Das Projekt "Teilprojekt 2" wird vom Umweltbundesamt gefördert und von Hessische Industriemüll, Bereich Altlastensanierung (ASG) durchgeführt. Die Untersuchungen an 2,4,6-Trinitrotoluol(TNT)-kontaminierten Boeden zeigten, dass mikrobielle Verfahren wie Bioreaktor- oder in-situ-Verfahren prinzipiell zur Sanierung solcher Boeden geeignet sind. Die mikrobiologische Standortcharakterisierung zeigte, dass die vorhandene Mikroflora in der Lage ist, TNT zu transformieren. Da eine Mineralisierung in Gegenwart von Boden nicht erreicht werden kann, besteht fuer beide Verfahren die einzige Moeglichkeit, TNT zu eliminieren, in einer Humifizierung, d.h. einem kovalenten Einbau in die Huminstoffmatrix. Fuer die Humifizierung ist die Aktivitaet von Mikroorganismen notwendig; nach Reduktion von TNT zu 2,4-Diamino-6-Nitrotoluol kann dieses z.B. mittels des Enzyms Peroxidase eingebaut werden. So gebundene Metabolite sind auch unter drastischen Umweltbedingungen nicht freisetzbar. Ob ein bakterieller Abbau der Huminstoffe eine laengerfristige Freisetzung verursacht, konnte nicht geklaert werden. Eine Bindung von TNT und dessen Metaboliten an Tonminerale spielt bei den Sanierungsverfahren nur insofern eine Rolle, als sie Sanierungsdauer und erreichbare Sanierungsziele beeinflusst (Reste des TNT bleiben anscheinend irreversibel gebunden). Eine Simulation der in-situ-Sanierung in Saeulenversuchen und in-situ-Box-Modellen zeigte, dass eine Aktivierung der Mikroorganismen (Zufuehrung von C- und N-Quellen) die Elution der Schadstoffe drastisch verringert und die Humifizierung foerdert. Das in-situ-Verfahren wurde so weit entwickelt, dass eine Uebertragung in den Pilotmassstab ratsam erscheint.Im zweiten Teil der Untersuchungen wurde ein zweistufiges anaerobes/aerobes Bioreaktorverfahren zur Behandlung von Bodensuspensionen entwickelt, bei dem TNT teilweise bis Triaminotoluol (TAT) reduziert wird, welches irreversibel an die Bodenmatrix bindet und unter aeroben Bedingungen polymerisiert. Daneben laufen wahrscheinlich die gleichen Reaktionen ab wie beim in-situ-Verfahren.
Das Projekt "Technisch einfaches mehrstufiges Kleinfiltersystem zur Aufbereitung von verschmutzten Wässern zu Trinkwasser in ländlichen Gebieten unterentwickelter Regionen" wird vom Umweltbundesamt gefördert und von Cornelsen Umwelttechnologie GmbH durchgeführt. Zielsetzung und Anlass: Eines der Hauptprobleme für Menschen, die in ländlichen Gebieten unterentwickelter Regionen wohnen, ist die teilweise starke Verschmutzung der vorhandenen Wasserressourcen mit Trübstoffen und Partikeln, die das Wasser zum einen schwer genießbar machen und zum anderen mikrobiologischer Natur sein können. Vor diesem Hintergrund sollte im Projekt ein technisch extrem einfaches Filtersystem entwickelt werden, welches ohne Stromversorgung rein mechanisch und für mehrere Wochen ohne Rückspülung oder Wartung betrieben werden konnte. Das Filtersystem sollte dabei ein weitgehend partikelfreies Wasser auch bei extremen Rohwasserbedingungen liefern. Arbeitsschritte und angewandte Methoden: Zur Erreichung der Ziele erfolgte die Konzeptionierung eines zweistufigen Filtrationssystems, welches zunächst im Labormaßstab hinsichtlich der für die Dimensionierung und den Betrieb wesentlichen Parameter sowie der erreichbaren Reinigungsleistung untersucht wurde. Als erste Filtrationsstufe, der Vorfiltration, kam ein zylindrischer Filter (D = 0,2 m; H = 0,7 m) mit einem Filterbett aus permeablen synthetischen Kollektoren (PSK) zum Einsatz. PSK zeichnen sich durch ein hohes Rückhalte- und Speichervermögen für Feststoffe sowie einen geringen Widerstand aus. Für unterschiedliche Kompressionsgrade des PSK-Filterbetts wurden der Einfluss der Filtergeschwindigkeit auf den Druckverlust und die Qualität des Filtrats sowie die Filterlaufzeiten untersucht. Die erforderlichen Betriebsparameter zur Reinigung der beladenen PSK wurden ermittelt. Die Desinfektion des vorbehandelten Wassers erfolgte in der zweiten Behandlungsstufe mittels Membranfiltration. Für die erforderlichen Untersuchungen zur Ermittlung der Auslegungs- und Betriebsparameter stand eine Laboranlage mit einer keramischen Membran (Porendurchmesser: 0,1 mikro m) und einer Membranfläche von 0,2 m zur Verfügung. In den Untersuchungen wurden die Betriebsweisen 'Cross-Flow' und 'Dead-End' miteinander verglichen sowie der Einfluss unterschiedlicher Betriebs- und Spüleinstellungen auf die Veränderung der Drücke, der Filterlaufzeiten und die Ablaufqualität untersucht. Die erforderlichen Behandlungsschritte und Bedingungen zur Reinigung der Membranen wurden ermittelt. Auf Basis der Laborergebnisse erfolgten die Dimensionierung sowie der erste konstruktive Entwurf für den Bau einer Demonstrationsanlage.