API src

Found 409 results.

Related terms

Wasser

Wie viele Fischarten schwimmen in der Havel? Wo drohen Überschwemmungen? Welche Schadstoffe sind im Landwehrkanal zu finden? Und wo kommt eigentlich das Berliner Trinkwasser her? Hier finden Sie alles, was Sie über das Wasser und Grundwasser in Berlin wissen wollen. Bild: Umweltatlas Berlin Wasserhaushalt Was passiert mit Regen, wenn er auf Berliner Boden trifft. Versickert, verdunstet oder fließt er direkt in die Kanalisation ab? Mit unseren Karten können Sie nachvollziehen, wo Niederschläge bleiben - auch in Ihrem Kiez. Weitere Informationen Bild: Umweltatlas Berlin Regen- und Abwasser Sechs Klärwerke und knapp 10.000 Kilometer Kanalnetz kümmern sich um Abwasser und Regen in Berlin. In den Altbaugebieten im Zentrum teilen sich Niederschläge und Schmutzwasser die Kanäle. Außerhalb des S-Bahnrings ist die Kanalisation getrennt angelegt. Hier gibt es den Überblick, wo was wie läuft. Weitere Informationen Bild: Umweltatlas Berlin Grundwasserhöhen Täglich wird in Berlin die Höhe des Grundwasserstands aufgezeichnet. Das ist wichtig, weil sich die Stadt mit dem fürs Leben und Arbeiten benötigten Wasser selbst versorgt. Was Grundwasser ist, wie es entsteht und wie es überwacht wird, können Sie hier lesen. Weitere Informationen Bild: Umweltatlas Berlin Grundwassertemperatur Wie warm ist das Grundwasser in 20, 40 oder 100 Metern Tiefe? Das wird in Berlin seit den 1980er Jahren dokumentiert. Hier können Sie nachvollziehen, welchen Unterschied es macht, ob überirdisch der Alexanderplatz, der Große Tiergarten oder eine Industrieanlage liegt. Weitere Informationen Bild: Umweltatlas Berlin Flurabstand Das Grundwasser liegt in Berlin mancherorts nur wenige Spatenstiche unter der Erde. Jedoch hat der wachsende Bedarf den Grundwasserstand über die Jahrhunderte verringert. 2009 befand sich die Grundwasseroberfläche auf einem relativ hohen Niveau. 2009 zeigt ein durchschnittlich feuchtes Jahr. Weitere Informationen Bild: Umweltatlas Berlin Grundwasserneubildung Für Nachschub an Grundwasser ist gesorgt: Versickernder Regen füllt die Vorräte im Berliner Untergrund auf. Doch die Hälfte des Niederschlags geht vorher verloren, verdunstet oder landet in der Kanalisation. Wieviel das ist, ist in Berlin sehr unterschiedlich. Dies können Sie hier nachvollziehen. Weitere Informationen Bild: Umweltatlas Berlin Grundwasserstand (zeHGW) Der Weg des Grundwassers aus der Tiefe bis in den eigenen Keller ist in Berlin je nach Lage nicht weit. Wer bauen will, muss daher vorher wissen, wie hoch das Wasser in Zukunft maximal steigen kann. Welche Werte Fachkundige für bislang drei Viertel der Fläche Berlins prognostiziert haben, erfahren Sie hier. Weitere Informationen Bild: Umweltatlas Berlin Grundwasserstand (zeMHGW) Ob in Köpenick oder im Panketal: Wer in Berlin Versickerungsanlagen baut, muss vorher wissen, wie hoch das Grundwasser steht. Für Planer ist der Durchschnitt der zukünftig zu erwartenden Jahreshöchststände ein wichtiger Ausgangspunkt. Für etwa die Hälfte der Fläche Berlins ist er berechnet. Weitere Informationen Bild: Umweltatlas Berlin Wasserdurchlässigkeit des Untergrundes Asphalt und Beton versperren dem Regen in Berlin oft den Weg in den Untergrund. Damit er dennoch versickern kann, werden Anlagen gebaut. Dabei muss jedoch das Gestein unter der Erde mitspielen; denn durch Sand sickert Wasser zum Beispiel besser als durch geringer durchlässigen Geschiebemergel. Weitere Informationen Bild: Umweltatlas Berlin Geothermisches Potenzial Heizen mit Erdwärme? Klingt gut! Hier finden Sie Daten, wieviel Energie gewonnen werden kann und wie gut der Untergrund mit dem Wärmeentzug klarkommt. Weitere Informationen Bild: Umweltatlas Berlin Sickerwasser Wie lange brauchen Regen und andere Niederschläge, bis sie das Grundwasser erreichen? Diese Information ist wichtig, falls beim Versickern in den Untergrund Schadstoffe in tiefere Schichten gelangen. Wie der Schutz des Grundwassers einzuschätzen ist, erhalten Sie hier im Überblick. Weitere Informationen Bild: Umweltatlas Berlin Grundwasserqualität Was beeinflusst die Qualität des Grundwassers? Wo versickert Regenwasser? Durch welche Gesteinsschichten fließt es auf seinem Weg in den Untergrund? Welche Faktoren die Qualität des Grundwassers wie stark beeinflussen, erfahren Sie hier. Weitere Informationen Bild: Umweltatlas Berlin Wasserschutzgebiete Berlin kann seinen Bedarf an Trinkwasser komplett aus dem Grundwasser unterhalb der Stadtfläche decken. Schutzzonen um die Förderbrunnen bewahren es vor Schadstoffen. Hier lesen Sie, wie Ihre Trinkwasserversorgung sichergestellt wird. Weitere Informationen Bild: Umweltatlas Berlin Hochwasser und Überschwemmungen Wo droht in Berlin ein Hochwasser? Wie viele Menschen oder wertvolle Kulturgüter wären davon betroffen? Und wie oft muss mit Überschwemmungen gerechnet werden? Diese Informationen sind wichtig für einen aktiven Hochwasserschutz und hier nachzulesen. Weitere Informationen Bild: Umweltatlas Berlin Starkregen- und Überflutungsgefahren Extreme Starkniederschläge können überall auftreten und jeden treffen, wobei die präzise örtliche und zeitliche Vorhersage solcher Ereignisse bisher noch sehr unsicher ist. Die flächendeckende Starkregenhinweiskarte und Starkregengefahrenkarten für einzelne Orte bieten eine Orientierungshilfe. Weitere Informationen Bild: Umweltatlas Berlin Gewässerstrukturgüte Unbefestigte Ufer, Sandbänke und unbebaute Auen sieht man an Berlins Gewässern nur noch an Teilen von Havel und Müggelsee. Der Mensch hat die Natur verändert – das beeinträchtigt die Güte der Gewässer. Sie wird in sieben Klassen gemessen. Wie Berlins Flüsse und Seen abschneiden, finden Sie hier. Weitere Informationen Bild: Umweltatlas Berlin Gewässergüte (Chemie) Wieviel Phosphor ist im Landwehrkanal, wieviel Sulfat in der Spree entdeckt worden? Zahlreiche Messpunkte im Berliner Stadtgebiet sammeln verschiedene Daten zur Gewässergüte. Welche Faktoren die Qualität von Seen und Flüssen beeinflussen, erfahren Sie hier. Weitere Informationen Bild: Umweltatlas Berlin Gewässergüte (Trophie) Berlins Gewässer fließen träge und sind voller Nährstoffe. Unter solchen Bedingungen wachsen Algen besonders gut. Zu viele nehmen dem Wasser jedoch den Sauerstoff und damit den Fischen die Luft zum Atmen. Hier finden Sie Daten zur Qualität der Berliner Flüsse und Seen der Jahre 1993 bis 2001. Weitere Informationen Bild: Umweltatlas Berlin Fischfauna Wo der Mensch Flüsse staut und Abwasser entsorgt, leben Fische nicht gerne. Über die Jahrhunderte ging der Fischbestand in den Berliner Gewässern daher zurück. Doch seit einigen Jahren kehren selbst verschollene Arten zurück. Was wo schwimmt, ist hier erfasst. Weitere Informationen

Geringleiterblöcke Hamburg

Geringleiterblöcke auf der Hamburger Geest Die saale- und weichselkaltzeitlichen Eisvorstöße vor 300.000 bis 10.000 Jahren hinterließen neben Sand- und Schmelzwasserablagerungen eine ausgedehnte Moränenlandschaft, die auf der Hamburger Geest durch Geschiebelehme und Geschiebemergel (Tills) - das sind meist wasserstauende Geringleiter mit zum Teil über 30 Meter Mächtigkeit - charakterisiert werden kann. Die dargestellten Geringleiterblöcke sollen hierbei eine weitgehende Verdrängung von grundwasserleitenden Anteilen in den oberflächennahen Deckschichten darstellen. Durch die Sichtung der meisten Bohrungen mit einer Blockbildung bis zu einer Mindesttiefe oder – mächtigkeit von 10 Metern wird eine gute Geometrie dieser Blöcke abgebildet. Definition: Die oberflächennahen Deckschichten werden von wasserhemmenden Geringleitern bis mindestens zu einer Tiefe von circa 10 Metern (Unterkante unter Gelände) aufgebaut. Innerhalb dieser Deckschichten ist das Vorhandensein des ersten Hauptgrundwasserleiters unwahrscheinlich oder weitgehend ausgeschlossen. Lokal sind Überlagerungen von geringmächtigen Sandfolgen bis 5 Meter (gelb mit Schraffur) oder hydraulisch durchlässige geologische Fenster (Grundwasserleiter = gelb punktiert) möglich. Sand- oder Schuttauflagen bis zu einer Mächtigkeit von 2 Metern bleiben hierbei unberücksichtigt. Hinweis: für das oberflächennahe Grundwasser bedeutet dies, dass sich hier die Druckspiegel nicht ungehindert auf das Niveau in den Gleichenplänen im Geoportal ausdehnen können; siehe URL: https://www.hamburg.de/politik-und-verwaltung/behoerden/bukea/themen/wasser/grundwasser/gwgleichen-175968 In der Marsch erreichen Mächtigkeiten der wasserstauenden Deckschichten (Klei, Torf, Mudden) nur selten 10 m und wurden hier nicht berücksichtigt.

WFS Geringleiterblöcke Hamburg

Web Feature Service (WFS) zum Thema Geringleiterblöcke Hamburg. Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung.

Geologische Übersichtskarte von Niedersachsen 1 : 500 000

Die Geologische Übersichtskarte 1 : 500 000 gibt einen landesweiten Überblick vom geologischen Aufbau Niedersachsens. Als Linieninformation werden zusätzlich Angaben zur Ausdehnung verschiedener Vereisungen, zur Küstenlinie der Nordsee im Quartär sowie zu tektonischen Strukturen gegeben. Das südniedersächsische Bergland wird von den Festgesteinen des Paläozoikum und Mesozoikum aufgebaut. Im Harz und bei Osnabrück steht das paläozoische Grundgebirge zutage an. Ältestes Gestein ist der vermutlich aus dem Präkambrium stammende Eckergneis. Über einer Schichtlücke folgen die Sedimente eines paläozoischen Meeresbeckens. Darin kamen im Silur schwarze Tonschiefer, im Devon Sandstein, Dachschiefer, Schwellen- und Riffkalke zum Absatz; im Oberdevon und Unterkarbon wurden die Harzer Grauwacken geschüttet. Basaltische Laven, die heutigen Diabase, traten am Meeresboden aus. Damit in Zusammenhang entstanden Kieselschiefer und Eisenerze. Die gesamte Schichtenfolge wurde bei der varistischen Gebirgsbildung im Oberkarbon aufgefaltet; abschließend stiegen magmatische Schmelzen auf, die heute im Harzburger Gabbro, im Brocken- und Oker-Granit freigelegt sind. Im Rotliegenden sammelte sich der Abtragungsschutt in Senken des Gebirges. Das Zechstein-Meer überflutete ein bereits eingeebnetes Gelände und überdeckte es mit mächtigen Folgen von Kalk, Gips bzw. Anhydrit und Salz. Im Mesozoikum wurde das flache, zeitweise trockenfallende Becken mit den Sedimenten der Trias (Buntsandstein, Muschelkalk und Keuper) aufgefüllt, im Jura und in der Kreidezeit wurde das Becken wieder vom Meer überflutet. Der mesozoische Schichtenstapel zerbrach in einer Zeit tektonischer Unruhe (Oberjura bis Kreide) an tiefreichenden Störungen. An ihnen stieg das plastisch reagierende Zechsteinsalz auf. Das Ergebnis ist die saxonische Bruchfaltung des Deckgebirges. Im Tertiär überflutete das Meer erneut das eingeebnete Gelände und lagerte Sand und Ton ab, während sich im Binnenland zeitweise Braunkohle bildete. Schließlich zog sich das Meer auf den heutigen Nordsee-Bereich zurück. Das Quartär ist durch einen mehrfachen Wechsel von Kalt- und Warmzeiten gekennzeichnet. Im mittleren Pleistozän waren zur Elster- und Saale-Kaltzeit große Teile Niedersachsens vergletschert; das Eis hinterließ Grundmoränen (Geschiebemergel) und Schmelzwasserablagerungen (Kies, Sand und Ton). In den Warmzeiten (Interglazialen) und in der Nacheiszeit (Holozän) entstanden Torfe, Mudden und Mergel. Teile des Küstengebietes wurden dabei überflutet und von Meeres-, Watt- und Brackwasserablagerungen überdeckt.

Hydrogeologische Profiltypen der ungesättigten Zone

Die hydrogeologische Profiltypenkarte der ungesättigten Zone ist in digitaler Form vorhanden. Untersucht wurde die ungesättigte Zone (Sickerwasserpassage) bis zum Hauptgrundwasserleiter. Ein Schema definiert 10 charakteristische Profiltypen, die in ihrer flächenhaften Verbreitung dargestellt sind. Es wird zwischen Grundwasserleiter (Sand, Kies) und Grundwassergeringleiter (Geschiebelehm, Geschiebemergel, Beckenton usw.) unterschieden. Als Grundwasserniveau dienten die niedrigen Wasserstände aus dem Trockenjahr 1996.

INSPIRE Geology / Umweltgeologische Karte 1 : 300 000 BB

Der interoperable INSPIRE-Datensatz beinhaltet Daten vom LBGR über das Rückhaltevermögen durch Geschiebemergel, Schluff und Ton Brandenburg, transformiert in das INSPIRE-Zielschema Hydrogeologie. Der Datensatz wird über je einen interoperablen Darstellungs- und Downloaddienst bereitgestellt. --- The compliant INSPIRE data set contains data about the Retention capacity due to boulder clay, silt and clay in the State of Brandenburg from the LBGR , transformed into the INSPIRE annex schema Hydrogeology. The data set is provided via compliant view and download services.

Tiefere eiszeitliche Wasserleiter

Tiefere eiszeitliche Wasserleiter sind in weiten Teilen Schleswig-Holsteins verbreitet. Sie sind von dem oberflächennahen, abgedeckten bzw. nicht abgedeckten Wasserleiter durch bindige Horizonte - eiszeitliche Geschiebemergel, Schluffe und Tone - mit einer Mächtigkeit von wenigstens 5 m getrennt sind. Die darstellungsrelevante Mindestmächtigkeit eines tieferen eiszeitlichen Wasserleiters beträgt 5 m. Bei solchen Mächtigkeiten ist, abhängig von der örtlichen Gesamtmächtigkeit und den Entstehungsbedingungen der eiszeitlichen Sedimentfolge, prinzipiell auch eine Abfolge mehrerer tiefer eiszeitlicher Wasserleiter möglich. Sie reichen maximal bis in Tiefen von -100 mNN. Größere Tiefen werden nur noch in eiszeitlichen Rinnen erreicht.

Bodenabbaustätten Landkreis Lüneburg

Der Abbau von Bodenschätzen wie etwa Kiese, Sande, Mergel, Ton, Lehm oder versch. Gesteine unterliegt dem Genehmigungsvorbehalt von § 17 des Niedersächsisches Naturschutzgesetzes (NNatG) bzw. § 119 des Niedersächsischen Wassergesetzes (NWG). Ausdrücklich darin gefordert werden die Vermeidung von Beeinträchtigungen der Natur und Landschaft bzw. deren Ausgleich bei der Gewinnung von Bodenschätzen gemäß den Grundsätzen nach § 2 Nr. 5 NNatG.

WMS Geringleiterblöcke Hamburg

Web Map Service (WMS) zum Thema Geringleiterblöcke Hamburg. Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung.

Sonderforschungsbereich (SFB) 1076: AquaDiva: Forschungsverbund zum Verständnis der Verknüpfungen zwischen der oberirdischen und unterirdischen Biogeosphäre; Understanding the Links between Surface and Subsurface Biogeosphere^Quellen und Senken von Gasen in der Critical Zone: In situ-Sensoren und Isotopie (B03), Sonderforschungsbereich (SFB) 1076: AquaDiva: Forschungsverbund zum Verständnis der Verknüpfungen zwischen der oberirdischen und unterirdischen Biogeosphäre

Die Critical Zone (CZ) der Erde ist die dünne Zone, welche Atmosphäre und Geosphäre verbindet. Sie stellt nicht nur einen wichtigen Lebensraum dar, sondern ist auch verantwortlich für Ökosystemleistungen, wie die Bereitstellung von Trinkwasser. Umweltverschmutzung, Landnutzung und Klimawandel verändern zunehmend die Erdoberfläche, aber ihre Auswirkungen auf unterirdische Lebensräume, also den Teil der CZ, welcher unterhalb der Pflanzenwurzeln beginnt und sich bis in die Aquifere fortsetzt, sind noch nicht ausreichend erforscht. Das Ziel des SFB AquaDiva ist es, ein besseres Verständnis der Verbindungen zwischen oberirdischen und unterirdischen Lebensräumen zu gewinnen. Dazu haben wir eine Infrastrukturplattform etabliert, das Hainich Critical Zone Exploratory (CZE), um die Verbindung von Vegetation und Böden mit Aquiferkomplexen über Wasser- und Gasvermittelte Stoffflüsse unter verschiedenen Landnutzungsformen zu erforschen. Das Hainich CZE umfasst zwei Aquiferkomplexe in Kalk- und Mergelsteinen entlang eines 6 km langen Transektes im Einflussbereich von Wald, Weide- und ackerbaulicher Landnutzung. Unser Team kombiniert Techniken aus den Bereichen der Biologie, Chemie, Geowissenschaften und Informatik, um folgende Fragen zu beantworten: Welche Organismen leben dort, welche Funktionen üben sie aus, und worin liegt ihre Bedeutung für die CZ? In der ersten Phase wurden biotische und chemische 'Fingerabdrücke' detektiert, welche spezifisch für Eigenschaften oder Prozesse oberirdischer Lebensräume sind, um so Transport und Umwandlung solcher Marker bei der Passage hinunter zu den Aquiferen zu verfolgen. Extremereignissen zeigten dabei eine unerwartet starke räumliche Heterogenität hinsichtlich des Eintrags von Wasser und Stoffen in unterirdische Lebensräume. Hydrochemische Daten und Omics-basierte Untersuchungen ermöglichten die Identifikation distinkter biogeochemischer Zonen, welche Unterschiede in Geologie, Struktur, Stofftransport und Landnutzung der jeweiligen Infiltrationsbereiche widerspiegeln. In der zweiten Phase werden wir von der Charakterisierung von Unterschieden zur Erklärung ihrer Entstehung übergehen. Die Verbindung der Charakterisierung von Standortbedingungen mit biogeochemischen Flüssen wird uns ein vertieftes Verständnis der Ökologie unterirdischer Lebensräume und der Rolle der unterirdischen Biota für die Grundwasserqualität ermöglichen. Das Hainich CZE ist Teil eines internationalen Netzwerkes von Critical Zone Observatories und besitzt schon jetzt eine hohe Attraktivität für Kooperationspartner. Wir sind daher auf gutem Wege, uns zu einer international führenden Forschungsplattform auf dem Gebiet der Biodiversitätsforschung unterirdischer Lebensräume zu entwickeln.

1 2 3 4 539 40 41