API src

Found 3 results.

Reallabor zur Herstellung von FT-Treibstoffen und SNG aus Biomasse und biogenen Reststoffen für die Land- und Forstwirtschaft (FT/SNG-Reallabor)

Das Projekt "Reallabor zur Herstellung von FT-Treibstoffen und SNG aus Biomasse und biogenen Reststoffen für die Land- und Forstwirtschaft (FT/SNG-Reallabor)" wird vom Umweltbundesamt gefördert und von Technische Universität Wien, Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften (E166) durchgeführt. Bedeutung des Projekts für die Praxis: Der fortschreitende Klimawandel macht es unabdingbar, möglichst rasch konkrete und wirk-same Maßnahmen einzuleiten, um weitergehende Folgen für Mensch und Natur zu verhin-dern. Dabei sind alle Branchen gefordert, entsprechende Konzepte zu erarbeiten und auch rasch umzusetzen. Für die Land- und Forstwirtschaft heißt das kompakt zusammengefasst 'Raus aus dem Öl'. Der Energieverbrauch der Landwirtschaft ist mit 22 PJ vergleichsweise gering und entspricht auch nur etwa 10 % der derzeit bereits eingesetzten Bioenergie. Umso mehr stellt sich die Frage, warum sich nicht die Land- und Forstwirtschaft selbst die nötigen Treibstoffe und synthetisches Erdgas aus Holz bzw. aus biogenen Reststoffen und Abfällen produziert? Wesentliche Kernkomponenten der dafür erforderlichen Technologien wurden in Österreich entwickelt und sind nun - auch weitgehend industriell erprobt - großtechnisch verfügbar. Die erforderlichen Ressourcen in Bezug auf Holz und biogene Rest- und Abfallstoffe sollten vorhanden sein, wenn man davon ausgeht, dass die Wärme- und Stromerzeugung aus Biomasse künftig keine großen Wachstumsmärkte darstellen. Einerseits, da der Wärmebedarf in künftigen Gebäuden abnehmen und andererseits Strom aus anderen erneuerbaren Quellen kostengünstiger herstellbar sein wird. Für die Umstellung der kompletten Landwirtschaft auf Bioenergie wären etwa 1-2 Millionen Tonnen Biomasse bzw. biogenen Reststoffe und Abfälle erforderlich. Der dadurch von der Land- und Forstwirtschaft erzielbare Beitrag zur Reduktion des CO2-Ausstosses wäre beispielgebend für andere Branchen und auch die damit verbundene Reduktion des CO2 Footprints der Produkte könnte mittelfristig auch Wettbewerbsvorteile ergeben. Die Land- und Forstwirtschaft könnte damit ein erster Wirtschaftszweig mit voll-ständiger Energieversorgung aus erneuerbarer Energie sein. Mit einer derartigen Umstellung wird weiters die Abhängigkeit von zugekauften Treibstoffen (fossil als auch erneuerbar) minimiert und damit die Krisensicherheit erhöht. Aktuelle Ausgaben für den Diesel in der Land- und Forstwirtschaft liegen bei ca. 300 Millionen Euro bei Gesamtausgaben für die Energie in diesem Sektor von 500 Millionen Euro. Würde die Produktion der Treibstoffe und des Erdgases unter Einhaltung bestimmter Mindestgrößen für die Produktionsanlagen regional verteilt in Österreich erfolgen, würde zusätzlich eine maxi-male Wertschöpfung in den Regionen erzielt werden.

ERA-NET Wood Wisdom: Wood-based Aerogels (AEROWOOD)

Das Projekt "ERA-NET Wood Wisdom: Wood-based Aerogels (AEROWOOD)" wird vom Umweltbundesamt gefördert und von Universität für Bodenkultur BOKU Wien, Department für Chemie (DCH), Abteilung für Chemie nachwachsender Rohstoffe (Chemie NAWARO) durchgeführt. Die Rolle des österreichischen Partners im AEROWOOD-Projekt besteht in der Leitung von WP 4 'Lignin-basierende Hydro, Aero- und Carbon-Aerogele' und Mitarbeit in WP 2 'Cellulose-basierende Aerogele'. Hauptziele von WP 4 sind die (Weiter)-Entwicklung von nanoporösen Lignin-Aerogelen bzw. deren Überführung in Kohlenstoff-Aerogele. Durch Entwicklung neuer Aktivierungs-, Vernetzungs- und Pyrolysetechniken sollen Möglichkeiten zur gezielten Einstellung anwendungsrelevanter Parameter wie Porosität, Porengeometrie, Porengrößenverteilung, spezifische Oberfläche, Netzwerkstruktur oder mechanische Eigenschaften untersucht und für ausgewählte Anwendungen optimiert werden. Arbeitspaket WP 2: Aufgrund ihrer offenporigen Struktur und hohen spezifischen Oberfläche eignen sich Cellulose-Aerogele in besonderem Maße als Trägermaterial für bioaktive Verbindungen, Zellkulturen, magnetische Partikel, oder Sensormoleküle bzw. -partikel wie Quantum dots. Letztere sind kolloidale, meist Halbleiter-basierte Nanopartikel deren Größe typischerweise den Bohr-Radien der entsprechenden Exzitonen entspricht oder diese unterschreiten (ca. 2 to 15 nm). Tritt dieser Fall ein, wird die Beweglichkeit von Ladungen so weit eingeschränkt, dass die Ausbildung kontinuierlicher Bandstrukturen nicht mehr möglich ist und ihre Energie nur noch diskrete Werte annehmen kann. Aufgrund des unterschiedlichen Response von QDs auf Photonen unterschiedlicher Energie sowie der vielfältigen Möglichkeiten zur Variation ihrer optischen Eigenschaften können QDs für eine Vielzahl von Anwendungen eingesetzt werden, so z.B. als Fluoreszenzmarker für Tumorzellen, für die photodynamische Krebstherapie, in optoelektronischen Geräten, Photovoltaik-Zellen, als Sensoren für Schadstoffe oder bioaktive Verbindungen sowie zur Herstellung von echten 3D Displays. Im Rahmen von WP 2 sollen daher unter der Maßgabe der Verwendung von QDs vergleichsweise geringer Toxizität sowie der Verringerung des im Zusammenhang mit lungengängigen Nanopartikeln stehenden potentiellen Gesundheitsrisikos (semitransparente) Zellulose-Aerogele mit kovalent immobilisierten (CuInS2)(ZnS)/ZnS core-shell QDs hergestellt werden. Bezüglich der Immobilisierung der QDs werden zwei verschiedene Wege erprobt: A) Lösen der Zellulose in einem geeigneten Lösungsmittel, Zugabe einer bestimmten Menge an QDs, kovalente Verknüpfung der QDs mit der Zellulose, Koagulation der QD-modifizierten Zellulose durch Zugabe eines Antisolvents, Extraktion des Antisolvents mit CO2 unter überkritischen Bedingungen. B) Beladen von zuvor hergestellten Zellulose-Aerogelen mit QDs und anschließende kovalente Verknüpfung. Arbeitspaket WP 4: Lignin-Aerogele: Lignin ist ein wertvolles Nebenprodukt des Holzaufschlusses, fällt in großen Mengen bei der Herstellung von Zellstoff an, wird jedoch hier bisher vorwiegend und vergleichsweise ineffektiv zur prozessinternen Energiegewinnung genutzt. (Text gekürzt)

Next Generation Crude Production (NeCruPro)

Das Projekt "Next Generation Crude Production (NeCruPro)" wird vom Umweltbundesamt gefördert und von Universität für Bodenkultur Wien, Department für Agrarbiotechnologie, IFA-Tulln, Institut für Umweltbiotechnologie durchgeführt. Die Bereitstellung nachhaltiger Energieträger mit einem geringen CO2-Footprint und einer positiven Ökobilanz entlang der gesamten Produktionskette bildet eine der aktuell wichtigsten Herausforderungen für die Kraftstoffindustrie. In Zusammenarbeit mit der OMV werden in einem einjährigen Forschungsprojekt die Rahmenbedingungen für eine österreichweite, industrielle Produktion von Öl aus Mikroalgen sondiert, welches in Zukunft als zusätzliche, erneuerbare Rohstoffquelle dienen könnte. Im Projekt wird das Potential zur großtechnischen Produktion von Algenbiomasse im Bereich der österreichischen Grundstoffindustrie erhoben. Dabei sollen ölreiche Algen an energieintensiven Industriestandorten (z.B. Kraftwerken, Zementwerken oder Ziegelherstellern) dezentral unter Nutzung der vor Ort vorhandenen Rauchgas- und Abwasserquellen und der jeweils vorliegenden Infrastruktur produziert und vorbehandelt werden. Diese industriell produzierte Biomasse kann dann an der Raffinerie zentral aufbereitet und das Öl bzw. die Restbiomasse möglichst vollständig genutzt werden. Dadurch soll eine neuartige Produktions- und Logistikkette für die wirtschaftliche Produktion eines Rohölzusatzes aus Biomasse ('bio crude') mit teilweiser Schließung des CO2-Kreislaufes entwickelt werden ('Next Generation Crude Production').

1