Das Projekt "Grundlagen zur nachhaltigen Entwicklung von Oekosystemen bei veraenderter Umwelt - Teilprojekt A9: Bedeutung verschiedener Wurzelzonen fuer die Ionen- und Wasseraufnahme von Altfichten" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Bayreuther Institut für Terrestrische Ökosystemforschung, Lehrstuhl für Bodenökologie durchgeführt. Antrag 1997 : Die geplanten Arbeiten sollen detailliertere Erkenntnisse zur Ernaehrung von Altfichten auf sauren Standorten sowie eine verbesserte Datengrundlage zur Modellierung der Naehrstoff- und Wasseraufnahme von Fichten liefern. Im Rahmen der bisherigen Projektfoerderung wurden Methoden zur hochaufloesenden in-situ-Gewinnung und Analyse von Bodenloesungen erarbeitet. Diese Methoden sollen nun im Freiland zur Erfassung von Gradienten der Bodenloesungschemie im Rhizosphaerenbereich von Altfichten eingesetzt werden. Dabei steht die Frage nach der Bedeutung aelterer, bereits suberinisierter Wurzeln fuer die Naehrstoff- und Wasserversorgung der Baeume im Vordergrund. Zur Lokalisierung und Quantifizierung der Naehrstoffaufnahme verschieden alter Wurzelabschnitte werden sowohl in-situ Versuche mit stabilen Isotopen (25Mg, 41K, 44Ca), als auch Versuche mit Freilandwurzelkammern durchgefuehrt. Alle Arbeiten erfolgen auf der Versuchsflaeche Coulissenhieb, wo bereits existierende sowie neu anzulegende Wurzelfenster mit Mikrosaugkerzen bestueckt werden sollen. Da Mykorrhizapilze in signifikanter Weise zur Naehrstoffversorgung von Fichten beitragen, soll deren Einfluss auf die mikroskalige Verteilung von Naehrionen ebenfalls in die Untersuchungen einbezogen werden. Zwischenbericht 1999 : Zur Quantifizierung der Wasser- und Naehrstoffaufnahme aelterer, bereits suberinisierter Wurzeln wurden Freilandwurzelkammern entwickelt. Diese konnten an einer Altfichte der Versuchsflaeche Coulissenhieb/Waldstein an verschieden alten Grobwurzelabschnitten (Wurzeldurchmesser 0,2-4,6 cm) installiert werden. Nach der Befuellung mit einer definierten Naehrloesung (mit variierendem N-Angebot) wurde die Volumen- und Konzentrationsaenderung der Kammerloesung ueber mehrere Wochen waehrend der Vegetationsperiode ermittelt. Gleichzeitig wurde an einigen Wurzelabschnitten der Xylemmassenfluss gemessen. Versuche mit stabilen Isotopen (44Ca, 41K, 25Mg) dienten der naeheren Lokalisierung der Naehrstoffaufnahme. Dazu wurden die Wurzeln nach einer Applikationszeit von zwei Wochen aus der Kammer entnommen und der Verbleib der stabilen Isotope im Wurzelgewebe verfolgt. Die neu entwickelten Wurzelkammern haben sich im Freilandeinsatz bewaehrt. Mit dieser Methode konnte fuer alle untersuchten Grobwurzelsegmente eine signifikante Wasseraufnahme nachgewiesen werden. Die taeglichen Aufnahmeraten lagen zwischen 2-24 myl/cm2 Wurzeloberflaeche und sanken mit steigendem Wurzeldurchmesser. Alle Wurzelklassen zeigten eine aehnliche Entwicklung der K-, Ca- und Mg-Konzentrationen in der Kammerloesung: K haeufig starker Anstieg (Auswaschung aus dem Wurzelgewebe), Ca i.d.R. Abnahme, Mg keine deutliche Konzentrationsaenderung. Bei gleichzeitigem Angebot von NH4-N und NO3-N war eine bevorzugte NH4-Aufnahme zu erkennen, die in einer Absenkung der pH-Werte resultierte...
Das Projekt "Vorhersage und Erklaerung des Verhaltens und der Belastbarkeit von Oekosystemen unter veraenderten Umweltbedingungen - Teilprojekt N8: Mikroskalige Variabilitaet der Bodenloesungschemie" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Bayreuther Institut für Terrestrische Ökosystemforschung, Lehrstuhl für Bodenökologie durchgeführt. Ziel des Projektes war es, mikroskalige Variabilitaeten der Bodenloesungschemie, welche durch Bodenstruktur und Bodenhorizontierung sowie durch die Aktivitaet wachsender Wurzeln hervorgerufen werden, naeher zu untersuchen. Hierzu wurden Mikrosaugkerzen zur Probengewinnung und Kapillarelektrophorese fuer die mikroanalytische Ionenbestimmung eingesetzt. Im Bodenprofil konnten auf kleinster Distanz (kleiner 2 cm) deutliche Gradienten wesentlicher Parameter sowohl der Loesungs- als auch der Festphase festgestellt werden. Es trat in keinem Fall ein Konzentrationssprung an einer Horizontgrenze auf. Auch war es nicht moeglich Regulationsmechanismen zwischen Festphaseneigenschaften und Loesungsphase eindeutig aufzuklaeren. Der deutliche Konzentrationsunterschied zwischen Altot und Alhoch3+ in der Bodenloesung fuehrte zu Differenzen bei der Berechnung der Ca/Al-Verhaeltnisse, die in der Groessenordnung einer Zehnerpotenz lagen. Die von wachsenden Fichtenwurzeln induzierten Veraenderungen der Rhizosphaerenbodenloesung konnten sowohl im Freilandexperiment als auch im Rhizotronversuch in hoher zeitlicher Aufloesung verfolgt werden. Ein durchgaengiges Ergebnis war die Abnahme von Mghoch2+ und Alhoch3+ in Wurzelnaehe. Im Freiland zeigte sich, dass Rhizosphaereneffekte von Heterogenitaeten der Festphase und der Sickerwasserdynamik ueberlagert wurden. Die zeitliche und raeumliche Variabilitaet der Bodenloesungschemie laesst sich durch Mikrosaugkerzen und Kapillarelektrophorese gut erfassen, wobei als wesentlicher Vorteil die Moeglichkeit zur Bestimmung von Alhoch3+ (Al-Toxizitaet) zu nennen ist. Aufgrund der ausgepraegten mikroskaligen Variabilitaet des Naehrstoffangebotes und der deutlichen Konzentrationsgradienten in der Rhizosphaere kann die 'konventionelle' Charakterisierung eines Standortes (Standardsaugkerzen, Mischprobenanalysen) nur zur groben Abschaetzung des aktuellen Naehrstoffangebotes dienen.