API src

Found 152 results.

Entwicklung biologischer Bewertungsmethoden und -kriterien für Grundwasserökosysteme

Die Bewertung des ökologischen Zustands von Oberflächengewässern ist heute europaweit akzeptiert und in nationalen und internationalen Gesetzen festgeschrieben. Für Grundwässer und Aquifere gibt es einen derartigen Ansatz bis dato nicht. Ziel dieses Forschungsprojekts war es, ein erstes Konzept eines ökologisch orientierten Bewertungssystems für Grundwasserökosysteme zu entwerfen. Als wesentliche Schritte wurden (1) die Auswahl geeigneter Messgrößen, (2) die Inventur an ausgewählten Standorten, (3) die Suche nach einer ökologisch sinnvollen räumlichen Gliederung, (4) die Ableitung von natürlichen Hintergrundwerten und Referenzbedingungen, (5) die Identifizierung von ökologischen Kriterien und Indikatoren, und (6) ein erstes Bewertungsschema vorgeschlagen und durchgeführt. Im Rahmen des Projekts wurden Grundwässer aus über 100 Messstellen mehrfach untersucht.

Entwicklung biologischer Bewertungsmethoden und -kriterien für Grundwasserökosysteme

Die Rolle von Viren beim mikrobiellen Schadstoffabbau

Das Projekt "Die Rolle von Viren beim mikrobiellen Schadstoffabbau" wird vom Umweltbundesamt gefördert und von Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH, Institut für Virologie durchgeführt. Die Verunreinigung unserer Wasserressourcen mit organischen Schadstoffen, wie etwa Öl-bürtigen Kohlenwasserstoffen, ist ein ernstzunehmendes Problem und hat vielerorts bereits zu einer chronischen Belastung des Grundwassers geführt. Der biologische Abbau ist der einzige natürliche Prozess, der im Untergrund zu einer Schadstoffreduktion führt. Als Steuergrößen gelten hier die Anwesenheit von Abbauern (Mikroorganismen) und die Verfügbarkeit von Elektronenakzeptoren und Nährstoffen. In den letzten Jahren wurde zudem die Bedeutung dynamischer Umweltbedingungen (z.B. Hydrologie) als wichtige Einflussgröße erkannt. Ein wichtiger Aspekt wurde jedoch bisher nicht in Betracht gezogen, nämlich die Rolle der Viren bzw. Phagen. Viren sind zahlenmäßig häufiger als Mikroorganismen und ebenso ubiquitär vorhanden. Mittels verschiedener Mechanismen können sie einen enormen Einfluss auf die mikrobiellen Gemeinschaften ausüben. Einerseits verursachen sie Mortalität bei ihren Wirten. Andererseits können sie über horizontalen Gentransfer den Wirtsstoffwechsel sowohl zu dessen Vorteil als auch Nachteil modifizieren. In den vergangenen Jahren konnten verschiedene mikrobielle Phänomene der Aktivität von Viren zugeschrieben werden. Die klassische Ansicht, dass Viren ausschließlich Parasiten sind, ist nicht mehr zutreffend. Als Speicher und Überträger von genetischer Information ihrer Wirte nehmen sie direkten Einfluss auf biogeochemische Stoffkreisläufe sowie auf die Entstehung neuer Schadstoffabbauwege. Biogeochemische Prozesse in mikrobiell gesteuerten Ökosystemen wie dem Grundwasser und die dynamische Entstehung und Anpassung an neue Nischen als Folge von Veränderungen der Umweltbedingungen kann nur verstanden werden, wenn der Genpool in lytischen und lysogenen Viren entsprechend mit berücksichtigt wird. Das Projekt ViralDegrade stellt Paradigmen in Frage und möchte eine völlig neue Perspektive hinsichtlich der Rolle der Viren beim mikrobiellen Schadstoffabbau eröffnen, welche zur Zeit noch als Black Box behandelt werden. ViralDegrade postuliert, dass Viren (i) durch horizontalen Gentransfer und den Einsatz von metabolischen Genen den Wirtsstoffwechsel modulieren (Arbeitshypothese 1) und (ii) für den temporären Zusammenbruch von dominanten Abbauerpopulationen und, damit verbunden, für den Wechsel zwischen funktionell redundanten Schlüsselorganismen verantwortlich sind (Arbeitshypothese 2). Sorgfältig geplante Labor- und Felduntersuchungen und vor allem der kombinierte Einsatz von (i) neu entwickelten kultivierungsunabhängigen Methoden, wie etwa dem Viral-Tagging, und (ii) ausgewählten schadstoffabbauenden aeroben und anaeroben Bakterienstämmen, garantieren neue Erkenntnisse zur Rolle der Viren beim mikrobiellen Schadstoffabbau sowie ähnlichen mikrobiell gesteuerten Prozessen. Ein generisches Verständnis der Vireneinflüsse wird zudem zukünftig neue Optionen für die biologische Sanierung eröffnen.

Mikrobielle Umsetzung von Phosphor in Waldböden in Abhängigkeit von der Verfügbarkeit von Kohlenstoff, Stickstoff und Phosphor

Das Projekt "Mikrobielle Umsetzung von Phosphor in Waldböden in Abhängigkeit von der Verfügbarkeit von Kohlenstoff, Stickstoff und Phosphor" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Fachgruppe Geowissenschaften, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Lehrstuhl für Bodenökologie durchgeführt. Bodenmikroorganismen können Phosphor (P) sowohl mobilisieren als auch immobilisieren und beeinflussen daher stark die P-Verfügbarkeit für Pflanzen. In diesem Projekt stellen wir die Hypothese auf, dass das Verhältnis vom mikrobiellen P zum labilen P, mit der Entwicklung von P erwerbenden zu P recycelnden Ökosystemen zunimmt. Mikrobielle und pflanzliche P-Aufnahme wird mittels 33P untersucht, der in pflanzlicher und mikrobieller Biomasse und in pflanzlichen und mikrobiellen Lipiden quantifiziert wird. In welchem Maß Mikroorganismen P während des Abbaus von organischer Bodensubstanz mineralisieren und immobilisieren, wird mit einem 14C/33P markiertem Monoester überprüft. Die saisonale Dynamik von tatsächlicher und potentieller P-Mobilisierung (33P-Verdünnung und Phosphatase-Aktivität) und mikrobieller P-Immobilisierung wird anhand von Böden, die den Übergang von erwerbenden zu recycelnden Ökosystemen repräsentieren, analysiert. Darüber hinaus wird der Beitrag des P aus der organischen Auflage zum mikrobiellen P anhand eines Feldexperiments untersucht. Die räumlichen Muster mikrobieller und pflanzlicher P-Mobilisierung in der Rhizosphäre werden anhand der Verteilung von saurer und alkalischer Phosphatase-Aktivität (Boden-Zymographie) und Rhizodeposition (14C-Imaging) analysiert.

Untersuchungen des Methan Paradoxons in Seen

Das Projekt "Untersuchungen des Methan Paradoxons in Seen" wird vom Umweltbundesamt gefördert und von Forschungsverbund Berlin, Leibniz-Institut für Gewässerökologie und Binnenfischerei durchgeführt. Methan ist ein höchst potentes Treibhausgas, dennoch ist das globale Methanbudget durch die vielen unbekannten CH4-Quellen und -senken sehr unsicher. Die Höhe der CH4-Anreicherung in der Wassersäule hängt von komplexen Interaktionen zwischen methanogenen Archaeen und methanotrophen Bakterien ab. Das bekannte Methan Paradoxon, das die CH4-Übersättigung im oxischen Oberflächenwasserkörper von Seen und Meeren darstellt, weckt Zweifel, dass die mikrobielle CH4-Bildung nur im anoxischen Milieu stattfindet. Im oligotrophen Stechlinsee haben wir eine wiederkehrende Methanübersättigung im Epilimnion gefunden. Unsere Studien zeigen, dass das CH4 aktiv in der oxischen Wassersäule produziert wird. Die Produktion scheint dabei an die autotrophe Produktion von Grünalgen und Cyanobakterien gekoppelt zu sein. Zur gleichen Zeit sind keine methanotrophen Bakterien im Epilimnion vorhanden, so dass das CH4 nicht oxidiert wird. Unsere Haupthypothese ist, dass pelagische Methanogene hydrogenotroph sind, wobei sie den Wasserstoff aus der Photosynthese und/oder Nitrogenaseaktivität nutzen. Unsere Untersuchungshypothesen sind:1) Die CH4-Produktion ist mit der Photosynthese und/oder N-Fixierung gekoppelt, wobei hydrogenotrophe methanogene Archaeen mit den Primärproduzenten assoziiert sind. Die Methanogenen können angereichert und kultiviert werden, um Mechanismen der epilimnischen CH4-Produktion detailliert zu untersuchen.2) Die CH4-Oxidation ist durch die Abwesenheit der Methanotrophen und/oder der Photoinhibition in den oberen Wasserschichten reduziert.3) Die CH4-Produktion innerhalb mikro-anoxischer Zonen, z. B. Zooplankton und lake snow, ist nicht ausreichend für die epilimnische CH4-Produktion.Die saisonale Entwicklung des epilimnischen CH4-Peaks soll in Verbindung mit den Photoautotrophen und der Seenschichtung im Stechlinsee untersucht werden. Dabei soll eine neu-installierte Mesokosmosanlage (www.seelabor.de) genutzt werden, um CH4-Profile bei unterschiedlichen autotrophen Gemeinschaften und Seenschichtungen zu studieren. Die Verknüpfung zwischen methanogenen Archaeen und den Photoautotrophen soll in Inkubationsexperimenten mittels Hochdurchsatz-Sequenzierung und qPCR für funktionelle Gene untersucht werden. Methanotrophe werden quantifiziert und die Photoinhibition der CH4-Oxidation durch Inkubationsexperimente gemessen. In Laborexperimenten sollen die methanogenen Archaeen angereichert und kultiviert werden mittels dilution-to-extinction und axenischen Cyanobakterien und Grünalgen. Physiologische Studien an Anreicherungs- oder Reinkulturen sollen die zu Grunde liegenden molekularen Mechanismen ermitteln. Feld- und Laborexperimente sollen helfen, das Methan Paradoxon zu entschlüsseln, um die bisherige und potentiell wichtige CH4-Quelle zu charakterisieren und zu quantifizieren. Die Studien sollen helfen, unser Verständnis des globalen CH4-Kreislaufes zu verbessern, damit zukünftige Prognosen realistischer werden.

Teilprojekt B 05: Von den Baumkronen zum Aquifer: die Rolle mikrobieller Prozesse in der Bildung und Umsetzung von Nitrat in der 'Critical Zone'

Das Projekt "Teilprojekt B 05: Von den Baumkronen zum Aquifer: die Rolle mikrobieller Prozesse in der Bildung und Umsetzung von Nitrat in der 'Critical Zone'" wird vom Umweltbundesamt gefördert und von Universität Jena, Institut für Biodiversität, Lehrstuhl Aquatische Geomikrobiologie durchgeführt. Dieses Projekt untersucht mikrobiell vermittelte Schlüsselprozesse im Zuge des Nitrat-Eintrages in bzw. Stickstoffverlustes aus den Kalkstein-Aquiferen des Hainich CZE. Unsere Untersuchungen befassen sich mit Änderungen von Nitrifikationspotential und Nitrifikanten-Gemeinschaften von den Baumkronen bis hin zu den Aquiferen, inklusive einer Abschätzung der möglichen Rolle der vollständigen Nitrifikation (Comammox), sowie mit der Relevanz der anaeroben Ammonium-Oxidation (Anammox) im Vergleich zur Denitrifikation für Stickstoff-Verluste aus dem Grundwasser. Unter Verwendung von 15N-basierten Techniken, quantitativer PCR, Illumina Amplikon-Sequenzierungen und Single Cell Genomics werden Aktivitätsmessungen von Nitrifikation, Anammox und Denitrifikation zu räumlichen Verbreitungsmustern und transkriptioneller Aktivität der entsprechenden mikrobiellen Gruppen in Beziehung gesetzt.

Mortalität von Zooplankton in Seenökosysteme und seine Rolle im vertikalen Kohlenstofffluss (ZooFlux)

Das Projekt "Mortalität von Zooplankton in Seenökosysteme und seine Rolle im vertikalen Kohlenstofffluss (ZooFlux)" wird vom Umweltbundesamt gefördert und von Forschungsverbund Berlin, Leibniz-Institut für Gewässerökologie und Binnenfischerei durchgeführt. Die geplante Studie zielt darauf ab, die Rolle von totem Zooplankton im Kohlenstoffumsatz von aquatischen Ökosystemen zu quantifizieren. Dabei soll die Hypothese getestet werden, dass der mikrobielle Abbau der toten Körper während ihres Absinkens durch die Wassersäule den Abbau von refraktärem organischem Material beschleunigt (Priming). Das Projekt stellt ein gemeinsames Unternehmen eines internationalen Forscherteams aus Deutschland und Russland dar. Um den Beitrag des toten Zooplanktons für den Kohlenstoffkreislauf abzuschätzen, möchten wir Feldbeobachtungen, Laborexperimente und Modellierung miteinander verbinden. In-situ- Messungen der Mortalität und Sinkraten des Zooplanktons mittels Sedimentfallen werden durch Messungen der turbulenten Mischungsbedingungen in der geschichteten Wassersäule mithilfe moderner hydrodynamischer Techniken begleitet. Mikrobielle Besiedlung und Abbauraten des toten Zooplanktons sollen durch Laborversuche quantifiziert werden. Sowohl Feld-, Mesokosmos- und Labordaten sollen für ein erweitertes Modell zur Vorhersage der Retentionszeit der Zooplanktonkörper in der Wassersäule und deren Beitrag zum Kohlenstoffkreislauf verwendet werden. Verschiedene Modellszenarien fokussieren auf die Rolle von Umweltfaktoren für das Absinken und den Abbau von totem Zooplankton und deren mögliche Veränderungen durch klimabedingte Erwärmung des Seenhypolimnions.

Teilprojekt A 04: Aufklärung und Quantifizierung von mikrobiellem Nährstoffkreislauf durch die Messung der wichtigsten funktionellen Proteine

Das Projekt "Teilprojekt A 04: Aufklärung und Quantifizierung von mikrobiellem Nährstoffkreislauf durch die Messung der wichtigsten funktionellen Proteine" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Molekulare Systembiologie durchgeführt. Unsere Arbeiten werden quantitative Daten über die beteiligten metabolischen Wege und die Aktivität spezifischer Bakteriengruppen in Abhängigkeit von metabolischen Signaturen an der Erdoberfläche liefern. Wir tragen damit zum besseren Verständnis der mikrobiellen Aktivität und der Ökosystemleistungen im Hainich CZE bei. Unsere Arbeiten umfassen folgende Teilaspekte: (1) gerichtete proteomische Ansätze zur Quantifizierung von Schlüsselenzymen des Stickstoff- und Kohlenstoffkreislaufes in den Grundwasserleitern, (2) Aufklärung von bakteriellen Subpopulationen sowie die funktionelle Bedeutung beim Stickstoff- und Kohlenstoffkreislauf in Kombination mit Durchflusszytometrie, sowie (3) die proteomische Analyse der metabolischen Markierung durch den Einsatz von isotopenmarkiertem Wasser. Wir werden mit unseren Forschungsbeiträgen wichtige Hinweise zum besseren funktionalen Verständnis von biogeochemischen Stoffkreisläufen in der Natur liefern.

Teilprojekt: Kopplung von Totholzabbau und Stickstoffkreislauf: Diversität und Funktion von Diazotrophen (Woodstock)

Das Projekt "Teilprojekt: Kopplung von Totholzabbau und Stickstoffkreislauf: Diversität und Funktion von Diazotrophen (Woodstock)" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Fachgruppe Geowissenschaften, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Lehrstuhl für Bodenökologie durchgeführt. Totholzstämme repräsentieren eine kohlenstoff- (C) und energiereiche aber zugleich stickstoff-(N)arme Ressource in Waldökosystemen. Biologische N2-Fixierung durch freilebende diazotrophe Mikroorganismen trägt zur N-Anreicherung im Totholz bei. Über die Funktion der Diazotrophen für die N-Versorgung von totholzbewohnenden Organismen und für den Totholzabbau ist bislang wenig bekannt. In den Biodiversität-Exploratorien existieren unterschiedliche Bedingungen für diazotrophe Mikroorganismen durch Totholzstämme von 13 Baumarten, die im BeLongDead-Experiment auf 30 Flächen exponiert sind. Ein Ziel des Projektantrags ist den Beitrag der N2-Fixierung zur N-Anreicherung zu quantifizieren und die aktiven diazotrophen Gemeinschaften in den Totholzstämmen des BELongDead-Experiments zu identifizieren. Ein weiteres Ziel ist die experimentelle Überprüfung von Einflussfaktoren auf die N2-Fixierung, Quantität und Diversität der aktiven diazotrophen Gemeinschaft und auf den Transfer von fixierten N zu holzabbauenden Mikroorganismen. Unsere Hypothesen sind, (1) N2-Fixierungsrate und Diversität von Diazotrophen im Totholz unterscheiden sich zwischen den 13 Baumarten, der Intensität des Forstmanagements und den Exploratorien, (2) diazotrophe Gemeinschaften und N2-Fixierung unterscheiden sich entlang des radialen Gradienten in den Totholzstämmen von außen nach innen, (3) Diversität und Aktivität von Diazotrophen und holzabbauenden Pilzen sind stark assoziiert aufgrund ihrer gegenseitigen Abhängigkeit von C und N Ressourcen. Die letztere Beziehung moduliert die Aktivität und Zusammensetzung von diese Gemeinschaften im initialen und forstgeschrittenen Abbaustadium. Ferner testen wir die Hypothese, dass (4) externe N-Quellen die N2-Fixierung und die Quantität von Diazotrophen reduzieren. Zur Überprüfung der Hypothesen werden wir innovative und etablierte Methoden sowie Felduntersuchungen und Laborexperimente kombinieren. N2-Fixierungsraten werden mit dem 15N2 Ansatz und die funktionellen nifH-Gene mit spezifischer quantitativer PCR und Amplicon-Sequenzierung bestimmen. Struktur und Aktivität der diazotrophen Gemeinschaft werden mit einer Bromodeoxyuridintrennung sowie dem Stabilen Isotopen Beprobungsansatz (SIP) von 15N-markierter RNA analysiert, und beide Ansätze mithilfe der Amplicon-Sequenzierung kombiniert. Schließlich wird der Einfluss verschiedener Einflussfaktoren Parameter auf die Struktur und Aktivität der diazotrophen Gemeinschaft untersucht. Unsere Expertisen ermöglichen es die Wechselwirkungen zwischen N2-Fixierung, Abundanz und Diversität der Diazotrophen und kontrollierenden Faktoren für den Totholzabbau neu zu bewerten. Durch die Zusammenarbeit in einem koordinierten und vollständig replizierten Experiment mit 30 Waldökosystemen erwarten wir belastbare Ergebnisse mit großer wissenschaftlicher Bedeutung und Nutzen für die Totholzforschung.

Teilprojekt: Der Einfluss von Landnutzungsintensitäten auf die Diversität von Viren in Grünlandböden und deren Bedeutung als Steuergrösse für die Zusammensetzung mikrobieller Populationen und deren Funktion (KiWion)

Das Projekt "Teilprojekt: Der Einfluss von Landnutzungsintensitäten auf die Diversität von Viren in Grünlandböden und deren Bedeutung als Steuergrösse für die Zusammensetzung mikrobieller Populationen und deren Funktion (KiWion)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Umweltmikrobiologie durchgeführt. Unser Wissen zur Ökologie und Bedeutung von Mikroorganismen in Böden ist umfassend. Dies gilt im Gegensatz dazu nicht für die Ökologie der Viren. Erkenntnisse dazu hinken dem Kenntnisstand aus aquatischen Lebensräumen weit hinterher. Böden beherbergen eine große Anzahl an Viren und das Viren - Wirt Verhältnis liegt meist deutlich über jenem in aquatischen Systemen. Unterschiede in den Virenpopulationen können teilweise auf unterschiedliche Bodencharakteristika (pH, Wassergehalt, Anteil an organischem Material) erklärt werden. Dies lässt den Schluss zu, dass Unterschiede in der Landnutzung entsprechend die Virenabundanz als auch Viren - Wirt Interaktionen beeinflussen. In Böden tragen bis zu 68% aller Bakterien induzierbare Prophagen, ein Hinweis darauf, dass die Heterogenität im Boden und die ungleiche Verteilung der Mikroorganismen eine lysogene Vermehrung von Viren selektiert. Dies hat zur Folge, dass der Austausch von genetischer Information zwischen Virus und Wirt vorwiegend durch Transduktion stattfindet. Bis dato analysierte Virenmetagenome aus dem Boden bestanden bis zu 50% aus transduzierten Genen prokaryotischen Ursprungs. Obwohl davon ausgegangen werden kann, dass Viren im Boden, wie für aquatische Lebensräume gezeigt, einen signifikanten Einfluss auf die räumliche und zeitliche Dynamik ihrer Wirte (Killing the Winner Hypothese) und deren kontinuierliche Anpassung (Red Queen Hypothese), wichtige Ökosystemfunktionen und biogeochemische Prozesse haben, kennen wir die Art und Häufigkeit der Interaktionen nicht und empirische Daten fehlen. Wir postulieren, dass Transduktion eine wichtige Rolle für die Resilienz von Böden unter intensiver Landnutzung spielt, da in diesen Böden i) die mikrobielle Diversität vergleichsweise niedrig ist, was zu einer erhöhten Sensitivität gegenüber Veränderungen in den Umweltbedingungen führt. Andererseits, ii) hat die durch Düngung erhöhte spezifische Aktivität von Mikroorganismen eine erhöhte Transduktionsrate zur Folge, da Viren für ihre Vervielfältigung auf metabolisch aktive Wirte angewiesen sind. Um unsere Hypothese zu überprüfen, werden wir an 150 Standorten der Biodiversitäts-Exploratorien und im Detail an einer Auswahl an Grünlandstandorten mit unterschiedlicher Intensität der Bewirtschaftung Untersuchungen durchführen. Analysiert wird die Beziehung zwischen Virenabundanzen und VBRs mit der Bewirtschaftung, der Vegetationsperiode und den vorherrschenden Umweltbedingungen. Zusätzlich untersuchen wir mit Hilfe moderner molekularer Methoden die Zusammensetzung der Virengemeinschaften und ihre Diversität, sowie viren-assoziierte Funktionen prokaryotischen Ursprungs. Experimente zu Virus-Wirt Interaktionen und die Analyse von CRISPR like structures in den prokaryotischen Wirten werden Erkenntnisse zu der Ökologie bakterieller Gemeinschaften liefern. Nicht zuletzt werden wir Viren von abundanten Bodenbakterien (z.B. Pseudomonaden) für vergleichende Genomanalysen und Kreuzinfektionsversuche isolieren.

1 2 3 4 514 15 16