API src

Found 90 results.

Related terms

Ableitung von Statistiken höherer Ordnung aus Winddaten der unteren und mittleren Atmosphäre (HONDA)

Nichtlineare, stochastische und dissipative geophysikalische Strömungen in Atmosphäre und Ozean sind Teil der Turbulenztheorie. Diese beeinflussen die Dynamik im Bereich von Zentimetern bis zu mehreren hundert Metern sowie die meso- und synoptischen Skalen. Ein Beispiel hierfür ist das Powerspektrum von mesoskaligen horizontalen Winden, das sich statistisch ähnlich wie Meterskalen verhält und mit den Vorhersagen der klassischen isotropen 3D Turbulenz übereinstimmt, wie sie in der Arbeit von Nastrom und Gage von 1984 gefunden wurde. Diese Erkenntnis machte neue Turbulenztheorien nötig, die eine Alternative zur klassischen Erklärung der Schwerewellen bieten könnten, um die Physik hinter der mesoskaligen Dynamik in geophysikalischen Strömungen zu verstehen, wie etwa die Theorie der stratifizierten (geschichteten) Turbulenz (ST). Ein leistungsfähiges Untersuchungsinstrument der ST-Theorie ist die Analyse von Statistikdaten höherer Ordnung von Zustandsvariablen, die das mittlere Strömungsverhalten beschreiben. Dies gilt insbesondere für die Strukturfunktion (SF), die Messungen der gleichen Parameter zu verschiedenen Zeitpunkten und an verschiedenen Orten auf einen einzigen Wert, durch die Schätzung von Ensemble-Mittelwerten, synthetisiert. Eine wesentliche Einschränkung bei der Untersuchung der mesoskaligen Dynamik der Winde durch die Abschätzung von SFs hoher Ordnung für verschiedene atmosphärische Höhen ist jedoch der Mangel an geeigneten Messmöglichkeiten, die die horizontalen Mesoskalen mit ausreichend hoher Auflösung und zeitkontinuierlich erfassen können. Im Bereich der Mesosphäre und der unteren Thermosphäre (MLT) haben multistatische Meteorradarsysteme (SMRs) kürzlich bewiesen, dass sie diese Anforderungen erfüllen. Im Rahmen dieses Projekts werden zwei Hauptthemen verfolgt. Das erste ist die umfassende Analyse und Charakterisierung von SFs zweiter Ordnung der horizontalen mesoskaligen Winde aus multistatischen SMRs Beobachtungen in der MLT-Region. Wir wollen die Gültigkeit der Eigenschaft der horizontalen Isotropie beurteilen und ihre Auswirkungen auf die Dynamik von Rotations- und Divergenzmoden bewerten. Für diese Aufgaben stehen Messungen in mittleren und hohen Breitengraden zur Verfügung. Das zweite Hauptthema ist die Anwendung von Wind-SFs höherer Ordnung, die über die zweite Ordnung hinausgehen, unter Verwendung von MST-Radarwinddaten an einem einzelnen Standort. Die Anwendung der Taylor-Approximation Methode wird die Untersuchung der räumlichen Verschiebungen erleichtern, die aus zeitlichen Verzögerungen bestimmt werden. Die Methode wird anhand von Winden in der oberen Troposphäre und der unteren Stratosphäre implementiert und dann auf die mesosphärischen Winde ausgedehnt. Die Ergebnisse dieses Projekts werden Erkenntnisse über die Unterschiede und Gemeinsamkeiten im statistischen Verhalten der mesoskaligen Winde in verschiedenen atmosphärischen Höhen liefern.

Untersuchung von Langzeitvariationen leuchtender Nachtwolken mittels europäischer Nadir-Satelliteninstrumente

Leuchtende Nachtwolken (NLCs, von engl. Noctilucent clouds) sind optisch dünne Wassereiswolken, die nahe der polaren Sommermesopause bei geographischen Breiten polwärts von etwa 50 Grad auftreten. NLCs wurden in den vergangenen Jahrzehnten intensiv untersucht, insbesondere aufgrund ihrer Rolle als Indikatoren der globalen Veränderung. Langzeitsatellitenmessungen der NLCs mit Hilfe der SBUV/2 Instrumente auf Nimbus-7 und der NOAA-Satellitenreihe zeigen eine signifikante Zunahme der NLC Albedo (DeLand et al., 2007) sowie der NLC Häufigkeit (Shettle et al., 2009). Dieser langfristige Trend wurde durch eine Studie von Stevens et al. (2007) in Frage gestellt, in der die Langzeittrends in SBUV/2 NLC Albedo und der NLC Eismasse bei einer konstanten Lokalzeit untersucht wurden. Erstaunlicherweise führte die ausschließliche Berücksichtigung von Messungen bei konstanter Lokalzeit dazu, dass der Langzeittrend in der NLC Albedo praktisch vollständig verschwand. Diese Ergebnisse suggerieren, dass die veränderlichen Lokalzeiten, die mit der langsamen Veränderung der Orbitparameter der NOAA Satelliten verbunden sind, den scheinbaren Langzeittrend in NLC Albedo und NLC Häufigkeiten in früheren Studien verursachen. Dieser Sachverhalt ist noch immer nicht verstanden, obwohl die Frage nach den tatsächlichen Langzeitvariationen in NLCs von entscheidender Bedeutung für das wissenschaftliche Verständnis des Klimawandels in der mittleren Atmosphäre ist. Das wissenschaftliche Hauptziel des hier vorgeschlagenen Projekts ist es die Ursachen für die oben skizzierten Diskrepanzen zwischen den verschiedenen Analysen der SBUV/2 Daten zu untersuchen, und festzustellen, ob NLC-Parameter einer Langzeitvariation unterliegen oder nicht. Zu diesem Zweck sollen Messungen der europäischen Nadir-Beobachtungsinstrumente GOME und SCIAMACHY zur Bestimmung von NLCs verwendet werden. Nadir-Messungen dieser Satelliteninstrumente sind hervorragend geeignet, um diese wissenschaftliche Fragestellung zu untersuchen, weil die Satelliten sich in Sonnen-synchronen Erdumlaufbahnen befinden, und somit Messungen bei einer bestimmten geographischen Breite stets zur selben Lokalzeit durchführt werden. Da die GOME und SCIAMACHY Nadir-Messungen bisher nicht zur Untersuchung von NLCs verwendet wurden, soll im Rahmen dieses Projekts ein NLC Auswertealgorithmus implementiert und auf den gesamten GOME und SCIAMACHY Datensatz angewandt werden. Die zu bestimmenden NLC Parameter umfassen NLC Albedo, NLC Häufigkeit sowie NLC Eismasse. Die abgeleiteten NLC Datenprodukte werden verwendet, und Sonnenzyklusvariationen und Langzeittrends in NLCs zu quantifizieren, sowie zur Untersuchung der Frage, ob die Langzeittrends in SBUV/2 NLC Messungen durch die veränderlichen Lokalzeiten dieser Satellitenmessungen beeinflusst oder gar maßgeblich verursacht werden.

Untersuchung des Einflusses vulkanischer Eruptionen auf stratosphärische Aerosole und den Strahlungsantrieb

Das Projekt VolARC ist eines von fünf Projekten des Antrags für die zweite Phase der DFG Forschungsgruppe VolImpact (FOR 2820), deren erste Phase im Frühjahr 2019 begann. VolARC befasst sich mit wichtigen und offenen Fragen vulkanischer Effekte auf stratosphärische Aerosole und deren Einfluss auf die Strahlungsbilanz des Erdsystems. Basierend auf den Arbeiten der laufenden Phase I sollen in Phase II folgende drei Themen bearbeitet werden:(1) Konsolidierung des Verständnisses der Entwicklung stratosphärischer Aerosolparameter nach Vulkanausbrüchen und Untersuchung der Gründe für die verbleibenden Unterschiede zwischen beobachteten und modellierten stratosphärischen Aerosolparametern (Aerosolextinktionsprofile, optische Tiefe und insbesondere die Teilchengrößenverteilung stratosphärischer Aerosols), sowie Behebung der Ursachen für die Unterschiede. Insbesondere die zeitliche Entwicklung der Aerosolgrößenverteilung soll besser verstanden werden. (2) Untersuchung des Einflusses von Modellauflösung und Transport auf die Entwicklung vulkanischer Aerosolwolken in der Stratosphäre. In Phase II wird ein “Seamless Simulation”-Ansatz verwendet, der mittels mehrerer Nests eine konsistente Modellierung aller relevanten Prozesse auf den entsprechenden Skalen ermöglicht, von der initialen Entwicklung der Vulkanwolke bis hin zu globalen und längerfristigen Skalen. (3) Untersuchung der Fähigkeit von Limb- und Okkultationsinstrumenten, vulkanische Sulfataerosole in der Stratosphäre nach stärkeren Vulkanausbrüchen zu erfassen. Bereits bei relativ moderaten optischen Tiefen wird die Sichtlinie in Limb-Geometrie optisch dicht und eine robuste Bestimmung der Aerosolextinktion problematisch. Außerdem wird untersucht, ob aktuelle Satelliteninstrument in der Lage sind, eine im Rahmen von Geoengineering Aktivitäten künstliche verstärkte stratosphärische Aerosolschicht zu erfassen und zu überwachen. Diese Themen werden durch die Synergy globaler Satellitenbeobachtung stratosphärischer Aerosolparameter im optischen Spektralbereich und globaler Modellsimulationen mit expliziter Aerosolmikrophysik untersucht. Wir werden u.a. unsere eigenen Algorithmen verwenden um aus Messungen vergangener, aktueller und zukünftiger Satelliteninstrumente (bsp. OMPS-LP, SAGE III and SCIAMACHY) Aerosolparameter abzuleiten. Die Modellsimulationen werden hauptsächlich mit ICON-ART durchgeführt, aber auch MAECHAM-HAM-Simulationen werden zum Vergleich mit Messdaten und ICON-ART-Simulationen zum Einsatz kommen. Das VolARC-Projekt ist sehr gut mit den anderen vier VolImpact-Projekten vernetzt, insbesondere durch die definierten übergreifenden Forschungsthemen an denen jeweils mehrere VolImpact-Projekte beteiligt sind. Diese Themen sind: (1) die Aerosolteilchengrößenverteilung, (2) vulkanische H2O-Injektionen in die mittlere Atmosphäre und (3) Strahlungsantrieb durch vulkanische Effekte. Darüber hinaus wird VolARC alle Aktivitäten zur Seamless-Simulation in VolImpact koordinieren.

6-stündige Gezeiten in den mittleren Atmosphäre (QuarTA)

Die Dynamik der Mesosphäre und unteren Thermosphäre wird zu großen Teilen von solaren Gezeiten dominiert. Eine davon ist die 6-stündige Gezeit (quarterdiurnal tide, QDT), die unter anderem in sporadischen E-Schichten und mit Hilfe von Radar- und Satellitenmessungen beobachtet wurde. Während allerdings die ganztägigen, halbtägigen, und auch 8-stündigen Gezeiten vergleichsweise gut dokumentiert und untersucht sind, sind Beobachtungen und Analysen der - weniger starken aber nichtsdestoweniger als ein Bestandteil der dynamischen Prozesse in ihrer Gesamtheit zu sehenden - 6-stündigen Komponente bislang selten. Um diese Lücke zu schließen, werden innerhalb des QuarTA-Projekts die 6-stündigen Gezeiten und ihre Antriebsmechanismen im Detail untersucht. Die Klimatologie der Gezeiten wir mit Hilfe von Meteorradarwindmessungen, vor allem der Langzeitreihe in Collm, ergänzt durch weitere Radarmessungen, erstellt. Die globale Verteilung der Gezeitenamplituden wird mit Hilfe von Ionosonden- und GPS-Radiookkultationsmessungen sporadischer E-Schichten untersucht, und die Beobachtungen in Verbindung mit Windscherungen aus Radarmessungen und numerischen Simulationen interpretiert. Um Einblick in die hauptsächlichen Anregungsmechanismen der 6-stündigen Gezeiten zu erhalten, wird ein nichtlineares mechanistisches Zirkulationsmodell, welches auch die Anregung durch Absorption solarer Strahlung enthält, verwendet. Hierbei wird, einzeln und in Kombination, die Anregung der 6-stündigen Gezeit durch Absorption solarer Strahlung und durch nichtlineare Wechselwirkung von Gezeiten in den Simulationen ausgeschaltet, so dass die Hauptantriebsquelle erkennbar wird. Innerhalb des QuarTA-Projekts wird daher, durch die Kombination von Beobachtungen und Modellsimulationen, ein vertiefter Einblick in die Klimatologie und die Anregung der 6-stündigen Gezeiten ermöglicht, der bislang noch nicht in ausreichendem Maße gegeben ist.

Hochpräzise Messtechnik für online Wetter-/Klimamessungen in der gesamten mittleren Atmosphäre, TP6: Engineering Energiemanagement

Hochpräzise Messtechnik für online Wetter-/Klimamessungen in der gesamten mittleren Atmosphäre, TP8: Sensorentwicklung

Hochpräzise Messtechnik für online Wetter-/Klimamessungen in der gesamten mittleren Atmosphäre, TP5: Softwareentwicklung

Hochpräzise Messtechnik für online Wetter-/Klimamessungen in der gesamten mittleren Atmosphäre, TP10: Vergleichende Forschung

Hochpräzise Messtechnik für online Wetter-/Klimamessungen in der gesamten mittleren Atmosphäre, TP7: Engineering Elektronik

Forschergruppe (FOR) 1898: Mehrskalendynamik von Schwerewellen, Prozesse und Klimatologie von Schwerewellen

PACOG ist ein Projekt im Rahmen der Forschergruppe 'MS-GWaves', bei der es um die Erforschung von Schwerewellen geht. PACOG konzentriert sich dabei auf atmosphärenphysikalische Beobachtungen und Vergleich mit Modellrechnungen. Schwerewellen spielen für unser Verständnis der mittleren Atmosphäre eine entscheidende Rolle, da sie die Atmosphäre um mehr als 100 K vom strahlungsbedingten Zustand treiben können und drastische Veränderungen der Zirkulation und der Zusammensetzung bewirken können. Schwerewellen stellen den wichtigsten Kopplungsprozess zwischen unteren und oberen Schichten der Atmosphäre dar. Leider sind viele Einzelheiten bezüglich Schwerewellen unzureichend verstanden. Dies betrifft z. B. die Erzeugung, Ausbreitung, Filterung, Dissipation und die zeitliche und räumliche Variabilität. Wir möchten die Klimatologie von Schwerewellen auf regionalen und globalen Skalen untersuchen. Dabei wird eine Kombination von hochmodernen Instrumenten eingesetzt, z. B. Lidars und Radars. Die Interpretation der Ergebnisse wird mit Hilfe von Simulationen, die auf Reanalysen aufbauen, unterstützt. Das Ziel von MS-GWaves besteht letzten Endes darin, die Parametrisierung von Schwerewellen in globalen Modellen zu verbessern. Die in PACOG durchgeführten Beobachtungen sollen in allen Teilprojekten von MS-GWaves verwendet werden, z. B. beim Vergleich von lokalen und regionalen Messungen mit globalen Beobachtungen von Satelliten (Projekt SV) oder zur Validierung von Modellrechnungen in den Projekten 3DMSD und GWING.

1 2 3 4 57 8 9