Das Projekt "Teilprojekt C" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Katalyse e.V. an der Universität Rostock durchgeführt. Im angestrebten Verbundprojekt sollen durch die Kombination und Integration von chemokatalytischen mit biokatalytischen Prozessen neue effiziente Verfahren zur Gewinnung von energetisch und stofflich nutzbaren Stoffen aus biogenen gasförmigen oder leichtflüchtigen Verbindungen entwickelt werden. Als biogener Stoffstrom wird Biogas verwendet. Damit werden erste Schritte zur Entwicklung von Biogas-Bioraffinerie-Prozessen und Synthesegas-Bioraffinerie-Prozessen unternommen, mit dem Ziel, Technologieplattformen zu entwickeln, um ressourcenschonende Synthesewege zu Produkten zu ermöglichen, die bisher nur aus petrochemischen Grundstoffen mit hohem Energieaufwand produziert werden können. Das Vorhabenziel soll erreicht werden, indem mit neuen Katalysatoren auf der Basis von nanopartikulären V- oder Nb-haltigen Oxiden bzw. Mischoxiden auf mikro- und mesoporösen Silikaten oder MOFs (i) Biogas-Methan mit molekularem Sauerstoff zu Formaldehyd oder anderen Oxygenaten umgesetzt, (ii) der CO2-Anteil des Biogases als Oxydans genutzt und (iii) Biogas direkt zu Methylformiat evtl. auch Essigsäure gewandelt wird. Diese Reaktionen werden vorrangig im Rohrreaktor verfolgt, im weiteren Verlauf sollen aber auch Membranreaktorkonzepte geprüft werden, um das Oxidationspotenzial der Katalysatoren und die Sauerstoffkonzentration an der Katalysatoroberfläche zu kontrollieren. Neben den Katalysatorsynthesen sind auch umfangreiche Charakterisierungen frischer und gebrauchter Katalysatoren geplant.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik durchgeführt. Im angestrebten Verbundprojekt sollen durch die Kombination und Integration von chemokatalytischen mit biokatalytischen Prozessen neue effiziente Verfahren zur Gewinnung von energetisch und stofflich nutzbaren Stoffen aus biogenen gasförmigen oder leichtflüchtigen Verbindungen entwickelt werden. Als biogener Stoffstrom wird Biogas verwendet. Damit werden erste Schritte zur Entwicklung von Biogas-Bioraffinerie-Prozessen und Synthesegas-Bioraffinerie-Prozessen unternommen, mit dem Ziel, Technologieplattformen zu entwickeln, um Ressourcen schonende Synthesewege zu Produkten zu ermöglichen, die bisher nur aus petrochemischen Grundstoffen mit hohem Energieaufwand produziert werden können. In den Teilprojekten des IGB sollen ein Enzym heterolog exprimiert, ein Enzymreaktor entwickelt und eine Anlage für den Gesamtprozess entwickelt und betrieben werden. Die Projektarbeiten umfassen die gemeinsame Entwicklung und Anwendung von chemokatalytisch-biokatalytischen Synthesewegen und schließen Reaktorkonzepte und Methoden der synthetischen Biologie zur Enzymoptimierung und Immobilisierung mit ein. Innovationsschritte zur Realisierung der Ziele sind: effiziente Kopplung chemischer und enzymatischer Reaktionsschritte; Entwicklung neuer Reaktorkonzepte zur gezielten Abtrennung/Kompartimentalisierung der Edukte und Produkte; gezielte räumliche Immobilisierung von Enzymen im Reaktor. Als Beispiel dient die Produktion von Methanol, Methanol und Ameisensäure oder Methylformiat aus Biogas.
Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Martin-Luther-Universität Halle-Wittenberg, Institut für Pharmazie, Arbeitsgruppe Aufarbeitung biotechnischer Produkte durchgeführt. Im angestrebten Verbundprojekt sollen durch die Kombination und Integration von chemokatalytischen mit biokatalytischen Prozessen neue effiziente Verfahren zur Gewinnung von energetisch und stofflich nutzbaren Stoffen aus biogenen gasförmigen oder leichtflüchtigen Verbindungen entwickelt werden. Als biogener Stoffstrom wird Biogas verwendet. Damit werden erste Schritte zur Entwicklung von Biogas-Bioraffinerie-Prozessen und Synthesegas-Bioraffinerie-Prozessen unternommen, mit dem Ziel, Technologieplattformen zu entwickeln, um Ressourcen schonende Synthesewege zu Produkten zu ermöglichen, die bisher nur aus petrochemischen Grundstoffen mit hohem Energieaufwand produziert werden können. Im vorliegenden Teilprojekt 2 sollen die Biokatalysatoren bereitgestellt und neue Verfahren zu deren Immobilisierung entwickelt und erprobt werden. Die Projektarbeiten umfassen die gemeinsame Entwicklung und Anwendung von chemokatalytisch-biokatalytischen Synthesewegen und schließen Reaktorkonzepte und Methoden der synthetischen Biologie zur Enzymoptimierung und Immobilisierung mit ein. Innovationsschritte zur Realisierung der Ziele sind: effiziente Kopplung chemischer und enzymatischer Reaktionsschritte; Entwicklung neuer Reaktorkonzepte zur gezielten Abtrennung/ Kompartimentalisierung der Edukte und Produkte; gezielte räumliche Immobilisierung von Enzymen im Reaktor. Als Beispiel dient die Produktion von Methanol, Methanol und Ameisensäure oder Methylformiat aus Biogas.
Das Projekt "Untersuchung der katalytischen Prozesse in Elektrolyse- und Synthesereaktionen (im Verbundprojekt: Entwicklung eines tubularen Dampf-Elektrolyseurs mit integrierter Kohlenwasserstoffsynthese)" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Institut für Energietechnik, Professur Technische Thermodynamik durchgeführt. Im Rahmen der in Deutschland stattfindenden Energiewende werden zur Substituierung fossiler Energieträger zunehmend erneuerbare Energien eingesetzt. Die regelmäßige Verfügbarkeit dieser Energiequellen ist nur bei einem kleinen und kaum erweiterbaren Teil, hauptsächlich der Wasserkraft und der Biomasseverwertung, gegeben. Die Nutzung von Wasserstoff als Energieträger der erneuerbaren Energien (Wasserstoffwirtschaft) erscheint aufgrund hoher Anfangsinvestitionen zur Umrüstung der auf Kohlenwasserstoffen basierenden Energieinfrastruktur sowie der geringen volumetrischen Energiespeicherdichte des Wasserstoffs problematisch. Eine interessante Möglichkeit zur Lösung der Speicherproblematik bei gleichzeitiger Beibehaltung der vorhandenen Infrastruktur besteht in der Herstellung von Methanol aus Kohlendioxid und Elektrolyse-Wasserstoff, der mittels erneuerbarer Energien erzeugt wird. Durch eine stoffliche Nutzung von Kohlendioxid lassen sich in Folge CO2 ?Emissionen mindern, und CO2 wird dadurch in einem Kreislauf genutzt, ohne dass die Atmosphäre durch zusätzliche Emissionen belastet wird. Für die Umsetzung dieses Konzepts müssen geringe Systemkosten bei hohen Wirkungsgraden erreicht werden. Beide Kriterien sprechen für die Nutzung der Hochtemperaturelektrolyse zur Herstellung von Wasserstoff für eine anschließende Kohlenwasserstoffsynthese. Bisher wurden in Hochtemperatur?Elektrolyseuren sauerstoffleitende Elektrolyte verwendet. Das Teilvorhaben der Professur für Technische Thermodynamik innerhalb des Verbundprojektes umfasst die Charakterisierung der eingesetzten Katalysatoren sowie deren Wirkungsweise und die Untersuchung der katalytischen Prozesse mit experimentellen Methoden. Damit soll der Gesamtprozess hinsichtlich der Katalysatoren optimiert werden.