstritten und wird vom Ministerium für Umwelt, Naturschutz und Reaktorsicherheit sowie von Umweltschutzverbänden abgelehnt. Insbesondere die Frage, ob das Projekt mit den Beschlüssen der 9. Vertragsstaatenkonferenz zum Übereinkommen über die Biologische Vielfalt (CBD) vereinbar ist, ist umstritten. Das Projekt wurde vom Bundesministerium für Forschung und Bildung nach der Auswertung mehrerer Gutachten Ende Januar 2009 genehmigt.

Betrieb der FINO-Datenbank, ozeanographische Messungen an den FINO Plattformen und Umwelt- und Belastungsmessungen auf FINO1

Das Projekt "Betrieb der FINO-Datenbank, ozeanographische Messungen an den FINO Plattformen und Umwelt- und Belastungsmessungen auf FINO1" wird vom Umweltbundesamt gefördert und von Bundesamt für Seeschifffahrt und Hydrographie durchgeführt. Das Bundesamt für Seeschifffahrt und Hydrographie will in Kooperation mit dem Deutschen Windenergie-Institut die ozeanographischen, meteorologischen und strukturdynamischen Messungen auf FINO1 fortsetzen. In Zusammenarbeit mit dem Institut für Ostseeforschung Warnemünde sollen die ozeanographischen Messungen auf FINO2 fortgesetzt werden. Auf FINO3 will das BSH die ozeanographischen Messungen weiterführen. Die FINO-Datenbank soll weiter betrieben werden und um die zukünftigen meteorologischen und ozeanographischen Daten aller drei FINO-Plattformen ergänzt werden. Die Wartungsarbeiten, die nötig sind, um die oben beschriebenen Messungen durchzuführen, werden fortgesetzt. Die Datenbank wird mit den meteorologischen und ozeanographischen Daten der drei FINO-Plattformen gespeist. Zukünftige und jetzige Datenbank-Nutzer werden weiterhin betreut. Die Ergebnisse der auf den FINO-Plattformen gewonnenen Daten werden bereits jetzt von zahlreichen wissenschaftlichen, kommerziellen und administrativen Nutzern verwertet. Der Online-Zugang zu der FINO-Datenbank ist sichergestellt. Mit den gewonnenen Daten werden die Ertragsaussichten von zukünftigen Offshore-Windparks abgeschätzt, sowie die Belastung, Ermüdung und Lebensdauer der technischen Einrichtungen untersucht. Ein weiterer Schwerpunkt der Untersuchungen ist der Einfluss der Meeresphysik auf Offshore-Windkraftanlagen (OWEA) und mögliche Veränderungen der Meeresphysik durch OWEAs. Die Daten dienen der Verbesserung von atmosphären-physikalischen und ozeanographischen Modellen, sowie der Abschätzung von Auswirkungen auf die marine Flora und Fauna.

Betrieb und Erweiterung der FINO-Datenbank für FINO1, FINO 2 und FINO 3 - Fortsetzung der Umwelt- und Belastungsmessungen FINO 1 sowie Aufnahme des ozeanographischen Messbetriebes FINO 3

Das Projekt "Betrieb und Erweiterung der FINO-Datenbank für FINO1, FINO 2 und FINO 3 - Fortsetzung der Umwelt- und Belastungsmessungen FINO 1 sowie Aufnahme des ozeanographischen Messbetriebes FINO 3" wird vom Umweltbundesamt gefördert und von Bundesamt für Seeschifffahrt und Hydrographie durchgeführt. Um die Untersuchungen der Auswirkungen von Offshore-Windkraftanlagen auf die marine Flora und Fauna weiterzuführen, wurde das 2008 beendete Projekt FINO (Forschungsplattformen in Nord- und Ostsee) fortgesetzt und um die Stationen FINO2 und FINO3 erweitert. Das Vorhaben wird vom Bundesamt für Seeschifffahrt und Hydrographie (BSH) und dem Deutschen Windenergie-Institut, Wilhelmshaven (DEWI) durchgeführt. Das DEWI erfasst meteorologische und strukturdynamische Daten, das BSH die ozeanographischen Parameter. Die Online-Datenbank wird von zahlreichen wissenschaftlichen und privaten Einrichtungen genutzt.

1 2 3