API src

Found 4 results.

Untersuchung zur Verbesserung der Bioverfuegbarkeit von polycyclischen aromatischen Kohlenwasserstoffen (PAH) und oekotoxikologische Bewertung biotechnologisch sanierter Boeden mit hohen PAH-Konzentrationen (Projektphase I)

Das Projekt "Untersuchung zur Verbesserung der Bioverfuegbarkeit von polycyclischen aromatischen Kohlenwasserstoffen (PAH) und oekotoxikologische Bewertung biotechnologisch sanierter Boeden mit hohen PAH-Konzentrationen (Projektphase I)" wird vom Umweltbundesamt gefördert und von Biochemisches Institut für Umweltcarcinogene durchgeführt. In einer Vorstudie (Phase I) soll geklaert werden, ob (1) stabile Stoffwechselprodukte beim Abbau einzelner PAH entstehen, die sich bei der Bodensanierung anreichern und (2) das zur Verbesserung der Bioverfuegbarkeit der PAH in den Boden eingebrachte Coffein durch die verwendeten Mikroorganismen abgebaut wird.Fuer die hier beschriebenen Stoffwechseluntersuchungen wurde der Pilz Mucor circinelloides verwendet. Pyren,Chrysen und Benzo(a)pyren werden durch Mucor zu hydroxylierten Produkten abgebaut. So bildet sich z.B. aus Pyren das 1-Hydroxypyren und hieraus weiter 1,6- u. 1,8-Dihydroxypyren und schliesslich ein nicht naeher charakterisiertes Trihydroxyderivat. Das eingesetzte Pyren wird von Mucor innerhalb von 28 Tagen praktisch vollstaendig umgesetzt, wobei der halbe Umsatz nach ca. 4-5 Tagen erreicht wird. Aus Chrysen entsteht als Hauptprodukt 2-Hydroxychrysen neben weiteren Isomeren. Wie beim Pyren werden daraus mindestens 6 Phenole gebildet. Aus BaP werden ebenso zunaechst mehrere isomere Phenole gebildet, die dann weiter zu Diphenolen und Polyphenolen abgebaut werden. (Hauptkomponenten: 1- u. 3-OH-BaP). Ferner konnten 7-,8-,9-,10- und 12-Hydroxy-BaP identifiziert werden. Daneben fanden sich 5 Diphenole. Nach ca. 5 Tagen war ca. die Haelfte des BaP verstoffwechselt. Die aus Pyren, Chrysen und BaP enstehenden Polyphenole erwiesen sich als sehr instabil. Coffein wurde auch nach 28 Tagen unter den gewaehlten Inkubationsbedingungen nicht abgebaut.

Pilzsekretome zum effizienten Ligninaufschluss

Das Projekt "Pilzsekretome zum effizienten Ligninaufschluss" wird vom Umweltbundesamt gefördert und von Technische Universität Dortmund, Lehrstuhl Technische Biochemie durchgeführt. In Deutschland fallen im Rahmen der landwirtschaftlichen Produktion, der Holzverarbeitung und der Papierherstellung jährlich tausende Tonnen an Stroh- und Holzabfällen an. Diese verholzten Biomaterialien lassen sich allerdings nicht direkt verarbeiten, da die Hauptbestandteile der pflanzlichen Zellwand (Cellulose, Hemicellulosen und Lignin) ein komplexes und widerstandsfähiges, chemisch nur schwer zugängliches Netzwerk bilden. Höhere Pilze besitzen eine in der Natur einzigartige Ausstattung an extrazellulären Enzymen (das Sekretom), welche dieses Netzwerk unter schonenden und umweltkompatiblen Bedingungen aufzuschließen und damit die verschiedenen ökonomisch interessanten Grundbestandteile zugänglich zu machen vermag. In einem neuartigen interdisziplinären Projektansatz soll das extrazelluläre Enzymsystem zweier ausgewählter Pilze qualitativ und quantitativ untersucht werden. Um den in der Natur hocheffizient ablaufenden Kohlenstoffkreislauf abzubilden und gezielt für die biotechnische Verwertung von nachwachsenden Rohstoffen nutzbar zu machen, werden die Instrumentarien der Biologie, der Chemie und der Verfahrenstechnik kombiniert. Durch die Produktion der Schlüsselenzyme in Pilzzellkulturen wird ein enzymatischer Werkzeugkasten generiert, der für die Bereitstellung von Spezialchemikalien, zur Zellstoffbleichung (Papierherstellung) und zur Produktion von Bioethanol eingesetzt werden kann. Die im Rahmen des Projektes gewonnenen Erkenntnisse sind von grundlegender Bedeutung und richtungweisend für zukünftige Forschungsvorhaben. Durch eine sich gegenseitig ergänzende Kombination von Enzympräparaten verschiedener Pilze sowie kommerzieller Enzyme wurden erste effektive Enzymcocktails generiert, mit deren Hilfe die partielle Zerlegung von Rapsstroh unter schonenden und umweltfreundlichen Bedingungen gelungen ist. Die Schlüsselenzyme des Substrat-Aufschlusses von P. sapidus und X. polymorpha wurden massenspektrometrisch identifiziert und können nun aus cDNA-Banken kloniert werden. Im Fall von X. polymorphabesteht noch weiterer Forschungsbedarf; zwar ist es gelungen enzymatische Schlüsselaktivitäten anhand photometrischer Tests zu identifizieren, doch konnte aufgrund fehlender Sequenzinformationen in den verfügbaren Datenbanken keine eindeutige Zuordnung der gefundenen Proteinfragmente erfolgen. Dennoch wurde durch das vorliegende Projekt die Grundlage für eine zukünftige heterologe Expression der erforderlichen Schlüsselenzyme gelegt. Diese wiederum bildet die Voraussetzung für den industriellen Einsatz von maßgeschneiderten Enzymcocktails im größeren Maßstab. Durch einen gezielten und gerichteten enzymatischen Aufschluss des Lignocellulose-Polymers wird eine stoffliche Verwertung der entstehenden aromatischen Ligninfragmente möglich werden. Zur strukturellen Charakterisierung dieser Lignin-Abbauprodukte sollen zukünftig spezielle massenspektrometrische und chromatographische Methoden sowie moderne NMR-spektroskopische Verfahren zum Einsatz kommen.

Rasterröntgenmikroskopische Untersuchungen zum Abbau von Lignocellulose durch cellulolytische Bodenbakterien

Das Projekt "Rasterröntgenmikroskopische Untersuchungen zum Abbau von Lignocellulose durch cellulolytische Bodenbakterien" wird vom Umweltbundesamt gefördert und von Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V., Institut für Landschaftssystemanalyse durchgeführt. Das Ziel der Projektarbeiten ist, mit Hilfe von rasterröntgenmikroskopischen Techniken eine Analyse der Aktivitäten von Bakterien beim Abbau von Lignocellulose in situ zu ermöglichen. Hierzu sollen ausgewählte Isolate einer Sammlung von Bodenbakterien verwendet werden, die sich in ihrer Leistung beim Abbau verschiedener Cellulosederivate (löslich, kolloidal, nativ bzw. hochkristallin) in vitro unterscheiden. Zumnächst sind Kulturbedingungen und methodische Aspekte zu optimieren, bevor die Aktivitäten der Isolate in situ analysiert werden können.

Auswirkungen von Mischprozessen auf die Abbauleistung und die Verteilung von Mikroorganismen in stationären und nicht-stationären Kontaminationsverfahren

Das Projekt "Auswirkungen von Mischprozessen auf die Abbauleistung und die Verteilung von Mikroorganismen in stationären und nicht-stationären Kontaminationsverfahren" wird vom Umweltbundesamt gefördert und von Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH in der Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., Institut für Grundwasserökologie durchgeführt.

1