Das Projekt "Spectromicroscopie des cellules (FRA)" wird/wurde ausgeführt durch: Ecole Polytechnique Federale de Lausanne, Institut de Physique appliquee.L'objectif du projet est le developpement de nouveaux moyens experimentaux pour reveler des concentrations faibles d'elements contaminants dans les cellules telles que les neurones. La technique se base sur la spectromicroscopie de photoemission tant avec le rayonnement synchrotron qu'avec des ressources conventionnelles de rayons X. La technique des revelations est beaucoup plus avancee que celles qui sont actuellement utilisees, etant donne qu'elle est capable de reveler en meme temps les composants chimiques, leur etat de valence et leur position dans l'espace. Il s'agit donc aussi d'une technique tres avancee pour analyser les consequences de la pollution sur les cellules. Elle est presque ideale pour la revelation des contaminants tels que les metaux. (FRA)
Strahlenschutz-Studie: Untersuchte E‑Autos halten zum Schutz der Gesundheit empfohlene Höchstwerte ein Ausgabejahr 2025 Datum 09.04.2025 Quelle: Halfpoint/Stock.adobe.com In einer Strahlenschutz -Studie haben alle untersuchten Elektroautos die Empfehlungen zum Schutz vor gesundheitlichen Auswirkungen von Magnetfeldern eingehalten. Außerdem ist man in reinen Elektroautos nicht prinzipiell stärkeren Magnetfeldern ausgesetzt als in Fahrzeugen mit konventionellem oder hybridem Antrieb. Das zeigen aufwendige Messungen und Computersimulationen im Auftrag des Bundesamtes für Strahlenschutz ( BfS ) und des Bundesumweltministeriums ( BMUV ). Unabhängig von der Antriebsart unterschritten alle untersuchten Fahrzeuge die zum Schutz der Gesundheit empfohlenen Höchstwerte. Diese Höchstwerte begrenzen die elektrischen Ströme und Felder, die von Magnetfeldern im menschlichen Körper verursacht werden können, auf ein unschädliches Maß. Für die Untersuchung wurden die Magnetfelder an den Sitzplätzen von vierzehn verschiedenen Pkw-Modellen der Baujahre 2019 bis 2021 in unterschiedlichen Betriebszuständen gemessen und bewertet. "Zwar wurden in einigen Fällen – lokal und zeitlich begrenzt – vergleichsweise starke Magnetfelder festgestellt. Die empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in den untersuchten Szenarien aber eingehalten, sodass nach aktuellem wissenschaftlichem Kenntnisstand keine gesundheitlich relevanten Wirkungen zu erwarten sind" , unterstreicht BfS -Präsidentin Inge Paulini. "Die Studienergebnisse sind eine gute Nachricht für Verbraucherinnen und Verbraucher, die bereits ein Elektroauto fahren oder über einen Umstieg nachdenken." Die Studie wurde von einem Projektteam aus Mitarbeitenden der Seibersdorf Labor GmbH , des Forschungszentrums für Elektromagnetische Umweltverträglichkeit (femu) der Uniklinik RWTH Aachen und des Technik Zentrums des ADAC e.V. durchgeführt. Fahrzeughersteller waren an der Untersuchung nicht beteiligt. Magnetfelder treten in allen Kraftfahrzeugen auf Magnetfelder entstehen, wenn elektrische Ströme fließen. In modernen Kraftfahrzeugen gibt es daher viele Quellen magnetischer Felder. Dazu gehören zum Beispiel Klimaanlagen, Lüfter, elektrische Fensterheber oder Sitzheizungen. Bei Elektrofahrzeugen kommen vor allem eine größere und leistungsstärkere Batterie, die Hochvoltverkabelung und der Inverter (Wechselrichter) für den Antriebsstrom sowie der elektrische Antrieb selbst hinzu. Die Untersuchung nahm alle in den Autos auftretenden Magnetfelder in den Blick und ordnete sie – wo möglich – der jeweiligen Ursache zu. Höchste Werte meist im Fußbereich Dummy mit Messsonden im Fond eines Elektroautos Die Auswertung der Messungen und Simulationen zeigte, dass die empfohlenen Höchstwerte für im Körper hervorgerufene Felder in allen erfassten Szenarien eingehalten wurden. Im Detail ergab sich allerdings ein differenziertes Bild: Die gemessenen Magnetfeldwerte variierten zwischen den untersuchten Fahrzeugen, räumlich innerhalb der einzelnen Fahrzeuge sowie abhängig vom Betriebszustand deutlich. So traten die stärksten Magnetfelder in erster Linie im Fußbereich vor den Sitzen auf, während die Magnetfelder im Kopf- und Rumpfbereich meist niedrig waren. Motorleistung ist kein Indikator für Magnetfeldstärke Zwischen der Motorisierung und den Magnetfeldern im Innenraum der Elektrofahrzeuge zeigte sich kein eindeutiger Zusammenhang. Größeren Einfluss als die Leistungsstärke des Motors hatte die Fahrweise. Bei einer sportlichen Fahrweise mit starken Beschleunigungs- und Bremsvorgängen waren kurzzeitig deutlich stärkere Magnetfelder zu verzeichnen als bei einem moderaten Fahrstil. Kurzzeitige Spitzenwerte von unter einer Sekunde Dauer traten unter anderem beim Betätigen des Bremspedals, beim automatischen Zuschalten von Motorkomponenten wie auch – unabhängig von der Antriebsart – beim Einschalten der Fahrzeuge auf. Der höchste lokale Einzelwert wurde beim Einschalten eines Hybridfahrzeugs ermittelt. Spitzenwerte senken BfS-Präsidentin Dr. Inge Paulini Quelle: Holger Kohl/ Bildkraftwerk "Die großen Unterschiede zwischen den Fahrzeugmodellen zeigen, dass Magnetfelder in Elektroautos nicht übermäßig stark und auch nicht stärker ausgeprägt sein müssen als in herkömmlichen Pkw" , sagt Paulini. "Die Hersteller haben es in der Hand, mit einem intelligenten Fahrzeugdesign lokale Spitzenwerte zu senken und Durchschnittswerte niedrig zu halten. Je besser es zum Beispiel gelingt, starke Magnetfeld-Quellen mit Abstand von den Fahrzeuginsassen zu verbauen, desto niedriger sind die Felder, denen die Insassen bei den verschiedenen Fahrzuständen ausgesetzt sind. Solche technischen Möglichkeiten sollten bei der Entwicklung von Fahrzeugen von Anfang an mitgedacht werden." Über die Studie Die Studie stellt nach Kenntnisstand des BfS die bislang umfangreichste und detaillierteste Untersuchung zum Auftreten von Magnetfeldern in Elektrofahrzeugen dar. Die erhobenen Daten beruhen auf systematischen Feldstärkemessungen in aktuellen, für den deutschen Straßenverkehr zugelassenen Fahrzeugmodellen auf Rollenprüfständen, auf einer abgesperrten Test- und Versuchsstrecke und im realen Straßenverkehr. Insgesamt wurden elf rein elektrisch angetriebene Pkw, zwei Hybridfahrzeuge sowie ein Fahrzeug mit Verbrennungsmotor untersucht. Mit einem E-Roller, zwei Leichtkrafträdern und einem Elektro-Motorrad wurden erstmals auch elektrische Zweiräder berücksichtigt. Ähnlich wie bei den Pkw traten die stärksten Magnetfelder im Bereich der Füße und der Unterschenkel auf. Die zum Schutz der Gesundheit empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in allen untersuchten Szenarien eingehalten. Folglich ist das Auftreten nachgewiesenermaßen gesundheitsrelevanter Feldwirkungen in den untersuchten Fahrzeugen als insgesamt sehr unwahrscheinlich einzuschätzen. Messverfahren Durch die Anwendung ausgefeilter Messtechnik ließen sich in der Studie auch kurzzeitige Magnetfeld -Spitzen von unter 0,2 Sekunden Dauer zuverlässig erfassen und bewerten. Die aktuell gültigen Messvorschriften lassen solche kurzzeitigen Schwankungen, die bei der Aktivierung von elektrischen Fahrzeugkomponenten auftreten können, außer Acht. Die Untersuchung zeigte jedoch, dass sie in relevantem Umfang vorkommen. Eine entsprechende Erweiterung der Messnormen erscheint aus Sicht des BfS deshalb geboten. Der Studienbericht "Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität. Ergebnisbericht – Teil 1" ist im Digitalen Online Repositorium und Informations-System DORIS unter der URN https://nbn-resolving.org/urn:nbn:de:0221-2025031250843 abrufbar. Weitere Informationen über den Strahlenschutz bei der Elektromobilität gibt es unter https://www.bfs.de/e-mobilitaet . Stand: 09.04.2025
Aerosols are an indicator for episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning. Daily observations are binned onto a regular latitude-longitude grid. The Aerosol layer height is provided in kilometres. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
Global sulphur dioxide (SO2) layer height as derived from Sentinel-5P/TROPOMI observations. Sulphur dioxide enters the atmosphere through volcanic eruptions and human-related activities. Daily observations are binned onto a regular latitude-longitude grid. The SO2 layer height is provided in kilometres. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
Aerosol Index (AI) as derived from TROPOMI observations. AI is an indicator for episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product displays the Formaldehyde (HCHO) concentration around the globe. The major HCHO sources are vegetation, fires, traffic and industrial sources. Daily observations are binned onto a regular latitude-longitude grid. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
UV Index (UVI) as derived from TROPOMI observations. The UVI describes the intensity of the solar ultraviolet radiation. Values around zero indicate low, values greater than 10 indicate very high UV exposure on the ground. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product displays the Nitrogen Dioxide (NO2) near surface concentration for Germany and neighboring countries as derived from the POLYPHEMUS/DLR air quality model. Surface NO2 is mainly generated by anthropogenic sources, e.g. transport and industry. POLYPHEMUS/DLR is a state-of-the-art air quality model taking into consideration - meteorological conditions, - photochemistry, - anthropogenic and natural (biogenic) emissions, - TROPOMI NO2 observations for data assimilation. This Level 4 air quality product (surface NO2 at 15:00 UTC) is based on innovative algorithms, processors, data assimilation schemes and operational processing and dissemination chain developed in the framework of the INPULS project. The DLR project INPULS develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
Vor 40 Jahren war die Luftqualität über dem Ruhrgebiet alarmierend schlecht: An den Messstellen in den Städten des Ruhrgebiets wurden in der Zeit vom 17. bis 19. Januar 1985 Werte von über 770 Mikrogramm pro Kubikmeter Luft (µg/m³ Luft) bei Schwefeldioxid und rund 460 µg/m³ Luft an Schwebstaub gemessen. Diese Werte und die damalige Wetterlage führten dazu, dass zum ersten Mal in Deutschland die höchste Stufe Smog-Alarm ausgerufen wurde. Kurzfristig wurden Schulen geschlossen, Autos durften nicht fahren und Fabriken mussten ihre Produktion drosseln. Die damalige Schadstoffkonzentration lag zum Teil im Jahresmittel um mehr als das Zehnfache über den heutigen Werten und je nach Wetterlage an einzelnen Tagen extrem viel höher. Das bedeutete eine unmittelbare Gefahr für die Gesundheit der Menschen. „Durch eine ambitionierte Umweltpolitik hat sich die Luftqualität seitdem kontinuierlich verbessert, das zeigen unsere Messdaten der vergangenen 40 Jahre. Jedes Mikrogramm Luftschadstoffe weniger in der Atemluft ist ein Gewinn für die Gesundheit der Menschen“, betont Umwelt- und Verkehrsminister Oliver Krischer. Langfristige Messdaten des Landesamtes für Natur, Umwelt und Verbraucherschutz (LANUV) zeigen den positiven Verlauf und auch die vorläufigen Messdaten für das Jahr 2024, die nun vorliegen, zeigen für die heute relevanten Luftschadstoffe ein gutes Ergebnis: Stickstoffdioxid (NO 2 ) wurde 2024 an 134 Standorten in Nordrhein-Westfalen gemessen. An den 57 Stationen mit automatischer Messung lag die NO 2 -Belastung auf einem mit dem Vorjahr vergleichbaren Niveau. Im Vergleich zu 2023 blieben die Messwerte an 33 Stationen unverändert. An 15 Stationen sanken die Werte leicht. An neun Standorten lag der Messwert ein Mikrogramm pro Kubikmeter über dem Vorjahreswert. An den Standorten mit kontinuierlicher Messung wurde der gesetzlich festgelegte Grenzwert von 40 Mikrogramm pro Kubikmeter Luft im Jahresdurchschnitt zum Schutz der menschlichen Gesundheit sicher eingehalten. Für die 77 Standorte mit Passivsammlermessungen liegt die Auswertung der Daten wegen der aufwändigen Laboruntersuchungen immer erst Ende März vor. Die bereits vorliegenden Daten deuten darauf hin, dass auch an nahezu allen Passivsammler-Messorten der Grenzwert voraussichtlich eingehalten wird. Einzig an der Kruppstraße in Essen ist noch keine Trendaussage möglich. Dort war im Jahr 2023 der einzige Überschreitungsfall in Nordrhein-Westfalen aufgetreten. Feinstaub wurde 2024 in Nordrhein-Westfalen an 70 Messorten in den Partikelklassen PM 10 (Partikel bis zu einem maximalen aerodynamischen Durchmesser von zehn Mikrometern) und PM 2,5 (bis maximal 2,5 Mikrometer) kontinuierlich gemessen. An diesen Probenahmestellen in Nordrhein-Westfalen wurde der Jahresmittelgrenzwert von 40 Mikrogramm pro Kubikmeter für PM 10 , wie bereits in den Jahren zuvor, deutlich unterschritten. Auch für die kleinere Größenklasse der Feinstaubfraktion PM 2,5 wurde der Grenzwert von 25 Mikrogramm pro Kubikmeter im Jahr 2024 an allen kontinuierlichen Messstationen sicher eingehalten auf einem vergleichbaren Niveau wie im Vorjahr. Schwefeldioxid (SO 2 ) ist ein giftiges Gas, das 1985 wesentlich für den Smog-Alarm verantwortlich war und von dem heute keine gesundheitliche Gefahr mehr ausgeht. Anfang der 1980er Jahre wurde Schwefeldioxid noch in großen Mengen aus Schornsteinen der Kraftwerke, aus Industrieanlagen und Autos, die mit schwefelhaltigen Kraftstoffen fuhren, ausgestoßen. 1985 setzte allein die Industrie im Ruhrgebiet 513.450 Tonnen Schwefeldioxid frei. Das ist etwa 10.000 Mal mehr als 2024 in ganz Nordrhein-Westfalen aus allen Quellen ausgestoßen wurde. Bereits seit dem Ende der 1980er Jahre wurden die Schwefeldioxid-Grenzwerte flächendeckend eingehalten. Zahlreiche Maßnahmen wie die Rauchgasentschwefelung, aber auch der Strukturwandel im Ruhrgebiet haben dazu beigetragen. „An unseren Luftmessstellen im Land lässt sich erfolgreiche deutsche Umweltpolitik ablesen“, betont Elke Reichert, Präsidentin des Landesamts für Natur, Umwelt und Verbraucherschutz. „Smog, wie im Jahr 1985, werden wir hier in Nordrhein-Westfalen nicht mehr erleben. Heute ist es unsere Aufgabe, mit neuen Messtechniken immer kleinere Partikel nachzuweisen, so klein, dass wir sie weder sehen noch riechen können. Aber gerade diese Partikel können schädliche Folgen für unsere Gesundheit haben.“ Mit kontinuierlichen Messungen wird die Luftqualität heute vom LANUV überwacht und für alle sichtbar dargestellt. „Mit unseren automatischen Messungen erhalten wir alle fünf Sekunden einen Messwert“, erläutert Elke Reichert. „Wir können so die Belastung mit Schadstoffen in ganz Nordrhein-Westfalen kontinuierlich nachvollziehen und die Überwachung der aktuellen und der zukünftigen Grenzwerte zur Luftreinhaltung sicher gewährleisten.“ Maßnahmen, die seit 1985 nachweislich zu besserer Luft in Nordrhein-Westfalen geführt haben, waren unter anderem der Einbau von Industriefiltern und die Einführung von Katalysatoren für Autos. Außerdem wurden durch Luftreinhaltepläne in den 2000er Jahren ganze Bündel von Maßnahmen festgelegt, darunter die Umweltzonen in größeren Städten, deren Auswirkung auf die Luftqualität durch Messungen belegt sind. Minister Oliver Krischer: „Die Luftreinhaltepolitik ist eine Erfolgsgeschichte. Trotzdem bleibt Luftverschmutzung ein großes Gesundheitsrisiko aus der Umwelt.“ Ab 2030 schreibt die neu gefasste Luftqualitätsrichtlinie der EU neue Grenzwerte vor. Sie bedeuten für alle dicht besiedelten Regionen wie die Rhein-Ruhr-Metropolregion eine besondere Herausforderung. Die Landesregierung ist daher in einen Austausch mit den Kommunen, Bezirksregierungen, dem LANUV und relevanten Stakeholdern getreten, um geeignete Maßnahmen zu entwickeln. „Von besserer Luft profitieren am Ende alle. 1985 mussten Unternehmen deutliche Einschränkungen hinnehmen, heute exportieren sie aus Nordrhein-Westfalen innovative Lösungen zum Umwelt- und Klimaschutz in die ganze Welt. Das gemeinsame Ziel von reinerer Luft ist erreichbar, wenn wir emissionsfreie Entwicklungen wie die Elektromobilität vorantreiben“, sagt Minister Oliver Krischer. Die Tabelle mit den vorläufigen Messwerten für 2024 finden Sie auf der folgenden Internetseite des LANUV unter „Aktuelles“: www.lanuv.nrw.de/themen/luft Weitere Jahresberichte und Daten sind auf dieser Internetseite des LANUV veröffentlicht: luftqualitaet.nrw.de/archiv-jahreskenngroessen.php Download der Verlaufsgrafiken von 1985-2025 finden sie unter: www.umwelt.nrw.de/bildergalerie/verlaufsgrafiken-messdaten-luftschadstoffe Bei Bürgeranfragen wenden Sie sich bitte an: Telefon 0211 4566-0. Bei journalistischen Nachfragen wenden Sie sich bitte an die Pressestelle des Ministeriums für Umwelt, Naturschutz und Verkehr, Telefon 0211 4566-172. Dieser Pressetext ist auch verfügbar unter www.land.nrw Datenschutzhinweis betr. Soziale Medien Pressemitteilung des Ministeriums für Umwelt, Naturschutz und Verkehr NRW zurück
Das Projekt "ArTTA-10mL: Ein Instrument für die 39Ar-Datierung von kleinen Eis- und Wasserproben" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Heidelberg, Institut für Umweltphysik.Das Edelgasradioisotop 39Ar ist von großem Interesse für die Datierung in Ozeanographie, Glaziologie und Hydrogeologie, da es das einzige Isotop ist, das den wichtigen Altersbereich zwischen ca. 50 und 1000 Jahren abdeckt. Die fundamental neue Messmethode der Atom Trap Trace Analysis (ATTA), welche die 81Kr Datierung zum ersten Mal möglich gemacht hat, besitzt das Potenzial, die Anwendungen von 39Ar zu revolutionieren, indem sie die benötigte Probengröße um einen Faktor 100 bis 1000 reduziert. In einem Vorgängerprojekt haben wir zum ersten Mal gezeigt, dass die Messung von 39Ar an natürlichen Proben mit ATTA möglich ist, allerdings benötigten wir dazu immer noch Tonnen von Wasser. Vor kurzem haben wir anhand von Proben aus ersten Pilotprojekten mit Ozeanwasser und alpinem Eis gezeigt, dass die 39Ar-ATTA (ArTTA) Messung an Proben von ca. 25 L Wasser oder 10 mL Ar oder weniger möglich ist. Dieser Erfolg eröffnet komplett neue Perspektiven für die Anwendung der 39Ar-Datierung, die sehr wertvolle Information ergeben wird, die ansonsten nicht zugänglich wäre. Der Bedarf für solche Analysen, insbesondere im Gebiet der Spurenstoff-Ozeanographie, ist gut etabliert und dokumentiert durch Unterstützungsschreiben von unseren derzeitigen Partnern für ArTTA Anwendungen. Dieser Antrag wird es uns ermöglichen, die weltweit ersten ArTTA Geräte zu bauen, die auf Routinebetrieb mit kleinen Proben ausgelegt sind. Wir streben den Aufbau einer 39Ar-Datierungsplattform an, welche die Anforderungen für die Datierung in den Feldern der Grundwasserforschung, Ozeanographie und Gletscherforschung erfüllt. Um sinnvolle Anwendungen in der Tracerozeanographie zu ermöglichen, wird eine Kapazität von mindestens 200 Proben pro Jahr benötigt. Das neue Gerät für die Forschung wird damit lange angestrebte Anwendungen erlauben, die sonst nicht möglich wären. Basierend auf bisheriger Forschung haben wir einen klaren Plan für den Aufbau einer kompletten Plattform für den Betrieb von ArTTA: Eine neue Probenaufbereitungslinie basierend auf dem Gettern von reaktiven Gasen erlaubt die Abtrennung von bis zu 10 mL reinem Ar aus kleinen (kleiner als 25 L Wasser oder 10 kg Eis) Umweltproben in wenigen Stunden. Diese Proben werden zum ArTTA Gerät transferiert, welches aus zwei Modulen besteht: Das Optik-Modul erzeugt die benötigten Laserfrequenzen und Laserleistung, das Atom-Modul ist der Teil in dem die Atome mit atomoptischen Werkzeugen detektiert werden, die wir im Prototyp aus dem vorherigen Projekt realisiert haben. So weit als möglich wird die Anlage aus zuverlässigen, hochleistungsfähigen kommerziellen Teilen gebaut. Das System wird in einer hochkontrollierten Containerumgebung installiert, was einen modularen Aufbau gewährleistet, der in Zukunft an unterschiedlichen Orten aufgebaut werden kann.
Origin | Count |
---|---|
Bund | 5416 |
Europa | 1 |
Kommune | 1 |
Land | 162 |
Wirtschaft | 4 |
Wissenschaft | 32 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 5308 |
Text | 117 |
unbekannt | 78 |
License | Count |
---|---|
geschlossen | 178 |
offen | 5321 |
unbekannt | 5 |
Language | Count |
---|---|
Deutsch | 5177 |
Englisch | 632 |
Resource type | Count |
---|---|
Archiv | 1 |
Bild | 11 |
Datei | 1 |
Dokument | 33 |
Keine | 3456 |
Unbekannt | 5 |
Webdienst | 6 |
Webseite | 2018 |
Topic | Count |
---|---|
Boden | 3379 |
Lebewesen & Lebensräume | 3441 |
Luft | 3187 |
Mensch & Umwelt | 5498 |
Wasser | 2908 |
Weitere | 5504 |