API src

Found 1034 results.

Ackerlebensraum

Es wird die Vertragsart "Ackerlebensraum" dargestellt. Diese bezieht sich auf alle Ackerflächen auf Mineralböden (also nicht auf Moor- und Anmoorstandorten).

Ausprägung ausgewählter Funktionen von Böden in der Aue innerhalb der Kulisse der Hochwasserrisikogebiete

Auen sind weite Uferlandschaften an Flüssen und gelten als Zentren der Artenvielfalt. Die verschiedenen Bodensubstrate in grundwasserbeeinflussten Böden in der Aue bieten eine hohe Standort- und Lebensraumvielfalt für Pflanzen, Tiere und Bodenorganismen. Böden in der Aue übernehmen wichtige Funktionen im Landschaftshaushalt. Sie sind bedeutsame Wasserspeicher und fungieren als Sediment- und Nährstoffsenke in der Landschaft. Außerdem enthalten sie mehr organischen Kohlenstoff als Land- oder Mineralböden. Aus diesen Gründen sind solche Böden in der Aue im Land Brandenburg besonders schutzwürdig. Es wurden folgende Funktionen von Böden in der Aue bewertet • Kohlenstoffvorräte • Standorttypische Ausprägung und daraus die potenzielle Schutzwürdigkeit der Böden abgeleitet. Die Schutzwürdigkeit definiert sich im Bodenschutz über den Grad der Funktionserfüllung eines Bodens. Erfüllt ein Boden diese in besonderem Maße, so ist er besonders schutzwürdig. Diese Definition unterscheidet sich von anderen fachlichen Sichtweisen auf die Schutzwürdigkeit. Flächen, die nach der Einordnung sehr gering oder gering schutzwürdig sind, sind aus Bodenschutzsicht nicht per se Böden, die nicht schützenswert sind. Vielmehr erfüllen diese Böden zum Zeitpunkt der Bewertung die Bodenfunktionen nicht in besonderem Maße bzw. nur sehr eingeschränkt.

Luftkapazität im effektiven Wurzelraum

Die Auswertekarte bildet die abgeleiteten Werte zur Luftkapazität (LK) des Porenraumes des Gesamtbodens bei Feldkapazität des effektiven Wurzelraumes in Form von LK-Stufen ab. Diese Eingangsdaten sind für die Bewertung der Bodenteilfunktion "Filter und Puffer für Schadstoffe" erforderlich und wurden in Abhängigkeit von Feinbodenart und Grobbodenanteil, Trockenroh- und Lagerungsdichte des Bodens sowie Humusgehalten des Mineralbodens bzw. Substanzvolumen der Torfartengruppen nach dem sächsischen Bodenbewertungsinstrument (LfULG, 2009) ermittelt.

Kationenaustauschkapazität im effektiven Wurzelraum

Die Auswertekarte bildet die abgeleiteten Werte zur Kationenaustauschkapazität (KAK) eines Bodens in Form von KAK-Stufen ab. Diese Eingangsdaten sind für die Bewertung der Bodenteilfunktion "Filter und Puffer für Schadstoffe" erforderlich und wurden in Abhängigkeit von Feinbodenart und Grobbodenanteil sowie Humusgehalten des Mineralbodens mittels sächsischen Bodenbewertungsinstruments (LfULG, 2021) ermittelt.

Humusstatus der Böden

Humusstatus der Böden Der Humusanteil ist eine entscheidende Größe für die Struktur und die biologischen wie ökologischen Funktionen der Böden. Eine bundesweite Auswertung der organischen Substanz der Oberböden zeigt ein differenziertes Muster nach Bodenausgangsgesteinen, Landnutzung und Klimaregionen. Humusfunktionen und -gehalte von Böden Humus sichert eine Vielzahl von biologischen und ökologischen Bodenfunktionen und trägt maßgeblich zur Ausbildung der Bodenstruktur bei. Außerdem schafft er Lebensräume für Bodenorganismen und nimmt als Speichermedium für Kohlenstoff (C) eine zentrale Funktion im Kohlenstoff-Kreislauf ein. Humus ist Speicher-und Puffermedium für Wasser, Nähr-und Schadstoffe und steuert wesentlich das Nähr-und Schadstoffrückhaltevermögen der Böden. Im Allgemeinen sind die Humusgehalte in Oberböden größer als in Unterböden und besonders empfindlich gegenüber nutzungsbedingten und/oder durch den ⁠ Klimawandel ⁠ ausgelösten Veränderungen. Die Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) hat in dem Projekt „Gehalte an organischer Substanz in Oberböden Deutschlands“ etwa 9.000 ⁠ Bodenprofildaten ⁠ aus den Jahren 1985 bis 2005 ausgewertet und die typischen Humusgehalte in Oberböden ermittelt. Für die drei Hauptlandnutzungen Acker, Grünland und Wald/Forst werden in der folgenden Abbildung die Häufigkeitsverteilungen der Humusgehalte dargestellt. Höhere Humusgehalte in den Oberböden sind in der aufsteigenden Reihenfolge Acker – Forst – Grünland zu beobachten. Unter Ackernutzung liegen die Humusgehalte überwiegend bei 1-4 %, bei forstlicher Nutzung bei 2-8 % und unter Grünland bei 4-15 %. Dieses Muster zeigt sich auch in den Extremwerten: die Ackernutzung ist bei Humusgehalten kleiner als 1 % am häufigsten vertreten, bei Humusgehalten größer als 30 % findet sich hauptsächlich Grünland. ___ Düwel, O., Utermann, J. (2008): Humusversorgung der (Ober-)Böden in Deutschland – Status quo. Tagungsbeitrag zum Experten-Workshop „Ableitung von Möglichkeiten und Grenzen der C-Sequestrierung von Böden in Deutschland“ am 21. und 22. Mai 2007, Umweltbundesamt, Berlin. In: Hüttl, R., Prechtel, A, Bens, O. (Hrsg.) (2008): Zum Stand der Humusversorgung der Böden in Deutschland. Cottbuser Schriften zur Ökosystemgenese und Landschaftsentwicklung, Band 7, S. 115 – 120, Cottbus. * Humusklassen gemäß Bodenkundlicher Kartieranleitung der Adhoc-AG Boden (2005), 5. Auflage (KA5) Humusgehalte in Deutschland Die Karte „Gehalte an organischer Substanz in Oberböden Deutschlands“ stellt die räumliche Verteilung der Humusgehalte dar. Für diese mengenmäßige Flächeninformation im bundesweiten Maßstab wurden die Humusgehalten regional nach Bodenausgangsgesteinen, ⁠ Landnutzung ⁠ und Klimaregionen differenziert. Höhere Humusgehalte sind an der niederschlagreichen Nordseeküste, den Mittelgebirgen und dem Alpenraum zu erkennen. Sie nehmen graduell in Richtung des niederschlagsärmeren Ostens ab. Böden als Kohlenstoffspeicher Organischer Kohlenstoff ist der Hauptbestandteil von Humus. Das Thünen-Institut hat aus den bundesweiten Bodenzustandserhebungen (BZE) im Wald und in der Landwirtschaft eine nutzungsübergreifende Karte der Kohlenstoffvorräte erstellt (siehe Karte: „Nutzungsübergreifende Kohlenstoffvorräte“). Die Vorräte geben darüber Auskunft, welche Kohlenstoffmenge pro Hektar bis zu einer Tiefe von 1 Meter (90 cm im Wald) gespeichert ist. In Nord- und Süddeutschland treten die Gebiete mit den höchsten Kohlenstoffvorräten im Boden in dunkelbraunen Farben hervor. Dies sind Moorböden und weitere organische Böden, denen eine entscheidende Bedeutung zukommt: sie speichern besonders viel Kohlenstoff. Dieser belastet – solange er im Boden ist – nicht als klimawirksames Kohlendioxid (CO 2 ) die ⁠ Atmosphäre ⁠. Und das Beste daran: diese Ökosystemleistung des Bodens ist völlig kostenfrei. Darum gilt es, Böden mit sehr hohem Vorrat an organischem Kohlenstoff besonders zu schützen. Veränderungen des Humusgehalts auf Ackerböden In einem Forschungsprojekt des Umweltbundesamtes wurden erstmals bundesweite Daten der Boden-Dauerbeobachtung und des Klimas zusammengeführt. Die Auswertungen von 171 Boden-Dauerbeobachtungsflächen (BDF) wiesen an insgesamt 39 Ackerflächen signifikante Humus-Veränderungen über die Zeit nach. Die Ergebnisse aus den Auswertungen der BDF und Dauerfeldversuchen zeigten, dass signifikante Humus-Veränderungen im Zeitverlauf durch das Humus-Ausgangsniveau und den Tongehalt der Böden der Versuchsflächen gesteuert werden. Der Humus-Gehalt wird über den organischen Kohlenstoff (TOC: total organic carbon) im Boden bestimmt. Generell gibt es die höchste Zunahme der TOC-Gehalte bei niedrigen TOC-Anfangsgehalten der Flächen von unter 2 % und bei Tongehalten ab ca. 30 %. Die größten TOC-Abnahmen sind bei hohen TOC-Anfangsgehalten zwischen etwa 2 % und 3 % und bei Tongehalten unter 10 % zu verzeichnen. Der Einfluss längerfristiger Klimaänderungen auf die Humus-Entwicklung kann jedoch nicht ausgeschlossen werden und muss noch weiter untersucht werden. Den Abschlussbericht zum Forschungsvorhaben finden Sie hier . Humusspannen in Ackerböden Im Bundes-Bodenschutzgesetz (BBodSchG) wird in § 17 (Gute fachliche Praxis in der Landwirtschaft) gefordert, dass „der standorttypische Humusgehalt des Bodens, […] erhalten wird“. Konkrete Werte werden allerdings nicht genannt. Das Umweltbundesamt hat eine Methode entwickelt und veröffentlicht ( Forschungsprojekt , Gehaltsspannen von organischem Kohlenstoff in Ackerböden ), mit der basierend auf den Daten von Boden-Dauerbeobachtungsflächen (BDF) unter Ackernutzung Humusspannen abgeleitet werden können. Die Spannen sollen dem nachhaltigen Bodenschutz in Deutschland dienen und können beispielsweise von Landwirtinnen und Landwirten als orientierende Zielwerte für ihre Humusgehalte genutzt werden. Die Ableitungsmethode wird im Folgenden beschrieben. Der Humusgehalt wird durch unterschiedliche Faktoren beeinflusst. Im Forschungsprojekt konnte durch die Auswertung von Daten der Boden-Dauerbeobachtungsflächen unter Acker gezeigt werden, dass der Tongehalt, der Jahresniederschlag und die Jahresmitteltemperatur den größten Einfluss auf die Humusgehalte ausüben. Mit zunehmender Höhe der Jahresniederschläge und mit steigendem Tongehalt in den Böden steigt auch der Humusgehalt an. Humus enthält etwa 58 % organischen Kohlenstoff (C org ) und wird in Mineralböden in der Regel über den C org -Gehalt (in %) bestimmt. Die abgeleiteten Spannen beziehen sich auf den C org -Gehalt. Die Höhenlage ist eng mit dem Jahresniederschlag und der Jahresmitteltemperatur verknüpft. Daher fließt sie als Maß für den Klimaeinfluss auf die C org -Gehalte in die Ableitung der Gehaltsspannen mit folgende drei Höhenstufen ein: zwei Drittel der untersuchten BDF liegen in einer Höhe von 53 bis 453 m ü. NN, die beiden anderen Stufen haben somit die Grenzen <53 m ü. NN und >453 m ü. NN. Der Tongehalt als weiterer Einflussfaktor auf die C org -Gehalte wurde über die Bodenart in der Ableitung berücksichtigt. Im landwirtschaftlichen Bereich gilt die Einteilung der Bodenart nach Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA) als geeignet. Die Kategorien sind dabei: „leicht“ für sandige Böden, „mittel“ für lehmige Böden und „schwer“ für tonige Böden. Die C org -Gehaltsspannen wurden im Ergebnis aus fachlich abgestimmten statistischen Kenngrößen abgeleitet. In der Abbildung „Organische Kohlenstoff (C org )-Gehalte klassiert nach Höhenstufen und Bodenart“ ist die Verteilung der C org -Gehalte in einem Boxplot-Diagramm dargestellt. Diese Beschreibung erklärt die Abbildung genauer: „Der schwarze Balken in der Box entspricht dem ⁠ Median ⁠, das untere und obere Ende der Box stehen für das 25 bzw. 75 % Quartil. Die Differenz zwischen beiden ist der Interquartilabstand. Ausreißer sind mehr als das 1,5-fache des Interquartilabstands von den Box-Enden (25 % oder 75 % Quartil) entfernt und werden als einzelne Datenpunkte dargestellt. Die „Whiskers“ („Schnurrhaare“; dünne Linien, die von der Box ausgehen) zeigen das Minimum und Maximum der Datenverteilung ohne die Ausreißer an. Die Bereiche zwischen den orangen Balken (10 % und 90 % Quantilgrenzen) sind die Humusspannen der einzelnen Klassen ( Gehaltsspannen von organischem Kohlenstoff in Ackerböden ). Die aus der Abbildung resultierenden Unter- (10 % Quantil) und Obergrenzen (90 % Quantil) der C org -Gehaltsspannen sind in der Tabelle „Organische Kohlenstoff (C org )-Gehaltsgrenzen in Prozent“ aufgelistet. Organische Kohlenstoff (Corg)-Gehalte klassiert nach Höhenstufen und Bodenart Quelle: Umweltbundesamt Tab: Organische Kohlenstoff (Corg)-Gehaltsgrenzen in Prozent Quelle: Umweltbundesamt Tabelle als PDF Tabelle als Excel mit Daten Indikatoren zur Veränderung des Humusgehalts Allgemein beschreibt und bewertet ein ⁠ Indikator ⁠ den Zustand und die Entwicklung der Umwelt. Für die bundesweite Berichterstattung zum Boden existieren folgende zwei Indikatoren, die die Entwicklung des Humusgehalts bzw. der Humusvorräte darstellen: Humusgehalte in Acker- und Grünlandböden. Aufgrund der begrenzten räumlichen Repräsentativität wird der Indikator für die landwirtschaftlichen Nutzflächen im ⁠ DAS ⁠-⁠ Monitoring ⁠ als Fallstudie geführt. Er basiert auf Daten landwirtschaftlich genutzten Dauer-Beobachtungsflächen in Bayern (siehe Abb. BO-R-1: Humusgehalte von Acker- und Grünlandböden – Fallstudie). Humusvorrat in Waldböden. Der Indikator basiert auf dem absoluten Humusvorrat im mineralischen Oberboden von Wald- bzw. Forstböden und greift auf die Ergebnisse prozessbasierter Modellierungen zurück, die wiederum auf den bundesweit verfügbaren Daten der BZE (Wald) für die Treibhausgasberichterstattung des Bundes gründen (siehe Abb. FW-R-3: Humusvorrat in Waldböden). Beide Indikatoren wurden für das DAS-Monitoring entwickelt und sind im Monitoringbericht 2023 veröffentlicht. Der Indikator „Übereinstimmung mit standorttypischen Humusgehalten“ wird für die zukünftige Anwendung auf nationaler Ebene im Ergebnis des ⁠ UBA ⁠-Projekts „Ausbau und Weiterentwicklung bodenbezogener Indikatoren für die nationale und EU-weite Berichterstattung zur Klimaanpassung und zum Klimaschutz“ vorgeschlagen. Der Forschungsbericht wird Ende 2024 als UBA-Text veröffentlicht. Eine Bewertung erfolgt anhand der Entwicklung des Anteils von Messstellen unter-, inner- und oberhalb von Referenzspannweiten, die den Ist-Zustand der Humusgehalte von Böden unter Berücksichtigung unterschiedlicher natürlicher und bewirtschaftungsbedingter Standortfaktoren berücksichtigen. Auch der vom Thünen-Institut vorgeschlagene ⁠ Indikator ⁠ „kontextspezifische C org -Trend“ eignet sich grundsätzlich, um Fragestellungen über die Deutsche ⁠ Anpassungsstrategie ⁠ an den ⁠ Klimawandel ⁠ hinaus zu adressieren. Der Indikator basiert auf der zeitlichen Veränderung von Humus (Trend) und teilt diese Entwicklung anhand eines Referenzsystems in die Klassen „gut“ und „degradierend“ ein. Für das Referenzsystem, das wie beim oben beschriebenen Indikator die natürliche Variabilität von Humus berücksichtigt, wurden hypothetischen Erwartungsbereiche abgeleitet. Böden, deren Humusgehalte weit unter dem Erwartungswert liegen, sollen Humus aufbauen. In den Böden, die im zu erwartenden oder hohen Humusbereich liegen, soll dieser erhalten oder gesteigert werden. Beide Indikatorvorschläge wurden auf der UBA-Fachtagung „Bodenindikatoren im Kontext zur Klimaanpassung und zum Bodenschutz“ vorgestellt. Zum Weiterlesen ⁠ KomPass ⁠: Humusgehalte von Acker- und Grünlandböden KomPass: Humusvorrat in Waldböden Projekt: Klimaänderung kann Humusgehalt der Böden beeinflussen Thema: Bodenfunktionen BGR-Bericht: Gehalte an organischer Substanz in Oberböden Tipp: Wie Sie mit zwei Teebeuteln zum Boden- und Klimaforscher werden Publikation: Bodenzustand in Deutschland Publikation: Erarbeitung fachlicher, rechtlicher und organisatorischer Grundlagen zur Anpassung an den Klimawandel aus Sicht des Bodenschutzes Publikation: Screening-Methoden zum kostengünstigen Nachweis einer Versorgung mit organischer Substanz auf Ackerböden und Grünland

Emissionen der Landnutzung, -änderung und Forstwirtschaft

Emissionen der Landnutzung, -änderung und Forstwirtschaft Wälder, Böden und ihre Vegetation speichern Kohlenstoff. Bei intensiver Nutzung wird Kohlendioxid freigesetzt. Maßnahmen, die die Freisetzung verhindern sollen, richten sich vor allem auf eine nachhaltige Bewirtschaftung der Wälder, den Erhalt von Dauergrünland, bodenschonende Bearbeitungsmethoden im Ackerbau, eine Reduzierung der Entwässerung und Wiedervernässung von Moorböden. Bedeutung von Landnutzung und Forstwirtschaft Der Kohlenstoffzyklus stellt im komplexen Klimasystem unserer Erde ein regulierendes Element dar. Durch die Vegetation wird Kohlendioxid (CO 2 ) aus der Luft mittels ⁠ Photosynthese ⁠ gebunden und durch natürlichen mikrobiellen Abbau freigesetzt. Zu den größten globalen Kohlenstoffspeichern gehören Meere, Böden und Waldökosysteme. Wälder bedecken weltweit ca. 31 % der Landoberfläche (siehe FAO Report 2020 ). Bedingt durch einen höheren Biomassezuwachs wirken insbesondere ⁠ boreale ⁠ Wälder in der nördlichen Hemisphäre als Kohlendioxid-Senken. Nach § 1.8 des Klimarahmenabkommens der Vereinten Nationen werden Senken als Prozesse, Aktivitäten oder Mechanismen definiert, die Treibhausgase (THG), ⁠ Aerosole ⁠ oder Vorläufersubstanzen von Treibhausgasen aus der ⁠ Atmosphäre ⁠ entfernen. Im Boden wird Kohlenstoff langfristig durch sog. Humifizierungsprozesse eingebaut. Global ist etwa fünfmal mehr Kohlenstoff im Boden gespeichert als in der Vegetation (siehe IPCC Special Report on Land Use, Land Use Change and Forestry ). Boden kann daher als wichtigster Kohlenstoffspeicher betrachtet werden. Natürliche Mineralisierungsprozesse führen im Boden zum Abbau der organischen Bodensubstanz und zur Freisetzung von den Treibhausgasen CO 2 , Methan und Lachgas. Der Aufbau und Abbau organischer Substanz steht in einem dynamischen Gleichgewicht. Die voran genannten Prozesse werden unter der Kategorie/Sektor „Landnutzung, ⁠ Landnutzungsänderung ⁠ und Forstwirtschaft“ (kurz ⁠ LULUCF ⁠) bilanziert. Modellierung von Treibhausgas-Emissionen aus Landnutzungsänderung Jährliche Veränderungen des nationalen Kohlenstoffhaushalts, die durch Änderungen der ⁠ Landnutzung ⁠ entstehen, werden über ein Gleichgewichtsmodell berechnet, welches für Deutschland auf einem Stichprobensystem mit rund 36 Millionen Stichprobenpunkten basiert. Für die Kartenerstellung der Landnutzung und -bedeckung werden zunehmend satellitengestützte Daten eingesetzt, um so die realen Gegebenheiten genauer abbilden zu können. Die nationalen Flächen werden in die Kategorien Wald, Acker- sowie Grünland, Feuchtgebiete, Siedlungen und Flächen anderer Nutzung unterteilt (siehe auch Struktur der Flächennutzung ). Die Bilanzierung (Netto) erfolgt über die Summe der jeweiligen Zu- bzw. Abnahmen der Kohlenstoffpools (ober- und unterirdische ⁠Biomasse⁠, ⁠Totholz⁠, Streu, organische und mineralische Böden und Holzprodukte) in den verschiedenen Landnutzungskategorien. Allgemeine Emissionsentwicklung Die aktuelle Emissionsentwicklung ist für den Sektor ⁠ LULUCF ⁠ zunehmend dramatisch. In den letzten Jahren ist der Sektor von einer abnehmenden Netto-Kohlenstoffspeicherung im Wald sowie von hohen THG-Emissionen der organischen Böden des Acker- und Grünlands geprägt (Netto THG-Emissionen in 1990: rund +40 Mio. t CO 2 Äquivalente und in 2022: + 4 Mio. t CO 2 Äquivalente). Im Rahmen des novellierten Klimaschutzgesetzes (KSG) wird eine Schätzung für das Vorjahr Vorjahr 2023 vorgelegt. Diese liefert für LULUCF nur Gesamtemissionen, deren Werte als unsicher einzustufen sind. Die Werte liegen bei 3,6 Mio. t CO 2 Äquivalenten. Aus diesem Grunde werden in den folgenden Abschnitten nur die Daten der Berichterstattung 2024 für das Jahr 2022 betrachtet. Veränderung des Waldbestands Die Emissionen sowie die Speicherung von Kohlenstoff bzw. CO 2 für die Kategorie Wald werden auf Grundlage von Bundeswaldinventuren berechnet. Bei der Einbindung von Kohlenstoff spielt insbesondere der Wald eine entscheidende Rolle als Netto-Kohlenstoffsenke. In der Waldkategorie sind die Pools ⁠ Biomasse ⁠ (69,6%), mineralische Böden (21,8 %) und ⁠ Totholz ⁠ (8,6 %) ausschlaggebend. Zu den Emissionsquellen im Wald zählen Streu, Drainage organischer Böden, Mineralisierung und Waldbrände. Zusammen machen diese Emissionsquellen nur einen Anteil von 7,4 % an der Treibhausgasmenge des deutschen Waldes aus. In den Jahren 1990 und 2007 trafen auf Deutschland Orkane (2007 war es der Sturm Kyrill), die zu erheblichem Holzbruch mit einem daraus resultierenden hohen Sturmholzaufkommen in den Folgejahren führten (siehe dazu NIR ). In 1990 wurden rund -19,5 Mio. t CO 2 -Äquivalente im Wald an CO 2 -Emissionen gespeichert. Im Jahr 2022 waren es -39,7 Mio. t CO 2 -Äquivalente (siehe Tab. „Emissionen und Senken im Bereich ⁠ Landnutzung ⁠, ⁠ Landnutzungsänderung ⁠ und Forstwirtschaft“). Inwieweit die Ereignisse der letzten Jahre wie Stürme, ⁠ Dürre ⁠ und Insekten Einfluss auf den Kohlenstoffspeicher Wald haben, werden erst die Analysen der Bundeswaldinventur 2022 aufzeigen, deren Ergebnisse kontinuierlich ab dem Jahr 2023 (und der Berichterstattung 2025) im ⁠ LULUCF ⁠-Inventar berücksichtigt werden können. Offensichtlich ist aber: Der Zustand des deutschen Waldes ist zunehmend besorgniserregend. Treibhausgas-Emissionen aus Waldbränden Bei Waldbränden werden neben CO 2 auch sonstige Treibhausgase bzw. Vorläufersubstanzen (CO, CH 4 , N 2 O, NOx und ⁠ NMVOC ⁠) freigesetzt. Aufgrund der klimatischen Lage Deutschlands und der Maßnahmen zur Vorbeugung von Waldbränden sind Waldbrände ein eher seltenes Ereignis, was durch die in der Waldbrandstatistik erfassten Waldbrandflächen bestätigt wird. Das Jahr 2022 war ein überdurchschnittliches Waldbrandjahr im Vergleich zum langjährigen Mittel. Dies gilt sowohl hinsichtlich der Anzahl auftretender Waldbrände als auch in Bezug auf die jeweils betroffene Waldfläche pro Brand (siehe mehr zu Waldbränden ). Durch die Brände wurden ca. 0,28 Mio. t CO 2 -Äquivalente an Treibhausgasen freigesetzt. Werden nur die CO 2 -Emissionen aus Waldbrand (0,25 Mio. t CO 2 -Äquivalente) betrachtet, machen diese im Verhältnis zu den CO 2 -Emissionen des deutschen Gesamtinventars nur einen verschwindend kleinen Bruchteil aus. Veränderungen bei Ackerland und Grünland Mit den Kategorien Ackerland und Grünland werden die Emissionen sowie die Einbindung von CO 2 aus mineralischen und organischen Böden, der ober- und unterirdischen ⁠ Biomasse ⁠ sowie direkte und indirekte Lachgasemissionen durch Humusverluste aus Mineralböden nach ⁠ Landnutzungsänderung ⁠ sowie Methanemissionen aus organischen Böden und Entwässerungsgräben berücksichtigt. Direkte Lachgas-Emissionen aus organischen Böden werden im Bereich Landwirtschaft unter landwirtschaftliche Böden berichtet. Für die Landnutzungskategorie Ackerland betrugen im Jahr 2022 die THG-Gesamtemissionen 15,6 Mio. t CO 2 Äquivalente und fielen damit um 0,9 Mio. t CO 2 Äquivalente ≙ 6 % größer im Vergleich zum Basisjahr 1990 aus (siehe Tab. „Emissionen und Senken im Bereich ⁠ Landnutzung ⁠, Landnutzungsänderung und Forstwirtschaft“). Hauptquellen sind die ackerbaulich genutzten organische Böden (74,1 %) und die Mineralböden (21,2 %), letztere hauptsächlich infolge des Grünlandumbruchs. Die ⁠ anthropogen ⁠ bedingte Netto-Freisetzung von CO 2 aus der Biomasse (4,7 %) ist im Ackerlandsektor gering. Dominierendes ⁠ Treibhausgas ⁠ in der Kategorie Ackerland ist CO 2 (2022: 14,7 Mio. t CO 2 Äquivalente, rund 97 %). Die Landnutzungskategorie Grünland wird in Grünland im engeren Sinne, in Gehölze und weiter in Hecken unterteilt. Die Unterkategorien unterscheiden sich bezüglich ihrer Emissionen sowohl qualitativ als auch quantitativ deutlich voneinander. Die Unterkategorie Grünland im engeren Sinne (dazu gehören z.B. Wiesen, Weiden, Mähweiden etc.) ist eine CO 2 -Quelle, welche durch die Emissionen aus organischen Böden dominiert wird. Für die Landnutzungskategorie Grünland wurden Netto-THG-Emissionen insgesamt in Höhe von 22,1 Mio. t CO 2 Äquivalenten errechnet. Diese fallen um rund 6,7 Mio. t CO 2 Äquivalente ≙ 23 % niedriger als im Basisjahr 1990 aus. Dieser abnehmende Trend wird durch die Pools Biomasse und Mineralböden beeinflusst. Mineralböden stellen eine anhaltende Kohlenstoffsenke dar. Die zunehmende Senkenleistung der Mineralböden der Unterkategorie Grünland im engeren Sinne beträgt in 2022 -5,1 Mio. t CO 2 . Moore (organische Böden) Drainierte Moorböden (d.h. entwässerte organische Böden) gehören zu den Hotspots für Treibhausgase und kommen in den meisten Landnutzungskategorien vor. Im Torf von Moorböden ist besonders viel Kohlenstoff gespeichert, welches als Kohlenstoffdioxid freigesetzt wird, wenn diese Torfschichten austrocken. Bei höheren Wasserständen werden mehr Methan-Emissionen freigesetzt. Zusätzlich entstehen Lachgas-Emissionen. Im Jahr 2022 wurden aus Moorböden um die 53,4 Mio. t CO 2 Äquivalente an THG-Emissionen (CO 2 -Emissionen: 47,9 Mio. t CO 2 Äquivalente, Methan-Emissionen: 1,7 Mio. t CO 2 Äquivalente, Lachgas-Emissionen: 0,4 Mio. t CO 2 Äquivalente) freigesetzt. Das entspricht etwas mehr als 7 % der gesamten Treibhausgasemissionen in Deutschland im Jahr 2022. (siehe Abb. "⁠ Treibhausgas ⁠-Emissionen aus Mooren"). Die Menge an freigesetzten CO 2 -Emissionen aus Mooren ist somit höher als die gesamten CO 2 -Emissionen des Industriesektors (41,0 Mio. t CO 2 ). Landwirtschaftlich genutzte Moorböden Drainierte Moorböden werden überwiegend landwirtschaftlich genutzt. Die dabei entstehenden Emissionen aus organischen Böden werden deshalb in den Landnutzungskategorien Ackerland und Grünland im engeren Sinne (d.h. Wiesen, Weiden, Mähweiden) erfasst. Hinzu kommen die Lachgasemissionen aus den organischen Böden (Histosole) des Sektors Landwirtschaft. Insgesamt wurde für diese Bereiche eine Emissionsmenge von rund 43,0 Mio. t CO 2 -Äquivalente in 2022 (folgende Angaben in Mio. t CO 2 -Äquivalente: CO 2 : 38,6, Methan: 1,0 und Lachgas: 3,2) freigesetzt, was insgesamt einem Anteil von 80,5 % an den THG-Emissionen aus Mooren entspricht. Feuchtgebiete Unter der Landnutzungskategorie „Feuchtgebiete“ werden in Deutschland verschiedene Flächen zusammengefasst: Zum einen werden Moorgebiete erfasst, die vom Menschen kaum genutzt werden. Dazu gehören die wenigen, naturnahen Moorstandorte in Deutschland, aber auch mehr oder weniger stark entwässerte Moorböden (sogenannte terrestrische Feuchtgebiete). Zum anderen werden unter Feuchtgebiete auch Emissionen aus Torfabbau (on-site: ⁠ Emission ⁠ aus Torfabbauflächen; off-site: Emissionen aus produziertem und zu Gartenbauzwecken ausgebrachtem Torf) erfasst. Allein die daraus entstehenden CO 2 -Emissionen liegen bei rund 2,0 Mio. t CO 2 -Äquivalente. Im Inventar neu aufgenommen sind die Emissionen aus natürlichen und künstlichen Gewässern. Zu letzteren gehören Fischzuchtteiche und Stauseen ebenso wie Kanäle der Wasserwirtschaft. Durch diese Neuerung fließen nun Methanemissionen in das Treibhausgasinventar ein, die bislang nicht berücksichtigt wurden. Dadurch liegen nun die Netto-Gesamtemissionen der Feuchtgebiete bei 9,7 Mio. t CO 2 -Äquivalenten im Jahr 2022 und haben im Trend gegenüber dem Basisjahr 1990 um 10 % zugenommen. Diese Zunahme im Trend lässt sich auf eine zwischenzeitlich verstärkte Umwidmung von Grünland-, Wald- und Siedlungsflächen zurückführen. Nachhaltige Landnutzung und Forstwirtschaft sowie weitere Maßnahmen Im novellierten Bundes-Klimaschutzgesetz sind in § 3a Klimaziele für den ⁠ LULUCF ⁠-Sektor 2021 festgeschrieben worden. Im Jahr 2030 soll der Sektor eine Emissionsbilanz von minus 25 Mio. t ⁠ CO2 ⁠-Äquivalenten erreichen. Dieses Ziel könnte unter Berücksichtigung der aktuellen Zahlen deutlich verfehlt werden. Um dieses Ziel zu erreichen, sind ambitionierte Maßnahmen zur Emissionsminderung, dem Erhalt bestehender Kohlenstoffpools und der Ausbau von Kohlenstoffsenken notwendig. Im Koalitionsvertrag adressieren die Regierungsparteien diese Herausforderungen. Das ⁠ BMUV ⁠ hat bereits den Entwurf eines „Aktionsprogramm natürlicher Klimaschutz“ vorgelegt, das nach einer Öffentlichkeitsbeteiligung im letzten Jahr innerhalb der Regierung abgestimmt wird. Auf die Notwendigkeit für ambitionierte Klimaschutzmaßnahmen und die Bedeutung von naturbasierten Lösungen für den Klimaschutz hat das Umweltbundesamt in verschiedenen Studien (siehe hierzu Treibhausgasminderung um 70 Prozent bis 2030: So kann es gehen! ) hingewiesen Seit dem Jahr 2015 wird die Grünlanderhaltung im Rahmen der EU-Agrarpolitik über das sogenannte Greening geregelt (Verordnung 1307/2013/EU) . Das bedeutet, dass zum ein über Pflug- und Umwandlungsverbot Grünland erhalten und zum anderen aber auch durch staatliche Förderung die Grünlandextensivierung vorangetrieben werden soll. Die Förderung findet auf Bundesländerebene statt. In der Forstwirtschaft sollen Waldflächen erhalten oder sogar mit Pflanzungen heimischer Baumarten ausgeweitet und die verstärkte Holznutzung aus nachhaltiger Holzwirtschaft (siehe Charta für Holz 2.0 ) gefördert werden. Weitere Erstaufforstungen sind bereits bewährte Maßnahmen, um die Senkenwirkung des Waldes zu erhöhen. Des Weiteren werden durch das Bundesministerium für Ernährung und Landwirtschaft (⁠ BMEL ⁠) internationale Projekte zur nachhaltigen Waldwirtschaft, die auch dem deutschen Wald zu Gute kommen, zunehmend gefördert. Eine detailliertere Betrachtung dazu findet sich unter Klimaschutz in der Landwirtschaft . Die ⁠ Treibhausgas ⁠-Emissionen aus drainierten Moorflächen lassen sich verringern, indem man den Wasserstand gezielt geregelt erhöht, was zu geringeren CO 2 -Emissionen führt. Weitere Möglichkeiten liegen vor allem bei Grünland und Ackerland in der landwirtschaftlichen Nutzung nasser Moorböden, der sogenannten Paludikultur (Landwirtschaft auf nassen Böden, die den Torfkörper erhält oder zu dessen Aufbau beiträgt). Eine weitere Klimagasrelevante Maßnahme ist die Reduzierung des Torfabbaus und der Torfanwendung (siehe Moorklimaschutz ).

Bodengesellschaften 2020

Definition des Bodens Der Boden ist die an der Oberfläche entstandene, mit Luft, Wasser und Lebewesen durchsetzte sowie aus mineralischen und organischen Substanzen bestehende Verwitterungsschicht des obersten Teils der Erdkruste, die sich unter Einwirkung aller Umweltfaktoren gebildet hat. Natürliche Böden entstehen durch das Zusammenwirken von Ausgangsgestein, Klima, Wasser, Relief, Flora und Fauna. In Abhängigkeit von den jeweiligen Standortverhältnissen und Bodenbildungszeiträumen entwickeln sich unterschiedliche Bodentypen mit charakteristischem Profilaufbau und spezifischen physikalischen und chemischen Eigenschaften. Zusammen mit Luft, Wasser und Sonnenlicht ist der Boden die Lebensgrundlage für Pflanzen, Tiere und Menschen. Böden sind nicht nur Produktionsgrundlage für Nahrungs- und Futtermittel, nachwachsende Rohstoffe und Rohstoffquelle. Sie besitzen auch eine herausragende Bedeutung im Naturhaushalt aufgrund ihrer vielfältigen Funktionen und sind eine bedeutende natürliche Ressource. Böden sind: naturgegebener Lebensraum für Tiere und Pflanzen, Teil des Ökosystems mit seinen Stoffkreisläufen, Grundlage für die Erzeugung von Nahrungsmitteln, Futtermitteln und pflanzlichen Rohstoffen, Filter und Speicher für das Grundwasser, Baugrund als Standort und Träger baulicher Anlagen, prägendes Element der Natur und Landschaft sowie Archiv für Natur- und Kulturgeschichte. Böden werden aber auch durch menschliche Aktivitäten (z.B. in der Landwirtschaft oder bei der Errichtung von Bauwerken) umgelagert, verändert, versiegelt und zerstört. Böden stellen somit ein begrenztes und nicht erneuerbares Schutzgut dar, mit dem verantwortungsvoll umgegangen werden muss. Bodenbildung Die Bodenbildung ist ein natürlicher, an der Erdoberfläche beginnender und in die Tiefe fortschreitender Prozess. Die in Tab. 1 genannten Faktoren und Prozesse führen in Abhängigkeit von der Zeit zu Differenzierungen in Aufbau und Eigenschaften und zur Bildung unterschiedlicher Bodenhorizonte (-schichten). Somit können sich unterschiedliche Bodentypen (als Kombinationen von Bodenhorizonten) herausbilden. Der durch bodenbildende Prozesse aus dem Ausgangsgestein entstandene Boden ist ein Dreikomponenten- und Dreiphasengemisch aus festen, flüssigen und gasförmigen Bestandteilen: feste Bestandteile: mineralische Bestandteile wie Gesteinsfragmente, verschiedener Größe, Oxide, Salze, Kolloide, organische Bestandteile flüssige Bestandteile: Bodenwasser mit gelösten Nährstoffen und andere Elemente gasförmige Bestandteile: Bodenluft (Sauerstoff, Stickstoff, Kohlendioxid) Systematik der Böden Die Vielfalt der Böden wird in Abteilungen, Klassen, Bodentypen, Subtypen und Bodenformen systematisiert. Je nach Grundwasserstand werden folgende bodensystematische Abteilungen unterschieden: Terrestrische Böden (Landböden), Semiterrestrische Böden (halbhydromorphe Böden), Hydromorphe Böden (Grundwasserböden), Subhydrische Böden (Unterwasserböden) sowie Moore. Das Prinzip der Systematik wird an der Abteilung der Landböden, speziell an der Klasse der Braunerden, kurz verdeutlicht (vgl. Tab. 2). Die Bodenkundliche Kartieranleitung (1982, 1994, 2005 und 2024; = KA3, KA4, KA5, KA6) enthält eine ausführliche Beschreibung der Bodensystematik. Bodentypen werden als unter bestimmten Umweltbedingungen relativ häufig anzutreffende Stadien der Bodenentwicklung angesehen. Sie vereinigen Böden mit gleichem oder ähnlichem Profilaufbau (Horizontfolgen), was auf die in ihrer Gesamtwirkung gleichartigen Stoffumwandlungs- und Stoffverlagerungsprozesse zurückzuführen ist. Die häufigsten Böden in Berlin sind die mineralischen Böden mit weniger als 30 Masse-Prozent organischer Substanz. Sie sind z. T. durch einen mehr oder weniger mächtigen organischen Horizont (H-, L- oder O-Horizont, mit mehr als 30 Masse-Prozent organische Substanz, vor allem in Wäldern) überlagert. Die Bodentypen der Mineralböden untergliedern sich beginnend an der Geländeoberfläche in folgende Horizonte: mineralischer Oberbodenhorizont – A-Horizont mineralischer Unterbodenhorizont – B-Horizont mineralischer Untergrundhorizont – C-Horizont. Der mineralische Oberbodenhorizont (A-Horizont) zeichnet sich durch eine Akkumulation organischer Substanz und/oder Verarmung an mineralischer Substanz (Auswaschung von Ton, Huminstoffen, Eisen- und Aluminiumoxiden) aus. Stoffspezifische Anreicherungs- und Verlagerungsprozesse ermöglichen eine weitere Untergliederung des A-Horizonts. Diese Differenzierung in der Horizontbezeichnung wird mit den nachgestellten Kleinbuchstaben (z.B. Ah – h steht für eine Humusakkumulation, Al – l steht für Tonauswaschung) gekennzeichnet. Der mineralische Unterbodenhorizont (B-Horizont) zeigt durch Akkumulation von eingewaschenen Stoffen aus dem Oberbodenhorizont sowie durch Verwitterungs- und Umwandlungsprozesse (Verbraunung, Tonbildung usw.) gegenüber dem Ausgangsgestein eine andere Farbe und einen veränderten Stoffbestand. Eine weitere Differenzierung des B-Horizonts erfolgt analog dem A-Horizont (z.B. Bv – v steht für verwittert, verbraunt, verlehmt, Bt – t steht für tonangereichert). Der mineralische Untergrundhorizont (C-Horizont) wird durch das unter dem Boden liegende, relativ unveränderte Ausgangsgestein gebildet. Böden, die durch mehrere Stoffverlagerungs- oder Umwandlungsprozesse charakterisiert werden, weisen in ihrem Bodenprofil demnach mehrere übereinanderliegende A- und/oder B-Horizonte auf. Die Horizontabfolge ergibt das Horizontprofil, nach welchem die Differenzierung der Böden in Bodentypen erfolgt. Ein weiterer, hinsichtlich der Ausbildung von Bodentypen bestimmender Faktor ist der Einfluss des Grundwasserstandes. Die zeitweilige oder ständige Beeinflussung des Bodens durch das Grundwasser bewirkt die Ausbildung von Gleymerkmalen (z.B. Rost-, Bleichflecke) in terrestrischen und semiterrestrischen Bodentypen. Die Tiefenlage der Gleymerkmale findet Eingang in die Benennung des Bodentyps, z.B. der Braunerde: < 40 cm – Braunerde-Gley 40 – 80 cm – Gley-Braunerde 80 – 130 cm – vergleyte Braunerde. Anthropogene Veränderung des Bodens Der Grad der anthropogenen Veränderung des Bodens nimmt mit fortschreitender Technisierung sowie wachsender flächenhafter Inanspruchnahme zu. Heutzutage gibt es kaum noch unberührte und in ihrem Horizontaufbau anthropogen unbeeinflusste Böden. Wo die Horizontabfolge der Böden trotz Nutzungsüberprägung durch den Menschen weitgehend erhalten blieb, wie zumeist bei forstwirtschaftlicher Nutzung, werden die Böden als naturnahe Böden, bei Zerstörung der Horizontabfolge als anthropogene Böden eingestuft. Eine eindeutige Zuordnung der Böden in diese zwei Gruppen erweist sich aufgrund des fließenden Übergangs anthropogener Überprägung als äußerst schwierig. Bei landwirtschaftlicher Nutzung sind in der Regel die oberen 20 bis 30 cm des Bodenprofils durch Pflügen durchmischt. Bei Nutzung als Truppenübungsplatz oder Friedhof können naturnahe Böden z. T. in kleinräumigem Wechsel mit stark anthropogen veränderten Böden erhalten bleiben. Ohne entsprechende Bodenuntersuchungen ist der Grad der anthropogenen Beeinflussung bzw. der Grad der Zerstörung des Bodens schwer einschätzbar. Ebenso kommt es bei der jeweiligen Nutzung darauf an, ob das zu betrachtende Gebiet durch die Nutzung nur teilweise oder flächendeckend in Anspruch genommen wurde. Entwicklungsgeschichtlich gibt es relativ “alte” und relativ “junge” Böden. Von der Nutzung wenig beeinflusste Böden haben einen Entwicklungszeitraum bis zu einigen tausend Jahren. Der wesentliche Entstehungszeitraum der Böden in der Jungmoränenlandschaft des Berliner Raumes ist das Holozän, das vor rd. 12.000 Jahren begann. Günstige klimatische Verhältnisse sowie die damit verbundene rasche Ausbreitung der Vegetation bewirkten eine verstärkte Bodenbildung. Während der langen Entwicklungszeit dieser Böden liefen verschiedene bodenbildende Vorgänge ab, die sich in der Ausbildung typischer Horizonte widerspiegeln. Deshalb ist die Horizontabfolge dieser Bodentypen wesentlich differenzierter als die der relativ “jungen” Böden. Der Boden ist unvermehrbar. Seine Nutzung ist häufig mit einer Veränderung der ursprünglichen ökologischen Bedingungen verbunden und kann zu schwerwiegenden Gefährdungen der Funktionsfähigkeit oder gar des Bestands des Bodens führen. Die Ressource Boden ist aufgrund fortschreitender Versiegelung in ihrer Quantität gefährdet. Die Intensität der Inanspruchnahme des Bodens als Industrie-, Gewerbe-, Verkehrs- und Wohnfläche nimmt immer weiter zu. Ehemals landwirtschaftlich genutzte, unversiegelte und in ihrem Bodenaufbau weitgehend naturnahe Böden der Stadtrandbereiche wurden durch Bauvorhaben umgelagert, durchmischt, großflächig versiegelt und zerstört. Belastungen durch Schadstoffe verändern den Boden in seiner Qualität . Schadstoffeinträge durch ungeregelte Abfallentsorgung, Unfälle, Leckagen und unsachgemäße Lagerung sowie Schadstoffeinträge aus den Emissionen von Industrie, Gewerbe und Verkehr schädigen die Böden irreparabel. Die eingetragenen Schadstoffe können direkt und indirekt zu einer Gefährdung aller Organismen einschließlich des Menschen führen. Im Vordergrund steht dabei die Aufnahme von Schadstoffen über den Nahrungskreislauf, aber auch der direkten oralen Bodenaufnahme (insbesondere durch Kleinkinder) muss Beachtung geschenkt werden. Der Boden kann nur eine bestimmte Menge an Schadstoffen speichern und filtern. Wird seine Speicher- und Filterkapazität überschritten, können sie den Boden ungehindert passieren und ins Grundwasser gelangen. Gerade in einem Ballungsraum wie Berlin treten die Probleme hinsichtlich des Flächenverbrauches, u. a. durch Versiegelung (quantitative Gefährdung), sowie der stofflichen Belastung des Bodens durch Altlasten und andere Bodenverunreinigungen (qualitative Gefährdung) konzentriert auf. Da der Boden nicht vermehrbar ist und stark beeinträchtigte Böden kaum in ihren ursprünglichen Qualitäten wiederherstellbar sind, ist der Schutz verbliebener naturnaher Böden dringend notwendig. Bodenschutz Diskussionen und Überlegungen zum Bodenschutz sind auf Bundes- und auf Landesebene erst zu Beginn der 1980er Jahre in Gang gekommen. Gesetzlich verankert wurde der Schutz des Bodens mit Inkrafttreten des Bundesbodenschutzgesetzes im Jahre 1998. Dieses Gesetz wurde 2004 durch ein Berliner Landesgesetz ergänzt. Ziel des Berliner Bodenschutzgesetzes ist es, “den Boden als Lebensgrundlage für Menschen, Tiere und Pflanzen zu schützen, schädliche Veränderungen abzuwehren und Vorsorge gegen das Entstehen neuer zu treffen”. Nachhaltige Einwirkungen auf den Boden sollen vermieden und die natürlichen Bodenfunktionen geschützt werden. Voraussetzungen für einen wirksamen Bodenschutz sind Kenntnisse über den räumlichen Zustand der Böden sowie seine quantitative und qualitative Beeinträchtigung. In Berlin werden z. T. seit Jahrzehnten Informationen über die Nutzung, den Versiegelungsgrad und die stoffliche Belastung des Bodens erarbeitet, die die Grundlagen für die Bewertung der anthropogenen Belastung des Bodens darstellen. Ein Bodenbelastungskataster wurde aufgebaut und eine Versiegelungs- und Nutzungskartierung durchgeführt. Planungen von Bodenschutzmaßnahmen und die Berücksichtigung von Bodenschutzbelangen in den einzelnen Planungsebenen erfordern eine Bestimmung des Wertes, der Eignung oder der Empfindlichkeit der Böden. Hierzu müssen flächendeckende Daten bezüglich der Verbreitung der Böden und ihrer ökologischen Eigenschaften zur Verfügung stehen. Die vorliegende Karte bietet die Grundlage für die Ableitung ökologischer Kennwerte, die der Bewertung von Eigenschaften und Funktionen der Böden dienen.

Microsoft Word - Lumbriciden 2023.docx

Prüfbericht 2023: Lumbricidenuntersuchungen in Sachsen-Anhalt auf aus- gewählten Bodendauerbeobachtungsflächen (BDF) Auftragnehmer:Landesamt für Umweltschutz Sachsen-Anhalt Dezernat 51 Reilstraße 72 06114 Halle (Saale) Auftraggeber:Landesamt für Umweltschutz Sachsen-Anhalt Dezernat 23 Frau Eichhorn Reideburgerstraße 47 06116 Halle (Saale) Probenahme:Die Entnahme der Proben erfolgte durch Mitarbeiter des Landesamtes für Umweltschutz Sachsen-Anhalt. Hinweis:Der Prüfbericht darf ohne schriftliche Zustimmung des Laboratoriums nicht auszugsweise vervielfältigt wer- den. Prüfleiter: Bereich BiologieInes Koth Anfertigung des Prüfberichtes:Ines Koth genehmigt durch:.................................. Dr. F. Hahne, DL 51 i.V. Halle (Saale), 27.03.2024 Seite 1 von 36 Prüfbericht 2023: Lumbricidenuntersuchungen in Sachsen-Anhalt auf aus-gewählten Bodendauerbeobachtungsflächen (BDF) Inhalt 1. Einleitung .................................................................................................................................... 3 2. Methoden .................................................................................................................................... 3 3. Termine der Probennahmen ....................................................................................................... 4 4. Fangergebnisse auf den einzelnen Bodendauerbeobachtungsflächen........................................ 5 4.1 BDF 32 Klein Wanzleben....................................................................................................... 5 4.2 BDF 21.2 Biberwerda 2 ......................................................................................................... 7 4.3 BDF 21.1 Biberwerda 1 ......................................................................................................... 9 4.4 BDF 25 Saalegaster Aue ..................................................................................................... 11 4.5 BDF 55 Ziegelroda .............................................................................................................. 14 4.6 BDF 16 Golpa Nord ............................................................................................................. 16 4.7 BDF 57 Schierke ................................................................................................................. 18 4.8 BDF 42 Jeggeleben ............................................................................................................. 20 4.9 BDF 53 Gimritz .................................................................................................................... 22 4.10 BDF 36 Leimbach .............................................................................................................. 24 4.11 BDF 63 Oschersleben ....................................................................................................... 26 4.12 BDF 51 Zöberitz ................................................................................................................ 28 4.13 BDF 28 Ladeburg .............................................................................................................. 30 5. Klasseneinteilung anhand des Lumbricidenvorkommens .......................................................... 33 6. Übersicht gefundene Arten........................................................................................................ 34 7. Literatur..................................................................................................................................... 36 Seite 2 von 36 Prüfbericht 2023: Lumbricidenuntersuchungen in Sachsen-Anhalt auf aus-gewählten Bodendauerbeobachtungsflächen (BDF) Prüfbericht 2023: Lumbricidenuntersuchungen in Sachsen-An- halt auf ausgewählten Bodendauerbeobachtungsflächen (BDF) 1. Einleitung Gemäß § 10 des Bodenschutz-Ausführungsgesetzes Sachsen-Anhalt (BodSchAG LSA) vom 02.04.2002 werden durch die Landesfachbehörden Boden-Dauerbeobachtungsflächen (BDF) ein- gerichtet und betreut. Entsprechend dem Sonderarbeitsgruppen-Papier zu Einrichtung und Betrieb von Boden-Dauerbe- obachtungsflächen gehören die Untersuchungen von Lumbriciden zu den obligatorischen boden- zoologischen Parametern. Im Jahr 2023 wurden 13 BDF untersucht. Dabei handelte es sich um 6 Forstflächen und 5 Acker- flächen, sowie jeweils eine Brache und eine Sukzessionsfläche. 2. Methoden Die Erfassung der Lumbriciden erfolgt in Anlehnung an die Vorschriften DIN ISO 11268-3:2015-11 und DIN ISO 23611-1:2018-10. Die Beprobung wurde auf jeweils 8 Teilflächen je BDF außerhalb der Kernfläche (50 m x 50 m) vorgenommen. Dies geschieht durch Handauslese aus der organischen Auflage und durch Aus- treibung mit Formalin aus dem Mineralboden. Dafür muss der Boden eingeebnet und der Bewuchs flach abgeschnitten werden. Die Regenwürmer wurden mit verdünnter Formalinlösung (0,2 %) auf einem Achtel Quadratmeter Boden ausgetrieben. Dazu werden ca. 6 bis 8 l Formalinlösung (ab- hängig von der Feuchtigkeit des Bodens) auf jede Teilfläche in zwei bis drei Schüben gleichmäßig gegossen. Die Austreibungszeit beträgt mindestens 30 min. Die Regenwürmer werden durch die Formalinlösung gereizt und steigen quantitativ an die Bodenoberfläche. Hier liest man sie ab, sam- melt sie zum Entkoten in Wasser und tötet sie danach in Ethanol ab. Auf Ackerflächen kann man diese Methode nicht anwenden, weil die Wurmgänge durch die Bodenbearbeitung zerstört sind und nicht mit der Formalinlösung gefüllt werden können. Auf diesen Flächen ist eine Handauslese (in Ringgröße) bis zur Pflugsohle erforderlich. Die anektischen Arten werden durch die anschlie- ßende Formalinanwendung in der Pflugsohle aus der Tiefe erfasst. Eine vollständige Ermittlung des Regenwurmbesatzes ist meist nur in Kombination von Handauslese und Austreibung möglich. Für die Einschätzung der Entwicklung des Lumbricidenvorkommens kann die Kenntnis des pH- Wertes im Boden von Bedeutung sein. Aus diesem Grund wird der pH-Wert einer Bodenprobe der jeweiligen BDF nach DIN EN ISO 15933:2012-11 gemessen. Nach den Feldarbeiten erfolgt die Artbestimmung der in Ethanol konservierten Tiere für jede Probe einzeln im Labor. Je BDF erhält man 8 Parallelproben, welche separat bearbeitet, ausgezählt und gewogen werden. Das Gewicht der Tiere wird nach Art und Altersstruktur erfasst. Die Bestimmung bis auf das Artniveau erfolgt mit einschlägiger Bestimmungsliteratur (SIMS and GERARD 1999; KRÜCK 2018). Anschließend werden die Individuendichte und Biomassewerte auf die Fläche von 1 m² zusammen gerechnet, sowie die Klasseneinteilung nach nutzungstypischen Vorkommen (TISCHER 2005) vor- genommen. Die Artendiversität für jede BDF kann mittels Shannon-Wiener Index anhand der Anzahl der Arten und der Anzahl der Individuen je Art berechnet werden. Die Arten- oder Biodiversität hat dabei keine Einheit und keinen Grenzwert. Der kleinstmögliche Wert ist 0 und tritt auf, wenn keine oder nur eine Art auf der BDF gefunden wurde. Der Shannon-Wiener-Index wird größer je mehr Arten in Seite 3 von 36 Prüfbericht 2023: Lumbricidenuntersuchungen in Sachsen-Anhalt auf aus-gewählten Bodendauerbeobachtungsflächen (BDF)

Moore und sonstige grundwasserbeeinflusste organische Böden

Der Datensatz enthält Flächen, die nach aktuellem Kenntnisstand Moore und sonstige Grundwasser beeinflusste organische Böden darstellen. Die Flächenkulisse „Moore und sonstige grundwasserbeeinflusste organische Böden“ ist eine Auswertung und Regel basierte Verschneidung der Geodaten Klassenzeichen der Bodenschätzung, Vorläufige Bodenkarte, Forstliche Standortkarte und Geologie Oberfläche in der Reihenfolge der Aufzählung. Auswertung und Kategorisierung der Ausgangsdaten erfolgte in weitgehender Anpassung an die Standards für den guten landwirtschaftlichen und ökologischen Zustand von Flächen (GLÖZ) der neuen Gemeinsamen Agrarpolitik (GAP) für den Zeitraum 2023 bis 2027, hier Standard GLÖZ -2: Schutz von Feuchtgebieten und Torfflächen (Bundeanstalt für Landwirtschaft und Ernährung). Die Auswertung der Geodaten greift (zum Teil) auf unveröffentlichte, aktualisierte Arbeitsdaten zurück. Eindeutige Geometriebezüge zu den ausgewerteten Geodaten sind aus diesem Grund noch nicht Bestandteil des Geodatensatzes. Der Geodatensatz beinhaltet Geometrie- und Sachdaten der Moorböden und sonstigen Grundwasser beeinflussten organischen Mineralböden (Moorgleye und Anmoorgleye). Eine Einteilung der Flächen aller Ausgangsdaten erfolgte in vier Kategorien (1 - naturnahe Moore, Erd- und Mulmmoore, 2 - überdeckte Niedermoore, 3 - Sanddeckkulturen, 4 - Moor- und Anmoorgleye). Das methodische Vorgehen wurde in der Arbeitsgruppe „Moorbodenschutz“ des Landes Sachsen-Anhalt abgestimmt.

Wie kann Naturnähe von Wäldern bewertet werden?

Die Nationale Strategie zur biologischen Vielfalt sieht in Deutschland eine natürliche Entwicklung auf 5 % der Waldfläche vor. Um die Naturnähe von Wäldern besser definieren und bewerten zu können, wurden verschiedene Parameter aus den Bereichen Waldstruktur, Artenvielfalt und Waldfunktionen in 16 Waldgebieten unterschiedlichen Alters und unterschiedlicher Baumartenzusammensetzung im Norddeutschen Tiefland untersucht. Als Referenz für die Naturnähe der Waldstruktur reifer Waldentwicklungsstadien dienten Daten aus ostslowakischen Buchen-Urwäldern. Anhand dieser Daten wurde ein Old-Growth-Indikator (OGI) als ein Maß für die Ähnlichkeit der Waldstruktur mit reifen Waldentwicklungsphasen entwickelt. Die Urwälder zeigten eine deutlich größere Spanne der Waldstrukturdaten als die untersuchten heimischen Waldbestände. Einige alte Laubwälder wiesen jedoch ähnliche Werte auf. Die Untersuchungen zeigten außerdem, dass alte Laubwälder im Mittel etwa doppelt so viel Kohlenstoff in der oberirdischen Biomasse speicherten wie junge Kiefernforste. Letztere wiesen jedoch deutlich höhere Kohlenstoffvorräte im Mineralboden auf. Weiterhin nahm die Gesamtartenzahl der Krautschicht in alten Laubwäldern im Vergleich zu Kiefern(misch)wäldern ab. Die Zahl der auf geschlossene Wälder spezialisierten Arten sowie der an Totholz gebundenen Käfer- und Pilzarten stieg dagegen mit zunehmender Ähnlichkeit der Waldstruktur mit reifen Waldentwicklungsphasen an. Geeignete Referenzdaten sind essenziell für die Beurteilung der natürlichen Waldentwicklung ohne direkten menschlichen Einfluss. Für die erfassten Biodiversitätskenngrößen fehlten diese jedoch. Dennoch können Daten zur Biodiversität unterstützend zum OGI in die Naturnähebewertung von Wäldern eingehen.

1 2 3 4 5102 103 104