API src

Found 35 results.

Related terms

Emissionsermittlungen durch das LAU

Das LAU führt keine Emissionsmessungen im Rahmen einer Anlagenüberwachung nach dem BImSchG und seinen Verordnungen aus. Das LAU wird grundsätzlich nur im öffentlichen oder wissenschaftlichen Interesse in seiner Eigenschaft als Obergutachter bzw. sachverständiger Berater der Behörden, Einrichtungen, Gerichte sowie Gemeinden und Gemeindeverbände des Landes Sachsen-Anhalt tätig. Auch können die Überwachungsbehörden das LAU um Amtshilfe ersuchen, wenn es sich um besonders schwierige Feststellungen oder Ermittlungen von überörtlicher oder wissenschaftlicher Bedeutung handelt. Zum Leistungsspektrum gehören z. B. Emissionsermittlungen von: Gesamtstaub einschließlich Staubinhaltsstoffe Partikelfraktionen (Impaktormessungen) Anorganische Gase wie SO 2 , NO x , CO, HCl Organische Stoffe wie Gesamt-Kohlenstoff, PAH, BTX Hochtoxische Stoffe wie Dioxine, PCB Gerüche In der jüngeren Vergangenheit wurden folgende komplexe Untersuchungen durchgeführt (s. a. Fachpublikationen des LAU ): Felduntersuchungen zur Ermittlung des Emissionsverhaltens bei Verbrennung von Getreide zur energetischen Verwertung an einer Kleinfeuerungsanlage (Gemeinsames Projekt mit der Landesanstalt für Landwirtschaft, Forsten und Gartenbau) Beteiligung an Bund-Länder-Messprogrammen zur Ermittlung von Emissionsmesswerten für kristallinen Quarzfeinstaub an ausgewählten Anlagen. Im Rahmen dieses Messprogramms wurde das bisher nicht standardisierte Messverfahren für kristalline Quarzfeinstaubemissionen getestet. Untersuchungen zur Emission von Luftschadstoffen aus Kleinfeuerungsanlagen bei der Verbrennung von Getreide, Stroh und ähnlichen pflanzlichen Stoffen (Gemeinsames Projekt mit der Landesanstalt für Landwirtschaft, Forsten und Gartenbau) Ermittlung der Emissionen von Luftschadstoffen bei Verbrennung von Holzbrennstoffen in einer Kleinfeuerungsanlage, die den derzeitigen Stand der Feuerungstechnik repräsentiert. Untersuchungen bei nicht bestimmungsgemäßem Betrieb (unsachgemäße Bedienung, feuchtes Holz…). letzte Aktualisierung: 11.08.2021

Erprobung eines Messverfahrens zur Ermittlung kristalliner Quarzfeinstaubemissionen

Die alveolengängigen Stäube bestimmter Modifikationen von kristallinem Siliziumdioxid (Quarzfeinstäube) sind seit Mai 2002 in Deutschland als krebserzeugend beim Menschen (Kategorie 1) eingestuft. Dadurch unterliegen nun Feinstäube aus kristallinem Siliziumdioxid in Form von Quarz und Cristobalit den Anforderungen der TA Luft für krebserzeugende Stoffe nach Nr. 5.2.7.1.1. Messtechnisch gewonnene Kenntnisse über Quarzfeinstaubemissionen stehen zur Zeit nur zum Teil zur Verfügung, da erst seit 2005 für die Probenahme an geführten Quellen ein Impaktor, der auf der Alveolar-Konvention-PM 4 nach DIN ISO 7708 basiert, zur Verfügung steht. Erste Abschätzungen , ob Emissionsbegrenzungen an TA Luft-Anlagen eingehalten werden können, erfolgten auf der Basis von PM x –Messungen. Das LAU beteiligte sich an einem Ländermessprogramm zur Ermittlung von kristallinen Quarzfeinstaubemissionen. Die Messungen des LAU wurden an ausgewählten Anlagen in Sachsen-Anhalt durchgeführt. letzte Aktualisierung: 11.08.2021

Saharastaub

Saharastaub Es ist nicht ungewöhnlich, dass mit südlicher Luftströmung mehrmals im Jahr Saharastaub bis nach Deutschland transportiert werden kann. Denn: wird der feine Wüstensand aufgewirbelt und in große Höhen verfrachtet, kann er in den höheren Schichten der ⁠ Troposphäre ⁠ bis nach Mitteleuropa gelangen. Oftmals werden dann erhöhte Feinstaub-Konzentrationen (⁠ PM10 ⁠) an den hochgelegenen Messstationen wie beispielsweise der ⁠ UBA ⁠-Station auf der Zugspitze registriert. Auch wenn der Staub weiter nach Norden reist, verbleibt er oft in hohen Schichten und beeinträchtigt nur selten großräumig die Luftqualität am Boden. Seine Wirkung zeigt er meist auf andere Weise: durch den feinen Mineralstaub wird das Sonnenlicht direkt gedämpft und an den Sandkörnchen können sich verstärkt hohe Wolken bilden und den Himmel milchig einfärben, manchmal sind auch Sonnenauf- oder -untergänge von intensiven Farben geprägt. Regnet es, fällt er dann als so genannter Blutregen zu Boden. Weitere Informationen unter: https://www.umweltbundesamt.de/themen/luft/luftqualitaet/natuerliche-quellen-von-luftschadstoffen#saharastaub Stündlich aktualisierte Konzentrationen aller deutschen Luftqualitätsmessstationen am Boden finden Sie unter: https://www.umweltbundesamt.de/daten/luft/luftdaten/ und in unserer App https://www.umweltbundesamt.de/themen/luft/luftqualitaet/app-luftqualitaet .

UMID 03/2013: Schwerpunkt Energiewende und Gesundheit

Welche gesundheitliche Effekte hat die Energiewende und wo liegen Risiken? Der Schwerpunkt „Energiewende und Gesundheit“ der neuen UMID-Ausgabe beschäftigt sich genau damit. Außerdem werden Ergebnisse einer Studie zum Lungenkrebsrisiko bei deutschen Uranbergbauarbeitern vorgestellt. Das Übergewichtsproblem bei jungen Erwachsenen in Deutschland und dessen Bedeutung für die gesundheitliche Umweltbeobachtung ist ein weiteres Thema des Heftes.Schwerpunktthema: Energiewende und GesundheitEnergiewende und Gesundheit: Fachleute diskutieren Chancen und RisikenSozialökonomische Dynamiken und Konfliktfelder der deutschen EnergiewendeBedeutung des Ausbaus der Windenergie für die menschliche GesundheitWeitere BeiträgeOpen Government Data – Zugang zu Umwelt- und GesundheitsdatenLungenkrebsrisiko durch Quarzfeinstaub bei deutschen UranbergbauarbeiternÜbergewicht bei jungen Erwachsenen in Deutschland: Zeitliche Trends und Relevanz für die gesundheitsbezogene Umweltbeobachtung – Ergebnisse aus der Umweltprobenbank des BundesHIV-Epidemie in einer Ära guter Behandelbarkeit – Warum gehen die Infektionszahlen nicht zurück, obwohl ein großer Teil der Infizierten adäquat behandelt wird?>>> Weitere Informationen zur Zeitschrift UMID

Alterierung von Wüstenaerosol in belasteten Umgebungen und ihr Einfluss auf die optischen Eigenschaften

Das Projekt "Alterierung von Wüstenaerosol in belasteten Umgebungen und ihr Einfluss auf die optischen Eigenschaften" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Fachgebiet Umweltmineralogie durchgeführt. Die Strahlungsabsorption des atmosphärischen Aerosols ist einer seiner Haupteffekte im Einfluss auf die solar-terrestrische Energiebilanz und damit auf das Klima. Die Absorption wird im Wesentlichen durch drei Komponenten verursacht: Ruß, Mineralstaub und absorbierende Organika. Allerdings sind die relativen Beiträge dieser Stoffe aus anthropogenen und natürlichen Quellen nicht gut bekannt. Der vorliegende Antrag zielt daher auf eine Quantifizierung Ruß-, Staub- und organischen Anteils, basierend auf der Analyse der chemischen Zusammensetzung und Struktur viele einzelner Partikel mittels Elektronenmikroskopie. Das östliche Mittelmeer wurde als Fokusregion ausgewählt, da hier im Frühjahr eine komplexe Mischung von Aerosol aus der Biomassenverbrennung, anthropogenen Emissionen, marinem Aerosol und afrikanischem sowie asiatischem Wüstenstaub entsteht. Die vorgeschlagenen Arbeiten werden in Verbindung mit einer von dritter Seite finanzierten großen Flug- und Bodenmesskampagne durchgeführt. Hierbei ergibt sich die einmalige Gelegenheit, Messungen aus der Fokusregion in Verbindung mit einer Vielzahl anderer atmosphärischer Messungen sowie Aerosol- und Wolkenmessungen zu erhalten. Hauptziele des Projektes sind: A) Charakterisierung der Aerosolzusammensetzung: Aerosoltypen werden an Hand chemischer Merkmale identifiziert und quantifiziert. Größenverteilungen der chemischen Zusammensetzung werden erstellt für Partikel kleiner 2.5 mym aus der relativen Zusammensetzung und externen Größenverteilungsmessungen, für größere Partikel direkt aus spezialisierten Sammelverfahren. B) Aufteilung in volatile / nichtvolatile Komponenten: entsprechende Komponenten werden auf Einzelpartikelbasis identifiziert und quantifiziert. Typen nichtvolatiler Komponenten werden unterschieden. C) Aufteilung nach Staub- / Ruß-Absorption für Einzelpartikel: Der absorbierende Anteil im atmosphärisch alterierten Aerosol wird an Hand chemischer und morphologischer Kriterien identifiziert. Durch Bildanalyse wird der jeweilige Volumenbeitrag bestimmt. Die Konzentration absorbierender Anteile wird dann zur Bestimmung der relativen Beiträge von Staub und Ruß genutzt. Rußmikrosktruktur und chemische Zusammensetzung werden genutzt, um Haupt-Rußquellen zu identifizieren. D) Ermittlung des Einflusses der Staubquelle auf die Staubabsorption: Die Absorption, modelliert durch die Staubzusammensetzung, wird im Hinblick auf die jeweilige Quelle untersucht; basierend auf einer Jahreszeitreihe können so systematische Zusammenhänge aufgedeckt werden. Insgesamt wird das vorgeschlagene Projekt neue und detailreiche Einsichten in die Beiträge zur Absorption und den Mineralstaub-Beitrag zum Strahlungsantrieb in einer belasteten und gemischten Umgebung liefern, möglicher Zusammenhänge zwischen Staubquelle und Absorption aufdecken und Information über die Haupt-Rußquellen liefern.

Phosphor Speziation in Mineral Staub und Marineaerosol Partikeln

Das Projekt "Phosphor Speziation in Mineral Staub und Marineaerosol Partikeln" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Troposphärenforschung e.V. durchgeführt. Makronährstoffe, wie Phosphor, sind wichtig für das Wachstum von Meeresmikroorganismen, wie Phytoplankton. Diese sind sehr bedeutsam für die marine Nährstoffkette und Biologie. Verschiedene Phytoplanktonarten emittieren klimarelvante organische Verbindungen, z.B. DMS, welches in der Atmosphäre zu Schwefelsäure oxidiert wird und anschließend zur Bildung neuer Aerosolpartikel beiträgt. Diese können weiterhin als potentielle Wolkenkondensaktionskeime dienen. Informationen über die Verfügbarkeit von Phosphor für diese Mikroorganismen sind somit essentiell für ein besseres Verständnis der Ozean-Atmosphären-Wechselwirkung. Der Haupteintrag von Phosphor in den offenen Ozean erfolgt vorwiegend über atmosphärische Deposition. Informationen über atmosphärische Phosphorkonzentrationen, die Bioverfügbarkeit und Quellen sind notwendig, um den Verbleib in den Ozeanen zu verstehen. Dabei werden vor allem in den Regionen des tropischen Nord- und Südost-Atlantik immer noch Daten benötigt. Die wenigen verfügbaren Daten basieren zumeist auf kurzzeitigen Schiffsmessungen, die in ihrer Anwendung auf langfristige Prognosen und jahreszeitlichen Zyklen sehr begrenzt sind. Um das Verständnis über die Phosphorverfügbarkeit, -quellen, und -bioverfügbarkeit in diesen ozeanischen Gebieten zu verbessern, sollen größenaufgelöste Langzeitmessungen zur Bestimmung des Phosphorgehalts von Aerosolpartikeln durchgeführt werden. Weiterhin werden analytische Methoden entwickelt und optimiert (basierend auf der Kombination von drei Techniken). Diese sollen eine empfindliche Bestimmung von löslichem als auch dem Gesamtphosphor in feinen Partikeln ermöglichen, aufgrund der geringen Aerosolmasse in dieser Größenfraktion. Die ermittelten Daten werden benutzt, um wichtige Quellen des Phosphors in diesen Regionen zu charakterisieren, die Rolle von unterschiedlichen Quellen wie Mineralstaub, Biomassenverbrennung, sowie anthropogenen Verbrennungsaerosols auf die Speziation (organische und anorganische Zusammensetzung), Löslichkeit und atmosphärische Prozessierung des Phosphors, sowie ihre saisonale Variabilität zu untersuchen. Darüber hinaus soll eine regionale Staubmodellsimulation angewendet werden, um den Aerosoltransport und die Staupdeposition in diesen Regionen besser zu beschreiben. Die Ergebnisse sind wichtig für kombinierte Modelle zur Ozean-Atmosphäre Wechselwirkung und das Verständnis der wichtigsten Faktoren, die den Verbleib von atmosphärischem Phosphor im Ozean beeinflussen.

Entwicklung von Glasschäumen unter Einsatz von Abgas- und Mineralstäuben sowie Faserabfällen aus der Glasindustrie zur Verbesserung der Schmelztechnologie von Aluminium- und Kupferschmelzen vor dem Gießprozess

Das Projekt "Entwicklung von Glasschäumen unter Einsatz von Abgas- und Mineralstäuben sowie Faserabfällen aus der Glasindustrie zur Verbesserung der Schmelztechnologie von Aluminium- und Kupferschmelzen vor dem Gießprozess" wird vom Umweltbundesamt gefördert und von SM Sächsisches Metallwerk Freiberg GmbH durchgeführt.

Nachverfolgung des Lebenszyklus von Eiskeimen zur Verbesserung von Klimaprojektionen

Das Projekt "Nachverfolgung des Lebenszyklus von Eiskeimen zur Verbesserung von Klimaprojektionen" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. Wolken und Aerosole beeinflussen den Energiehaushalt und den Wasserkreislauf der Erde. Die Wolkenphase – ob eine Wolke aus Wassertröpfchen oder Eispartikeln besteht – beeinflusst den Strahlungseffekt der Wolken, da Wolkentröpfchen zahlreicher und kleiner sind als Eispartikel und daher mehr Sonnenstrahlung reflektieren.Durch die Erwärmung der Erde und der Atmosphäre durch den Klimawandel werden in Mischphasewolken (die aus Wassertröpfchen und Eispartikel bestehen können) Eispartikel teilweise durch Wassertröpfchen ersetzt und die Wolkenalbedo nimmt zu. Das führt zu einer negativen Rückkopplung, der sogenannten Wolkenphasenrückkopplung. Die Stärke dieser Rückkopplung hängt in Klimamodellen von der Repräsentation der Eisnukleation ab. Es wird immer deutlicher, dass die Schwankungsbreite von Klimaprojektionen (+1,8 bis +6,5 K) in der neuen Generation von Klimamodellen stark von der simulierten Wolkenphasenrückkopplung abhängt. Der gesellschaftliche Nutzen einer Verbesserung der Genauigkeit von Klimaprojektionen wird auf über 10 Millionen Millionen US-Dollar geschätzt. Eine bessere Darstellung der Eisbildung im Mischphasenregime in Klimamodellen ist deshalb dringend erforderlich.Aerosole können als Eiskeime, die das Gefrieren von Tröpfchen bewirken, die Häufigkeit von Eiswolken erhöhen und die Wolkenbedeckung und den Wassergehalt verringern. Insbesondere Mineralstaub kontrolliert häufig die Eisbildung in Wolken.In früheren Studien habe ich wichtige Diskrepanzen bezüglich der staubgetriebenen Wolkenvereisung im ECHAM-HAM Klimamodell und Satellitenbeobachtungen identifiziert, die sehr wahrscheinlich auch in anderen Klimamodellen vorhanden sind. Um diese zu beheben, werde ich in ECHAM-HAM Eisprozesse implementieren, die für das staubgetriebene Gefrieren von Wolkentröpfchen relevant sind, aber derzeit noch fehlen: Erstens werde ich eine Nachverfolgung von Eiskeimen implementieren, insbesonders deren Entfernung durch Niederschlagsbildung nach dem Gefrieren von Wolkentröpfchen. Dies sollte die Überschätzung der staubgetriebenen Wolkenvereisung über dem Südpolarmeer im Modell verringern. Zweitens werde ich eine Kategorie für Staub-Eiskeime hinzufügen, die bei Temperaturen unter -35 °C voraktiviert werden. Dies soll zu einem verstärkten Gefrieren von Wolkentröpfchen in Mischphasenwolken führen, was die im Modell gefundene generelle Unterschätzung des staubgetriebenen Gefrierens von Tröpfchen erklären und reduzieren soll. Drittens werde ich das Recycling von Staub-Eiskeimen nach der Sublimation von Eiskristallen implementieren. Dies soll ebenfalls zu einer Verbesserung des Gefrierens von Tröpfchen führen und den im Modell beobachteten Bias zusammen mit den anderen neuen Prozessen beseitigen. Diese neuen Prozesse werden anhand weltraumgestützter Beobachtungen evaluiert und ihre Auswirkungen auf die Wolkenphasenrückkopplung und die Klimasensitivität werden untersucht werden.

In-situ Messungen von eiskeimbildenden Partikeln (INP) und quantitative Bestimmung von biologischen INP

Das Projekt "In-situ Messungen von eiskeimbildenden Partikeln (INP) und quantitative Bestimmung von biologischen INP" wird vom Umweltbundesamt gefördert und von Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt durchgeführt. Die Bildung der Eis Phase in der Troposphäre stellt einen wichtigen Fokus der aktuellen Atmosphärenforschung dar. Durch heterogene Nukleation entstehen bei Temperaturen oberhalb von -37°C primäre Eiskristalle an sogenannten eiskeimbildenden Partikeln (INP, engl, ice nucleating particles). Die räumliche Verteilung der INP und deren Quellen variieren stark. In der Atmosphäre finden sich INP nur in sehr geringer Anzahlkonzentration, oft weniger als ein Partikel pro Liter, und sie stellen nur eine kleine Untergruppe des gesamten atmosphärischen Aerosols dar. Ziel dieses Antrages ist es die Anzahlkonzentrationen von eiskeimbildenden Partikeln und deren Variabilität in der Atmosphäre zu messen. Außerdem sind Laborstudien geplant, in denen unser Verständnis über die chemischen und biologischen Eigenschaften der Partikel, die die Eisbildung initiieren, verbessert werden soll. Mit dem von unserer Arbeitsgruppe entwickelten Eiskeimzahler FINCH (Fast Ice Nucleaus CHamber) sollen die atmosphärischen Anzahlkonzentrationen von INP bei verschiedenen Gefriertemperaturen und Übersättigungen an mehreren Standorten gemessen werden. Die Kopplung von FINCH mit einem virtuellen Gegenstromimpaktor (CVI, engl, counter-flow virtual impactor, Kooperation mit RP2), die während lNUIT-1 entwickelt und getestet wurde, soll nun weiter charakterisiert und Messungen damit fortgesetzt werden. Bei dieser Methode werden die Eispartikel, die in FINCH gebildet werden, von den unterkühlten Tröpfchen und inaktivierten Partikeln separiert und mit weiteren Messmethoden untersucht. In Kooperation mit RP2 und RP8 planen wir hierbei die Charakterisierung der INP mittels Größen- und Aerosolmassenspektrometer sowie die Sammlung der INP auf Filtern oder Impaktorplatten zur anschließenden Analyse mit einem Elektronenmikroskop (ESEM, engl. DFG fomi 54.011 -04/14 page 3 of 6 Environmental Scanning Electron Microscopy). Die Feldmessdaten werden von umfangreichen Laborstudien an den Forschungseinrichtungen AIDA (RP6) und LACIS (RP7) ergänzt. Dort soll das Immersionsgefrieren von verschiedenen Testpartikeln aus biologischem Material (z.B. Zellulose), porösem Material (z.B. Zeolith) und Mineralstaub mit geringem organischem Anteil im Detail untersucht werden. Des Weiteren planen wir Labormessungen, bei denen eine verbesserte Charakterisierung der Messunsicherheiten von FINCH erarbeitet werden soll. Außerdem werden regelmäßige Tests und Kalibrierungen mit FINCH durchgeführt, für die Standardroutinen festgelegt werden sollen. Um die Rolle der INP bei der Wolken- und Niederschlagsbildung sowie bei den Wolkeneigenschaften abzuschätzen, werden die gewonnenen Messergebnisse am Ende als Eingabeparameter für erweiterte Wolkenmodelle (Kooperation mit WP-M) dienen.

Charakterisierung von Mineralstaub-Deposition mit hoher Zeitauflösung im Hinblick auf Partikelgröße, Zusammensetzung und atmosphärische Alterung an für ein atmosphärisch-ozeanisches Staubbudget relevanten Standorten

Das Projekt "Charakterisierung von Mineralstaub-Deposition mit hoher Zeitauflösung im Hinblick auf Partikelgröße, Zusammensetzung und atmosphärische Alterung an für ein atmosphärisch-ozeanisches Staubbudget relevanten Standorten" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Fachgebiet Umweltmineralogie durchgeführt. Nass- und Trockendeposition sind die wesentlichen Prozesse, die Mineralstaub aus der Atmosphäre entfernen. Teragramm Mineralstaub werden pro Jahr interkontinental verfrachtet. Erreicht Staub weitab von seiner Quelle wieder die Erdoberfläche, kann er erheblichen Einfluss auf Ökosysteme haben. Insbesondere ozeanische Ökosysteme sind in ihrer Bioproduktivität nährstofflimitiert. Diese Nährstoffe können durch Mineralstaub eingetragen werden. Trotz der Bedeutung der Deposition sind Messungen bislang rar, und Staubmodelle, die sich an den wenigen Messungen validieren, zeigen erhebliche Fehler. Hauptsächlich der Mangel an geeigneten Messdaten behindert im Moment das weitergehende Verständnis des Staubzyklus. Fehlende standardisierte Messtechnik zur Trockendepositionsmessung erschwert bislang gute Datenerfassung. Daher wird ein neuer automatisierter Nass- und Trockendepositionssammler entwickelt und charakterisiert. Der Sammler wird mit meteorologisch relevanter Zeitauflösung (Stunden bis Tage) betrieben und damit einen großen Nachteil vergangener Messungen beheben, nämlich eine Zeitauflösung von meist Wochen bis Monaten. Durch den Einsatz automatisierter rasterelektronenmikroskopischer Einzelpartikel-Analyse wird ein bisher unerreichter Daten-Detailreichtum für Partikelgrößen von 700 nm bis 100 mym zur Verfügung stehen, einschließlich Partikelgrößenverteilung, Elementzusammensetzung und Partikel-Mischungszustand. Besondere Aufmerksamkeit wird potentiellen Nährstoffen wie Fe, P, K, Mg und Ca gewidmet. Für ausgewählte Proben wird weiterhin Partikel-Hygroskopizität bestimmt.Nach der Testphase auf der Insel Frioul, Frankreich, während der der Sammler im Vergleich zur dort existierenden Zeitreihe validiert wird, werden drei Instrumente an Stationen in Betrieb genommen, die für Staubeintrag in die relevant Ozeane sind: Sao Vicente, Kap Verde und Barbados im Saharischen Ausfluss so wie Heimaey, Island, im arktischen Staub. In einer zweiten Phase (nach dem vorliegenden Projekt) soll das Netzwerk dann erweitert werden durch New Island, Falkland im südamerikanischen Ausfluss, Amakusa, Japan im asiatischen Ausfluss und die Insel Amsterdam zwischen dem südafrikanischen und dem australischen Ausfluss. Zum ersten Mal werden aus diesem Projekt kontinuierliche Zeitreihen der Nass- und Trockendeposition von Mineralstaub zur Verfügung stehen, die tägliche bzw. Ereignis-basierte Zeitauflösung und zudem Partikel-Größenauflösung bieten. Hieraus werden atmosphärische Schlüsselfaktoren abgeleitet, die zur Deposition führen. Weiterhin wird eine Partitionierung zwischen Nass- und Trockendeposition und ihr Größenverteilung von Nährstoffen - insbesondere P und Fe - untersucht. Partikel-Mischungszustand und Form werden durch ein Mischungsmodell und Bildanalyse bestimmt. Eine öffentliche Datenbank wird bereitgestellt, die z. B. für Modellvalidierung zu Verfügung steht. Es ist geplant, die Stationen nach Ende der DFG-Finanzierungphase weiter zu betreiben.

1 2 3 4