API src

Found 483 results.

Related terms

Combined Ocean-Geodetic Analysis of Global and Regional Ocean Mass-, and Freshwater Transport Divergences

Das Projekt "Combined Ocean-Geodetic Analysis of Global and Regional Ocean Mass-, and Freshwater Transport Divergences" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Institut für Meereskunde (IfM).

Stroemungs- und Transportuntersuchungen in der Ostsee

Das Projekt "Stroemungs- und Transportuntersuchungen in der Ostsee" wird/wurde gefördert durch: Bundesministerium für Verkehr. Es wird/wurde ausgeführt durch: Deutsches Hydrographisches Institut.Sammlung statistischer Stroemungsdaten in der westlichen Ostsee fuer Umweltfragen (Schadstoffausbreitung u.ae.)

REFOPLAN 2022 - Ressortforschungsplan 2022, Veränderungen der Ozeane als CO2-Senke im Klimasystem, die Rolle der Polargebiete und Bewertung potentieller Kipppunkte - Teil 1 (Fokus Arktis)

Das Projekt "REFOPLAN 2022 - Ressortforschungsplan 2022, Veränderungen der Ozeane als CO2-Senke im Klimasystem, die Rolle der Polargebiete und Bewertung potentieller Kipppunkte - Teil 1 (Fokus Arktis)" wird/wurde gefördert durch: Bundesministerium für Umwelt, Klimaschutz, Naturschutz und nukleare Sicherheit (BMUKN) / Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: Universität Hamburg, Fachbereich Erdsystemwissenschaften, Institut für Meereskunde.Die Ozeane sind allein schon durch ihre Masse ein zentrales Element des Klimasystems und des Kohlenstoffkreislaufes. Sie nehmen sehr hohe Mengen an Wärme und CO2 auf, verteilen sie über die Ozeanströmungen und puffern so unter anderem auch die anthropogenen Treibhausgase und Temperaturerhöhungen ab. Insbesondere die polaren Ozeane sind aufgrund der Bildung von Tiefenwasser wichtige CO2-Senken, die durch die zunehmende Erwärmung, den verstärkten Süßwassereintrag auf Grund der Land- und Meereisschmelze und auch durch die veränderte Meereschemie (z.B. Versauerung) gefährdet sind. Gleichzeitig nehmen Anzeichen zu, dass die globalen Meeresströmungen sich verändern und somit auch die Umverteilung von Wärme und Gasen beeinflusst wird. Das Vorhaben soll analysieren, welche Kipppunkte des Erd-Klimasystems in den Polargebieten verortet sind und welche Wissenslücken zur CO2-Aufnahmekapazität, insbesondere im Zusammenhang mit der biologischen Kohlenstoffpumpe, bestehen. Auf dieser Basis sollen die arktischen CO2-Senken definiert und quantifiziert sowie ihre zukünftige Rolle im sich veränderten globalen Klimasystem entsprechend aktueller IPCC-Klimaszenarien, bewertet werden. Dafür sollen im Vorhaben (Teil 1, Fokus Arktis) alle verfügbaren Daten für die Arktis gezielt weiterverarbeitet, ausgewertet und aufbereitet werden. Das übergeordnete Ziel ist, die politische Entscheidungsebene besser zu informieren und so die verstärkt benötigten Schutzambitionen in den Polarregionen zu unterstützen. Antarktisspezifische Analysen sind in einem zweiten Teilvorhaben geplant (vsl. 02/2025 bis 02/2026) und sollen - soweit möglich - in das Gesamtergebnis einfließen. Die vorläufigen Ergebnisse des Vorhabens sollen im Frühjahr 2025 in einer internationalen Fachveranstaltung (Fachkonferenz/Workshop) diskutiert und - soweit möglich - peer-reviewed publiziert werden.

Schwerpunktprogramm (SPP) 1889: Regional Sea Level Change and Society (SeaLevel), Basales Schmelzen im Grönlandischen Eisschelf und die Auswirkungen auf Meeresspiegelschwankungen

Das Projekt "Schwerpunktprogramm (SPP) 1889: Regional Sea Level Change and Society (SeaLevel), Basales Schmelzen im Grönlandischen Eisschelf und die Auswirkungen auf Meeresspiegelschwankungen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bremen, Institut für Umweltphysik, Abteilung Ozeanographie.Basales Schmelzen der Eisschelfe Grönlands (GrIS) ist einer der Hauptquellen für den GrIS Masseverlust und für den Meeresspiegelanstieg. Darüber hinaus ist das beschleunigte Abschmelzen in den letzten 20 Jahren auch durch den Einstrom von wärmerem Wasser in die Fjorde verursacht. Die basalen Abschmelzraten sind jedoch unsicher und offene Fragen bestehen bezüglich der relevanten Prozesse in den Fjorden, und wie viel und wie das Schmelzwasser aus den Fjorden in den Randstrom und weiter in den offenen Ozean gelangt. Diese Unsicherheiten können in Klimamodellen zu Fehlern in der zukünftigen Rolle des Schmelzwassers für die Zirkulation und Wassermassen Verteilung und somit zu Fehlern in der Projektion des regionalen Meeresspiegels führen. Bis jetzt gibt es nicht genügend geeignete Messungen, um Schmelzwasser im Inneren des Ozeans zu quantifizieren und die Pfade zu identifizieren. Wir beantragen hier die Messung von Helium und Neon Verteilungen um zu verfolgen wo und wie viel Schmelzwasser aus GrIS in den Randstrom und ins Ozeaninnere gelangt. Dazu wird eine Prozessstudie am 79N Gletscher durchgeführt sowie Messungen im Randstrom und im Inneren der Labradorsee. Die Ziele sind: (i) Abschätzung der basalen Schmelzwasseranteile im Nah und Fernfeld des 79N Gletschers, und der Menge an Schmelzwasser, die in den Randstrom befördert wird, (ii) Berechnung der Anteile an Schmelzwasser, die aus dem Randstrom in die Labradorsee gelangen, einer der Schlüsselregionen für die Atlantische Meridionale Umwälzbewegung, Abschätzung der Zunahme seit Anfang 2000, (iii) Auswertung von hochauflösenden Modellläufen die mit basalen Schmelzwasserquellen versehen wurden, um die Verteilung des Schmelzwassers und die beteiligten Prozesse zu analysieren und um (iv) die Auswirkungen der zunehmenden Schmelzraten auf die Entwicklung des regionalen Meeresspiegels im subpolaren Nordatlantik abzuschätzen.

Late Pliocene climate changes of the Benguela Current System and in Southern Africa during the initiation of Northern Hemisphere Glaciation

Das Projekt "Late Pliocene climate changes of the Benguela Current System and in Southern Africa during the initiation of Northern Hemisphere Glaciation" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bremen, Fachbereich 5 Geowissenschaften.

Forschergruppe (FOR) 1740: Ein neuer Ansatz für verbesserte Abschätzungen des atlantischen Frischwasserhaushalts und von Frischwassertransporten als Teil des globalen Wasserkreislaufs, Variation of the fresh water in the western Nordic Seas

Das Projekt "Forschergruppe (FOR) 1740: Ein neuer Ansatz für verbesserte Abschätzungen des atlantischen Frischwasserhaushalts und von Frischwassertransporten als Teil des globalen Wasserkreislaufs, Variation of the fresh water in the western Nordic Seas" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.The goal of this project is to capture and analyse fluctuations of the fresh water in the western Nordic Seas and to understand the related processes. The East Greenland Current in the Nordic Seas constitutes an important conduit for fresh water exiting the Arctic Ocean towards the North Atlantic. The Arctic Ocean receives huge amounts of fresh water by continental runoff and by import from the Pacific Ocean. Within the Arctic Ocean fresh water is concentrated at the surface through sea ice formation. The East Greenland Current carries this fresh water in variable fractions as sea ice and in liquid form; part of it enters the central Nordic Seas, via branching of the current and through eddies. It controls the intensity of deep water formation and dilutes the water masses which result from convection. The last decades showed significant changes of the fresh water yield and distribution in the Nordic Seas and such anomalies were found to circulate through the North Atlantic. In this project the fresh water inventory, its spatial distribution and its pathways between the East Greenland Current and the interior Greenland and Icelandic seas shall be captured by autonomous glider missions. The new measurements and existing data will, in combination with the modeling work of the research group, serve as basis for understanding the causes of the fresh water variability and their consequences for the North Atlantic circulation and deep water formation.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Transport, Abtragung und Akkumulation von Sedimenten numerisch simuliert für Paleo-Ozeane und rekonstruiert von Bohrkernen der Eirik Drift (TRANSPORTED)

Das Projekt "Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Transport, Abtragung und Akkumulation von Sedimenten numerisch simuliert für Paleo-Ozeane und rekonstruiert von Bohrkernen der Eirik Drift (TRANSPORTED)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum.Der Western Boundary Undercurrent (WBUC) ist eine kritische Komponente der globalen Umwälzzirkulation und wird durch Tiefenwasserbildung in der Grönland-, Labrador-, Island- und Norwegischen See angetrieben. Seismische Profile der Eirik Drift weisen auf eine hohe Variabilität der Geschwindigkeiten und Strömungspfade des WBUC seit dem frühen Miozän hin und geben Hinweise auf das Gebiet der Tiefenwasserbildung vom Miozän bis heute. Wir beabsichtigen die Mechanismen, welche in der Verschiebung der Gebiete der Tiefenwasserbildung und der Verschiebung der Strömungspfade des WBUC involviert sind, zu identifizieren. Korngrößen sind für ODP Leg 105 und die IODP Expedition 303 Sites U2305-2307 in der Eirik Drift verfügbar (iodp.tamu.edu). Die Unterscheidung in Ton (kleiner als 0.004 mm), Schlamm (0.004-0.063 mm) und Sand (mehr als 0.063 mm) ist ausreichend um Geschwindigkeiten des WBUC für verschiedene Zeitscheiben abzuleiten. Dreidimensionale Geschwindigkeiten und Sedimenttransporte werden mit dem Regional Ocean Modelling System (ROMS) simuliert. ROMS wird auf den Nordatlantik regionalisiert werden und dabei detaillierte Informationen über Gebiete der Tiefenwasserbildung und Ozeanzirkulation liefern. Seismische Profile aus der Eirik Drift (Uenzelmann-Neben (2013)) stellen Horizonttiefen, Schichtdicken und Position und Orientierung von Depozentren zur Verfügung. Diese sind in Kombination mit Korngrößen eine Validierungsmöglichkeit für den in ROMS modellierten Sedimenttransport. Durch den numerischen Ansatz ist es möglich, Prozesse hervorzuheben oder zu vernachlässigen. Hierdurch können Sensitivitätsstudien bezüglich des Einflusses sich verändernden Klimas und tektonischer Zustände auf die tiefe Ozeanzirkulation und den Sedimenttransport durchgeführt werden. Müller-Michaelis und Uenzelmann-Neben (2014) führten Variabilität im Sedimenttransport in der Eirik Drift auf Veränderungen in der Stärke und des Strömungspfades des WBUC zurück, welche durch unterschiedliche Gebiete der Tiefenwasserbildung hervorgerufen wurden. Diese Hypothese kann mit dem regionalen Model getestet werden und die klimatologischen Ursachen für die Veränderung der Gebiete der Tiefenwasserbildung können identifiziert werden. Der Strömungspfad des WBUC ist zusätzlich durch tektonische Veränderungen beeinflusst, z.B. die Subsidenz des Grönland-Schottland-Rückens oder der Schließung des Zentralamerikanischen Durchflusses. Der Einfluss tektonischer Veränderungen auf die Stärke und Strömungspfade des WBUC als auch auf Sedimentationsraten und Korngrößen wird in diesem Projekt betrachtet. Wir werden daher eine Verbindung zwischen Sedimentationsraten und Korngrößen, wie sie in den Bohrkernen von Sites 646 und U1305-1307 gemessen wurden, und klimatologisch und tektonisch hervorgerufener Änderungen der Geschwindigkeiten und Strömungspfade des WBUC herstellen.

Sonderforschungsbereich Transregio 181 (SFB TRR): Energietransfer in der Atmosphäre und im Ozean, Teilprojekt (06) M06: Techniken zur Kopplung von Atmosphäre und Ozean durch Wellen

Das Projekt "Sonderforschungsbereich Transregio 181 (SFB TRR): Energietransfer in der Atmosphäre und im Ozean, Teilprojekt (06) M06: Techniken zur Kopplung von Atmosphäre und Ozean durch Wellen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH, Institut für Küstenforschung.Es sollen Techniken entwickelt werden um die Kopplung zwischen Atmosphäre und Ozean durch die Formation und das Brechen von Oberflächenwellen im Ozean zu quantifizieren. Diese Techniken beinhalten eine numerische Implementierung von diffusen Grenzflächenmethoden für eine thermodynamisch konsistente und voll gekoppelte Simulationen der Grenzfläche zwischen Luft und Wasser, sowie Feldexperimente zur gleichzeitigen Messung von Luftstrom, der Ozeanwellenkopplung, und der turbulenten Energiedissipation im oberen Ozean.

Sonderforschungsbereich Transregio 181 (SFB TRR): Energietransfer in der Atmosphäre und im Ozean, Teilprojekt (11) W02: Energietransfer durch 'low mode' interne Wellen

Das Projekt "Sonderforschungsbereich Transregio 181 (SFB TRR): Energietransfer in der Atmosphäre und im Ozean, Teilprojekt (11) W02: Energietransfer durch 'low mode' interne Wellen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bremen, Institut für Umweltphysik, Abteilung Ozeanographie.Die Ziele des Projektes sind die Entstehung und Ausbreitung von internen Wellen im globalen Ozean zu quantifizieren, die Transportwege von 'low-mode' internen Wellen zu untersuchen (inklusive der Prozesse entlang der Wege), die Quell- und Senkenregionen zu entdecken und den Beitrag zu lokaler Dissipation zu quantifizieren sowie die involvierten Prozesse zu identifizieren. Dafür werden wir (i) hoch-aufgelöste (1/10° oder höher) Modellläufe, (ii) Beobachtungen von Energieflüssen der internen Wellen und (iii) die Kombination aus Beidem nutzen.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Interhemisphärische Konkurrenz AtlantischerTiefenwässer seit der Mittel Pleistozänen Klimakrise (ODP 1063 versus ODP 1094/1090)

Das Projekt "Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Interhemisphärische Konkurrenz AtlantischerTiefenwässer seit der Mittel Pleistozänen Klimakrise (ODP 1063 versus ODP 1094/1090)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Heidelberg, Institut für Umweltphysik.Nach Pena und Goldstein (2014) und Dausmann et al. (2017) ist die grundlegende Änderung der glazial-interglazialen Periodizität nach der Mittelpleistozänen - Klimakrise (MPT) durch eine erhebliche Abnahme der thermohalinen Zirkulation gekennzeichnet. Diese wurde mittels Nd-Isotopen Analysen mariner Sedimente nachgewiesen. Darauffolgend tritt die Reduktion der Tiefenwasserbildung während der Eiszeiten stetig wieder auf. Die MPT markiert eindeutig einen Wechsel von geringen Unterschieden im Tiefenwasser EpsilonNd (143Nd/144Nd - Verhältnis) zwischen Kaltzeiten und Warmzeiten. In den untersuchten ODP Kernen 1088/90 tritt diese Änderung in Wassertiefen von 2082 m und 3702 m auf. Weitere Studien im Nordatlantik bestätigen eine systematische Warmzeit - Kaltzeit Zyklizität der Nd-Isotopie, die einen Wettbewerb zwischen stärker radiogenen südlichen Wassermassen und weniger radiogenen nördlichen Wassermassen widerspiegelt. Hier definieren wir delta Epsilon als die Sensitivität von Wassermassen gegenüber der Veränderung der Nd-Isotopie entlang der Fließstrecke, d. h. den interhemisphärischen Gradienten pro Breitengrad. Die Nord-Süd-EpsilonNd-Differenz pro 10 Grad Breitengrad (delta Epsilon) ändert sich im Laufe der Zeit mit einer höheren Sensitivität in den Warmzeiten im Vergleich zu den Kaltzeiten. Bei bekannten Störungen der Nordatlantik-Zirkulation während des Heinrich Event 1 halbiert sich gar die Nd-Sensitivität im Vergleich zu Phasen starker Tiefenwasserbildung. Folglich verschwindet die Fähigkeit von EpsilonNd, die Wassermassenmischung zu verfolgen. Die Sensitivität nimmt dagegen in warmen Klimaphasen mit starker Tiefenzirkulation zu. Um Änderungen in der Wassermassenherkunft und der Stärke des Tiefenzirkulation durch kombinierte Untersuchungen von EpsilonNd und zum Beispiel delta 13C vollständig erfassen zu können, sind sowohl der ortsspezifische EpsilonNd Wert als auch der interhemisphärische Gradient oder die Nd-Sensitivität (delta Epsilon) erforderlich. Erste hochauflösende und bis zu 800 ka lange Nd-Isotopendatensätze zeigen die Dynamik der interhemisphärischen Nd-Sensitivitätsänderungen, für die es derzeit keine vergleichbaren Analysen im Südatlantik gibt. Ziel ist es daher, einerseits die Analysetechnik zu verbessern, um dann eine 1 Ma überspannende Zeitreihe der Nd-Isotopie im Südatlantik, südlich der Polarfront, zu generieren. Dies ermöglicht die Einflüsse von Wassermassen südlicher Herkunft zu quantifizieren. Wir haben ODP 1094 für diese Studie ausgewählt, da es eine direkte Verbindung zu Zirkumpolaren Wassermassen gibt und hohe Sedimentationsraten bestehen, die eine zeitliche Auflösung von Jahrtausenden ermöglicht. Alternativ werden wir den ODP-Kern 1090 weiter nördlich ergänzen. Wir planen eine große Anzahl von Nd-Analysen über die Projektdauer von zwei Jahren. Im dritten Jahr (Folgeantrag) sollen die Beobachtungen verfeinert werden, um die Auswirkungen der sich ändernden Sensitivität für die Entkopplung von Ozeanzirkulation und globalem

1 2 3 4 547 48 49