Das Projekt "Hydrological and hydrodynamic studies and predictions of the Caspian sea water level rise - Impact of climate factors and man's activities" wird vom Umweltbundesamt gefördert und von Universität Bochum, Fakultät XII für Bauingenieurwesen, Institut für Grundbau, Wasser- und Verkehrswesen, Lehrstuhl für Hydrologie, Wasserwirtschaft und Umwelttechnik durchgeführt. General Information: A significant rise of the water level in the Caspian sea since 1978 was accompanied by inundation of large areas and by a rise in the water table, which resulted in a disastrous situation in the Caspian sea basin. Experts differ both about why this phenomenon has occurred and about the future course of events. The proposed project aims at the understanding of numerous hydro-meteorological factors involved, without which effective protection of the population on the coastal areas and of their environment are impossible. The project outlines multi-disciplinary approaches to: detailed water balance study of the Caspian sea; study of water exchange within the sea basin and the hydrology of the Volga River (80 per cent of the inflow to the sea) These studies are directed at an elucidation of the reasons for the present sea level rise and an assessment of the most probable sea level trends over the next 10 to 20 years. The project will also consider the possible consequences of climate change and global warming. To achieve these aims the project includes linked hydrological and hydrodynamical models to describe the physical processes driving the phenomenon. Future trends in the water balance components of the Caspian sea will be investigated applying combined physical and statistical methods to hydro-thermodynamical mathematical models of water exchange processes in the 'atmosphere - land surface' and 'atmosphere - sea surface' sub-systems. The project will investigate the effects of possible man-made changes to the use of land in a selected sub-basin of the Volga river basin. This part of the project is based on an analysis of the recently available remote sensing data, a particularly valuable transfer of technology. Various scenarios of the climate conditions in the sea basin will be made using innovative probabilistic approach. The climate scenarios will be developed from the output of General Circulation Models developed in Germany, UK and USA as well as paleoclimate prototypes developed in Russia. Achievements: Foreseen Results The results obtained will be available, for planning of national and regional economies in the Caspian countries, for the design and operation of projects aimed at ecologically sound management of land and water resources in the Caspian sea itself, along its coastal fringe, and in its catchment area including the Volga river. The project partners are research institutes and private research company representing two NIS countries (Russia and Turkmenistan) ant three EU members (France, Germany and United Kingdom) with a balanced input from NIS and EU. The projects results will be made available to a wide , international scientific community both through dissemination of the deliverables (reports) and via access to the data concerning the Caspian sea. Prime Contractor: Laboratoire d'Hydraulique de France SA; Chirolles; France.
Das Projekt "Methodenentwicklung zur Bestimmung von Ammoniakemissionen von gedüngten landwirtschaftlichen Flächen und Lagerbehältern von flüssigen Wirtschaftsdüngern" wird vom Umweltbundesamt gefördert und von Universität Bonn, Institut für Pflanzenernährung durchgeführt. Basierend auf einer bereits existierenden Methode zur Bestimmung der Ammoniakemissionen von Kleinparzellen (SC-Methode) soll ein Verfahren entwickelt werden, das es ermöglicht, die NH3-Emissionen von praxisüblichen landwirtschaftlichen Schlägen (größer als 1 ha) nach Applikation von ammoniumhaltigen Düngemitteln sowie die Emissionen aus praxisüblichen Güllelagern zu erfassen. Im Vergleich zu basierenden Verfahren wie z.B. mikrometeorologischen Messungen würde unser Ansatz die Quantifizierung von NH3-Emissionen aus Praxisbetrieben stark vereinfachen und die Analysekosten erheblich senken.
Das Projekt "Model assessment of the solar wind effects on the general circulation of the atmosphere and global ozone distribution" wird vom Umweltbundesamt gefördert und von Physikalisch-Meteorologisches Observatorium Davos und Weltstrahlungszentrum (PMOD,WRC) durchgeführt. This project is aimed to understand and quantify two significant problems: (i) what processes are responsible for the observed solar-climate connections and what is their fractional contribution; (ii) what is the causes of the cold bias in the lower stratosphere and the ozone content overestimation in the extra tropical lower stratosphere obtained by many 3-D climate and photochemical models. In addition to the variable solar UV radiation - that is the focus of a parallel research project - the effects of solar wind energy variations on the temperature and circulation of the middle atmosphere are planned to be studied. These effects are influencing many processes in the ionosphere and magnetosphere. They alternate the configuration of the latter, which in turn changes Earth's electric fields. Several observational studies demonstrated that the lower stratosphere temperature variations tightly correlated with the dynamical pressure of the solar wind and with the position of the magnetopause. The correlation is the most significant in the 20-25 km layer with high heavy ion density due to cosmic rays. The above phenomena are planned to be assessed with a General Circulation Model with interactive Photo-Chemistry (GCM/PC) with inclusion of additional heating in this layer caused by electrical resistance of the additional electrical current induced by the solar wind and magnetopause variations. We propose to carry out several 15-20 year long runs of the GCM/PC model with interactive photochemistry described and validated in (Rozanov et al., 2001). The above-mentioned additional heating rate will be introduced in the model using a newly developed parameterisation. The comparison of the control run for unperturbed conditions (solar activity minimum) and of solar maximum perturbed conditions with and without the newly introduced parameterisation will allow to estimate the significance of the new source of external energy for the simulating the present day climate and to assess the strength of the relations between the solar wind variance and stratosphere and to estimate their statistical significance. The magnitude of the solar wind effect will be compared with changes in the climate system caused by the UV solar flux variability to estimate which process is more significant. The results of the numerical experiments will be also compared to the results of the observation data analysis. The proposed research potentially could fill two gaps in our knowledge. It will introduce a new process which could be partially responsible for the observed sun-climate relations and could give a new explanation for the cold bias in the lower stratosphere simulated by the majority of GCMs. If the new mechanism is found to be significant it will help to understand the nature of solar-climate connections and to estimate with better accuracy what part of the climate changes can be related to the solar variability.
Das Projekt "Climate sensitivity of glacier mass balance: the effect of topographic barriers" wird vom Umweltbundesamt gefördert und von Universität Innsbruck, Institut für Meteorologie und Geophysik durchgeführt. Objective: To identify and model the most important factors leading to mesoscale variability of the mass balance field on ice caps. A comprehensive study of the effect of topographic barriers on glacier mass balance and its sensitivity to climate change will be carried out by field measurements and modelling work. As targets have been selected Vatnajkull (Iceland) and the Antarctic Peninsula. General Information: The field work has two major components which are mass balance measurements (by stake measurements and snow pits on Vatnajvkull, the major ice cap on Iceland, characteristic length scale 100 km, and by snow-level sensors and shallow cores in the Antarctic Peninsula) and detailed meteorological measurements including the full energy balance programme. Albedo measurements of the ice cape from satellite (AVHRR, Landsat images) for a complete melt season will complete the programme. An attempt will be made to improve passive microwave satellite retrievals of annual accumulation rates by incorporating the output of snow models into the retrieval and by trying to develop a radiative transfer model for microwave radiation within the snow pack. Satellite data will be compared with point measurements from the ground stations and be used to validate albedo patterns generated by the mass balance model. An energy balance model will be constructed for the entire ice cap, calibrated with results from the field work to generate glacier mass balance and to study its sensitivity to climate change. The UK operational GCM will be used in limited area mode to investigate the effects of the topography on the Antarctic Peninsula on the distribution of precipitation and temperature. Model data will be verified against passive microwave brightness temperatures from SSM/I. Prime Contractor: Utrecht University, Institute for Marine and Atmospheric Research; Utrecht; Netherland.
Das Projekt "Langjährige Änderungen und Klimatologie der UV-Bestrahlungsstärke über Europa" wird vom Umweltbundesamt gefördert und von Universität für Bodenkultur Wien, Institut für Meteorologie durchgeführt. Das Hauptziel dieser Aktion ist das Verständnis der Einflüsse der verschiedenen meteorologischen Bedingungen auf die UV Strahlungsverhältnisse in Europa zu verbessern und Änderungen der UV Intensitäten zu bestimmen. Die UV Strahlung spielt eine wichtige Rolle in vielen Prozessen in der Biosphäre, dazu gehört u.a. der biologische Einflussauf den Menschen. Die Bestimmung der biologisch wirksamen UV Strahlungsdosen und ihre geographische Verteilung sindsehr wichtig für die europäische Bevölkerung. Um die Hauptziele zu erreichen, sind folgende praktische Ziele festgelegt: - Eine Übersicht über die zur Verfügung stehenden solare Daten (u.a. auch die spektral und Breitband UV Daten), Zusatzinformationen (Ozon, Bewölkung, Sonnenscheindauer usw.) und zur Verfügung stehende Satellitendaten zu schaffen. - Das Verständnis der UV Rekonstruktionsmodelle zur Berechnung der UV Klimatologie und der UV Trends zu vertiefen. - Das Verständnis der Klimatologie der biologische UV Strahlungsklimatologie und ihrer Änderungen zu erweitern. - Das Wissen über den Einflussder UV-Strahlung auf Ökosysteme mit Hilfe der UV-Strahlungsklimatologie und ihrer Änderungen in Europa zu vertiefen. -Eine Gruppe von Breitbandreferenzradiometern zu bilden.