Der Darstellungs-Dienst beinhaltet folgende Eutrophierungsparameter: max. Bedeckungsgrad von Seegras bzw. Grünalgen und ist relevant für den MSRL-Deskriptor 5 im Nationalpark Schleswig-Holsteinisches Wattenmeer. Der Dienst wurde im Rahmen des Projektes MDI-DE (Marine Daten-Infrastruktur Deutschland) erstellt. Die Daten werden im Rahmen des trilateralen Makrophyten-Monitoring-Programmes (TMAP) mittels Flugzeugkartierungen erhoben. Dieser Dienst gibt von den drei Kartierungen nur die Daten eines Fluges pro Jahr aus, bei dem der Bedeckungsgrad am höchsten war. Der Bedeckungsgrad wird in 2 Dichteklassen der geschlossenen Bestände angegeben. Die Identifizierung der Flächen ist erst ab ca. 20% Deckung möglich. Die Daten wurden auf Basis einzelner Shapes in einer Datenbank zusammengeführt. Aus den Jahren 1989 und 1990 liegen ähnliche, aber in der Klassifikation abweichende, Kartierungen im Rahmen der Ökosystemforschung Schleswig-Holsteinsches Wattenmeer vor. Dieser Dienst stellt sowohl für Seegras als auch für Grünalgen eine Kartenansicht der max. Bedeckung ab dem Jahr 1994 mit einzelnen Jahres-Layern bereit.
Der Download-Dienst beinhaltet folgende Eutrophierungsparameter: max. Bedeckungsgrad von Seegras bzw. Grünalgen und ist relevant für den MSRL-Deskriptor 5 im Nationalpark Schleswig-Holsteinisches Wattenmeer. Der Dienst wurde im Rahmen des Projektes MDI-DE (Marine Daten-Infrastruktur Deutschland) erstellt. Die Daten werden im Rahmen des trilateralen Makrophyten-Monitoring-Programmes (TMAP) mittels Flugzeugkartierungen erhoben. Dieser Dienst gibt von den drei Kartierungen nur die Daten eines Fluges pro Jahr aus, bei dem der Bedeckungsgrad am höchsten war. Der Bedeckungsgrad wird in 2 Dichteklassen der geschlossenen Bestände angegeben. Die Identifizierung der Flächen ist erst ab ca. 20% Deckung möglich. Die Daten wurden auf Basis einzelner Shapes in einer Datenbank zusammengeführt. Aus den Jahren 1989 und 1990 liegen ähnliche, aber in der Klassifikation abweichende, Kartierungen im Rahmen der Ökosystemforschung Schleswig-Holsteinsches Wattenmeer vor. Dieser Dienst stellt sowohl für Seegras als auch für Grünalgen je eine Gesamttabelle ab dem Jahr 1994 bereit, also auch einzelne Jahreslayer: Seegras: ZOS_ALLYEARS_MAXCOVab1994 und Grünalgen: GRALG_ALLYEARS_MAXCOVab1994.
Diese Geodaten beinhalten folgende Eutrophierungsparameter ab 1994: max. Bedeckungsgrad von Seegras bzw. Grünalgen und sind relevant für den MSRL-Deskriptor 5 im Nationalpark Schleswig-Holsteinisches Wattenmeer. Die Daten werden im Rahmen des trilateralen Makrophyten-Monitoring-Programmes (TMAP) mittels Flugzeugkartierungen erhoben. Dieser Datensatz gibt von den drei Kartierungen nur die Daten eines Fluges pro Jahr aus, bei dem der Bedeckungsgrad am höchsten war. Der Bedeckungsgrad wird in 2 Dichteklassen der geschlossenen Bestände angegeben. Die Identifizierung der Flächen ist erst ab ca. 20% Deckung möglich. Die Daten wurden auf Basis einzelner Shapes in einer Datenbank zusammengeführt. Aus den Jahren 1989 und 1990 liegen ähnliche, aber in der Klassifikation abweichende, Kartierungen im Rahmen der Ökosystemforschung Schleswig-Holsteinsches Wattenmeer vor.
Erklärung zur Barrierefreiheit Kontakt zur Ansprechperson Landesbeauftragte für digitale Barrierefreiheit Dargestellt sind die Güteklassen der Gewässerabschnitte für sechs Jahre zwischen 1991 und 2001 anhand der Beurteilung der Wasserbeschaffenheit von Fließgewässern in der BRD (LAWA 1998). Aus den Datensätzen der Stichprobenuntersuchungen wurden der Minimalwert und aus den Dauermessungen das 10-Perzentil der Tageswerte eines Jahres zugrunde gelegt. 02.01.1 Sauerstoffgehalt Weitere Informationen Dargestellt sind die Wassertemperaturen sommerwarmer Flachlandgewässer für sechs Jahre zwischen 1991 und 2001 anhand eigener Klassifizierung. Aus den Datensätzen der Stichprobenuntersuchungen wurde der Maximalwert und aus den Dauermessungen das 95-Perzentil der Tageswerte eines Jahres zu Grunde gelegt. 02.01.2 Wassertemperatur Weitere Informationen Dargestellt sind die Güteklassen der Gewässerabschnitte für sechs Jahre zwischen 1991 und 2001 anhand der Beurteilung der Wasserbeschaffenheit von Fließgewässern in der BRD (LAWA 1998). Aus den Dauermessungen wurde das 90-Perzentil der Tageswerte eines Jahres zu Grunde gelegt. 02.01.3 Ammonium-Stickstoff Weitere Informationen Dargestellt sind die Güteklassen der Gewässerabschnitte für sechs Jahre zwischen 1991 und 2001 anhand der Beurteilung der Wasserbeschaffenheit von Fließgewässern in der BRD (LAWA 1998). Aus den Dauermessungen wurde das 90-Perzentil der Tageswerte eines Jahres zu Grunde gelegt. 02.01.4 Nitrat-N Weitere Informationen Dargestellt sind die Güteklassen der Gewässerabschnitte für sechs Jahre zwischen 1991 und 2001 anhand der Beurteilung der Wasserbeschaffenheit von Fließgewässern in der BRD (LAWA 1998). Aus den Dauermessungen wurde das 90-Perzentil der Tageswerte eines Jahres zu Grunde gelegt. 02.01.5 Nitrit-N Weitere Informationen Dargestellt sind die Mittelwerte Nährstoffkonzentration der Gewässerabschnitte für sechs Jahre zwischen 1991 und 2001 anhand einer naturräumlich angepassten Klassifizierung. 02.01.6 Gesamtphosphor Weitere Informationen Dargestellt sind die Güteklassen der Gewässerabschnitte für sechs Jahre zwischen 1991 und 2001 anhand der Beurteilung der Wasserbeschaffenheit von Fließgewässern in der BRD (LAWA 1998). Aus den Dauermessungen wurde das 90-Perzentil der Tageswerte eines Jahres zu Grunde gelegt. 02.01.7 AOX Weitere Informationen Dargestellt sind die Güteklassen der Gewässerabschnitte für sechs Jahre zwischen 1991 und 2001 anhand der Beurteilung der Wasserbeschaffenheit von Fließgewässern in der BRD (LAWA 1998). Aus den Dauermessungen wurde das 90-Perzentil der Tageswerte eines Jahres zu Grunde gelegt. 02.01.8 Chlorid Weitere Informationen Dargestellt sind die Güteklassen der Gewässerabschnitte für sechs Jahre zwischen 1991 und 2001 anhand der Beurteilung der Wasserbeschaffenheit von Fließgewässern in der BRD (LAWA 1998). Aus den Dauermessungen wurde das 90-Perzentil der Tageswerte eines Jahres zu Grunde gelegt. 02.01.9 Sulfat Weitere Informationen Dargestellt sind die Güteklassen der Gewässerabschnitte für sechs Jahre zwischen 1991 und 2001 anhand der Beurteilung der Wasserbeschaffenheit von Fließgewässern in der BRD (LAWA 1998). Aus den Dauermessungen wurde das 90-Perzentil der Tageswerte eines Jahres zu Grunde gelegt. 02.01.10 TOC Weitere Informationen
Eines der großen “Recycling-Projekte” Berlins ist die Biotonne. Immerhin sind knapp 40 Prozent der Abfälle in der grauen Restabfalltonne Bioabfälle, also organische Abfälle wie Koch- oder Essensreste oder Abfälle aus dem Garten. Das sind jährlich rund 400.000 Tonnen Bioabfälle, die über die Biotonne verwertet werden könnten. Die Informationskampagne in den gartenreichen Außenbezirken Berlins motiviert vor allem die rund 100.000 Berlinerinnen und Berliner, die selber kompostieren, zusätzlich zum Komposthaufen im Garten eine Biotonne zu bestellen. Über 90 Prozent der Berliner Gärten sind überdüngt, weil zu viele Bioabfälle auf den Komposthaufen gegeben werden. Die gewonnene Komposterde wird auf zu kleinen Flächen, meist den Nutzbeeten, ausgebracht, wodurch hier ein Überschuss an Nährstoffen entsteht. Wer einen Teil der Bioabfälle in der Biotonne sammelt, reduziert den Nährstoffgehalt im Boden und kann der Überdüngung entgegenwirken. Darüber hinaus eignet sich die Biotonne auch für die Sammlung von Essensresten, die auf dem Komposthaufen nichts zu suchen haben. Weitere Infos zur Eigenkompostierung . Besitzerinnen und Besitzer einer Biotonne profitieren außerdem von einem Sparvorteil. Denn wer eine Biotonne nutzt, kann die 60-Liter-Hausmülltonne auf eine vierwöchentliche Leerung umstellen und so bis zu 12 Prozent Müllgebühren sparen! Die gesammelten Bioabfälle in der Biotonne werden in zwei hochwertige Recyclingprodukte verwandelt: Vergärungsanlagen erzeugen aus Bioabfällen sogenanntes “Biogas” . Würden alle Berlinerinnen und Berliner jede Woche 1 Kilogramm Biogut in der Biotonne sammeln, könnten mit dem daraus gewonnenen Biogas 4.700 Einfamilienhäuser für ein Jahr beheizt und mit warmem Wasser versorgt werden. In einem weiteren Verwertungsverfahren werden die übriggebliebenen “Gärreste” zu Kompost verarbeitet. In der Landwirtschaft und im Gartenbau ersetzt diese Komposterde großflächig Torf, dessen Abbau klimaschädlich ist. Würden die Berlinerinnen und Berliner konsequent organische Abfälle in der Biotonne sammeln anstatt im Restmüll, ergäbe sich durch die Verwertung zu Biogas und Kompost eine jährliche Einsparung von 24.000 Tonnen schädlicher Klimagase pro Jahr. Das entspricht dem durchschnittlichen CO 2 -Fußabdruck von rund 2.200 Einwohnerinnen und Einwohnern Deutschlands. (Die Berechnungen zu den Einsparungen beziehen sich auf das Basis-Szenario des Abfallwirtschaftskonzepts für 2030 von Berlin.) Bestellen können Sie die Biotonne bequem bei der Berliner Stadtreinigung (unter “Tonne bestellen”) oder über die Hotline (030) 7592-4900. Bild: u.e.c. Berlin – Umwelt- und Energie-Consult GmbH Was kommt in die Biotonne? Viele Berlinerinnen und Berliner wissen nicht genau, welche Küchenabfälle in die Biotonne sollen: Häufig werden fälschlicherweise Essenreste oder verdorbene Lebensmittel aus dem Kühlschrank samt Verpackungen in die Restmülltonne geworfen. Weitere Informationen Bild: Marc Vorwerk Aktionen und Termine An den Aktionsständen zur Biotonne werden Berlinerinnen und Berliner beraten, wie sich die Biotonne und der Komposthaufen im Garten am besten für die Sammlung von Küchen- und Gartenabfällen ergänzen. Die neuen Aktionen werden rund um den Tag der Biotonne Ende Mai 2025 durchgeführt. Weitere Informationen Bild: ajlatan / Shutterstock.com Eigenkompostierung Was viele Gartenbesitzerinnen und -besitzer in Berlin nicht wissen: Die Biotonne ist eine wichtige und sinnvolle Ergänzung des Komposthaufens im eigenen Garten – eben das perfekte Paar. Weitere Informationen Bild: SenMVKU / Marc Vorwerk Rückblick vergangener Kampagnen Seit 2019 führt die Senatsumweltverwaltung vielfältige Aktionen durch, um die Sinnhaftigkeit der Sammlung und Verwertung von organischen Abfällen anschaulich zu vermitteln und sie für das Thema Lebensmittelwertschätzung zu sensibilisieren, zuletzt unter dem Motto „Sparen mit der Biotonne“. Weitere Informationen
Offenlandschaften sind nicht überbaute und nicht durch Gehölze dominierte Gebiete. Berlin hat eine hohen Anteil an diesem offenen und halboffenen Grünland: Dazu gehören traditionell Wiesen und Weiden aber auch Brachflächen, halboffene Waldweidelandschaften und Äcker. Sie alle weisen einen besonderen biologischen Reichtum auf. Berlin möchte diese Offenflächen natürlich langfristig sichern. Leichter gesagt als getan, denn Pflege kostet Geld. Doch ohne regelmäßige Pflege würden sich Offenlandschaften aufgrund der natürlichen Sukzession langfristig zu Gehölz bestandenen Biotopen entwickeln. Auch aus finanziellen Gründen ist Berlin also bestrebt, alternative Nutzungsformen für die Pflege der urbanen Offenlandschaften zu entwickeln. Mit Beweidung lässt sich einerseits Kosten sparen, andererseits aber auch soziale Ziele verfolgen. Das Bedürfnis nach Naturerleben der Berliner Stadtbevölkerung kann auf diese Weise mit dem Ziel der Förderung der biologischen Vielfalt verbunden werden. Beweidung kann für den Naturschutz sehr erfolgreich eingesetzt werden, da die Tiere auf den Flächen naturnahe Prozesse in Gang setzen. Schauen wir uns an, was die Tiere tun, wenn sie sich selbst überlassen sind: Mit ihrem vollständigen Verhaltensrepertoire aus Fressen, Ruhen, Lagern, Fellpflege und sozialen Verhaltensweisen schaffen sie ein überaus abwechslungsreiches Biotop. Weiden, Hochstaudenfluren, offenen Böden, Gebüsche und Wälder wechseln sich ab und werden so zu vielfältigen Lebensräumen für Flora und Fauna. Beweidung führt darüber hinaus zur Umlagerung von Nährstoffen auf der Weide. Einige Teilflächen werden dadurch ausgehagert, andere wiederum gedüngt. Die Nährstoffverteilung auf der Gesamtfläche wird heterogener. Es entstehen Standorte mit unterschiedlichem Nährstoffgehalt, die wiederum unterschiedlichen Pflanzenarten einen optimalen Standort bieten. So können sich homogene Grasflächen im Verlauf nur weniger Jahre zu heterogenen Lebensräumen entwickeln. Auf den intensiv befressenen oder stark durch Vertritt geschädigten Flächen finden einjährige oder kleinwüchsige, lichtliebende Arten einen optimalen Lebensraum. Auf weniger von den Weidetieren genutzten Flächen können sich störungsempfindliche Arten besser entwickeln. Insektenkundler verweisen auf die besondere Artenvielfalt von seit vielen Jahren extensiv genutzten Weideflächen, die auf Wiesenflächen kaum erreicht werden können. Durch Tritt und Suhlen von Weidetieren entstehen kleine Schlammpfützen . Bei Regen sammelt sich hier das Wasser und schon können andere Nutzer, wie etwa Vögel, diese als Tränke, für ein Bad oder sogar für den Nestbau nutzen. In trockenen Bereichen entstehen hingegen Sandkuhlen mit kleinen Abbruchkanten: Hier fühlen sich wärmeliebende Insekten wohl. Einige Bienenarten nutzen diese Standorte zur Eiablage. Besonders blütenreiche Standorte können sich in den Bereichen, die die Tiere zum Absetzen des Kots nutzen, entwickeln, da diese Stellen von den Weidetieren beim Fressen gemieden werden. So wird ein kontinuierliches Nahrungsangebot für Blütenbesucher und Samenfresser geschaffen. Aber auch Wirbellose finden hier ein Zuhause. Bis zu 1.000 Insekten können sich darüber hinaus allein in nur einem Rinderfladen entwickeln. Letztlich ist es der Dung, der Weidetiere, der eine ganze Palette von Arten, die auf tierisches Eiweiß angewiesenen sind, ernährt – darunter Vögel, Säugetiere, Amphibien und Reptilien. Beweidung kann auch einen Einfluss auf die Gehölze auf den Beweidungsflächen haben. Die Tiere nutzen ihren Schatten zum Lagern, Pflegen daran ihr Fell oder verbeißen Zweige und Rinde. Beweidete Gebüsche bleiben so oft über Jahre bis hin zu Jahrzehnten kleinwüchsig und dicht wie eine Hecke. Dies bietet Vögeln optimale Nistmöglichkeiten. Im Wundholz geschälter Bäume können sich Hohlräume für Höhlenbrüter und Eiablageplätze für seltene Schmetterlinge entwickeln. Auch die Artenzusammensetzung der Gehölze verändert sich unter dem Einfluss der Beweidung zugunsten der faunistischen Artenvielfalt. Kurzfristig werden dornige, verbisstolerante und Licht liebende Gehölze wie Wildrosen, Schlehen oder Weißdorn gefördert. Diese ziehen wiederum zahllose Blütenbesucher und pflanzenfressende Insekten an. Die Früchte werden in den Herbst- und Wintermonaten für Vögel attraktiv. Auch im Bereich der Röhrichtbestände und feuchten Hochstaudensäume fördert die Beweidung die biologische Vielfalt. Bei einer Nutzung der Gewässer als Tränken kommt es zu Auflichtungen in den Beständen, was den lichtbedürftigen, kleinwüchsigen, einjährigen Pflanzenarten dieser Standorte Konkurrenzvorteile bringt. Die Tierhaltung führt zur Entwicklung eines Mosaiks aus verschiedensten Lebensräumen für Flora und Fauna. Durch ein gezieltes Weidemanagement können kurz- bis mittelfristig artenreiche Weiden entwickelt werden. Die Tierhaltung führt zur Entwicklung eines Mosaiks aus verschiedensten Lebensräumen für Flora und Fauna. Durch ein gezieltes Weidemanagement können kurz- bis mittelfristig artenreiche Weiden entwickelt werden. Viele Wildpflanzen und Wildtiere sind vom Aussterben bedroht. Ähnliches gilt leider auch für Kulturpflanzen und Nutztiere. Nach Aussage der Gesellschaft zur Erhaltung alter und gefährdeter Haustierrassen e.V. (GEH) stirbt auf der Erde pro Woche mindestens eine Nutztierrasse aus. Die GEH, eine private Vereinigung von Züchtern, Tierhaltern und interessierten Privatpersonen, arbeitet seit 1981 daran, dem kontinuierlichen Verlust der alten Nutztierrassen entgegen zu wirken. Sie pflegt eine Rote Liste mit in Deutschland bisher 130 vom Aussterben bedrohten Nutztierrassen. Grund für den stetigen Verlust ist die veränderte Nutztierhaltung seit Beginn der Industrialisierung und die Mechanisierung der Landwirtschaft. Früher wurden Rinder sowohl für die Milch- und Fleischproduktion, als auch für Zugarbeiten in der Landwirtschaft eingesetzt. Heute vertraut ein Großteil der Landwirte auf sogenannte Hochleistungs-Tierrassen, die beispielsweise ausschließlich der Fleischproduktion dienen. Mit jeder verlorenen Rasse geht genetisches Potenzial verloren, das über viele Generationen in jahrhundertelanger Züchtung entstanden ist. Der Verlust einer Rasse bedeutet damit gleichzeitig den Verlust eines wertvollen Kulturgutes. Alte Nutztierrassen haben folgende Eigenschaften: Sie haben eine gute Konstitution. Sie sind genügsam, insbesondere in Bezug auf das Futter. Sie sind langlebig. Sie haben eine hohe Fruchtbarkeit und gute Muttereigenschaften. Sie sind widerstandsfähiger gegenüber Krankheiten und Umwelteinflüssen. Daher sind alte Nutztierrassen in besonderem Maße für die extensive Pflege von Freiflächen geeignet. Auch Berlin strebt an, eine möglichst große Vielfalt an Nutztieren aktiv für die Pflege der Landschaft einzusetzen, um so den Erhalt von traditionellen Nutztierrassen zu sichern. Im Zuge der IGA Berlin 2017 wurde auf einer Fläche im Wuhletal (der sogenannten “Sandlinse”) sowie auf mehreren Flächen in den Gärten der Welt ein Beweidungsprojekt begonnen. Dies Beweidungsprojekt zählt zu den von der Gesellschaft zur Erhaltung alter und gefährdeter Haustierrassen e.V. (GEH) zertifizierten “Arche-Parks”. Die im Rahmen des Arche-Projektes durch die GEH ins Leben gerufenen “Arche-Parks” dienen der Öffentlichkeits- und Bildungsarbeit. Sie sollen eine möglichst breite Öffentlichkeit mit der Situation von alten, in ihrem Bestand bedrohten Nutztierrassen vertraut machen und deren Vielfalt demonstrieren. Im Rahmen des Arche-Projektes fanden die folgenden Tiere ein neues Zuhause: Orka, Bonita und Orlana – drei Rinder der Rasse Rotes Höhenvieh, Nell, Natascha und Missa – drei Pferde der Rasse Dülmener Wildpferde und insgesamt sechs Schafe, davon jeweils drei der Rassen Skudden und Coburger Füchse. Alle Rassen stehen auf der Roten Liste der Gesellschaft zur Erhaltung alter und gefährdeter Haustierrassen e.V. (GEH). Auch nach 2017 soll die Beweidung durch die Grün Berlin GmbH dauerhaft weiter geführt und auch auf andere Flächen im Wuhletal ausgedehnt werden. Geplant ist eine extensive Beweidung im System der Umtriebweiden. Die Tierhaltung führt auf den ausgewählten Freiflächen zur Entwicklung eines Mosaiks aus verschiedensten Lebensräumen für Flora und Fauna. Durch die Auswahl der Tiere wird neben dem Einsatz zur Pflege vor allem ein Beitrag zum Erhalt der genetischen Ressourcen der Nutztierrassen geleistet. Gesellschaft zur Erhaltung alter und gefährdeter Haustierrassen e.V.
Nationales Bodenmonitoringzentrum Für ein sektoren-übergreifendes Bodenmonitoring in Deutschland soll ein nationales Zentrum als Informations- und Koordinierungsstelle die Zusammenarbeit zwischen Bund und Ländern, Wissenschaft und Behörden stärken. Es ist Ansprechpartner zu übergeordneten Informationen und Ergebnissen zu Monitoringaktivitäten. Die koordinierende Stelle des Zentrums wird am Umweltbundesamt in Dessau eingerichtet. Welche Ziele hat das Nationale Bodenmonitoringzentrum und welche Aufgaben soll es übernehmen? Das Nationale Bodenmonitoringzentrum vernetzt Akteurinnen und Akteure aus verschiedenen Fachbereichen, die Bodendaten erheben und überwachen. Gemeinsam wählen sie wichtige Themen aus und werten die Daten aus, um verlässliche Aussagen über den Zustand der Böden und ihre Veränderungen auf nationaler Ebene zu treffen. Die über das Bodenmonitoringzentrum zugängliche Ergebnisse sollen für gemeinsame Auswertungen und Modellierungen genutzt werden, um sektorübergreifende, bundesweit harmonisierte und belastbare Aussagen zum Bodenzustand und seinen Veränderungen abzuleiten. Das Nationale Bodenmonitoringzentrum hat das Ziel, Handlungsbedarfe zu erkennen, um so den Bodenschutz zu stärken. Dies ist nur durch die enge Zusammenarbeit der Akteurinnen und Akteure möglich. Politikberatung Das Zentrum entwickelt Strategiepapiere, etwa zur EU-Bodenstrategie 2030 und zu dem Klimaschutzgesetz, mit dem Ziel, die Bodengesundheit zu stärken und Maßnahmen zur Emissionsminderung vorzuschlagen. Berichterstattung Es werden Prozesse etabliert, um den Bodenzustand, seine Veränderungen und deren Ursachen bundesweit zu erfassen und qualitätsgesicherte Daten bei Anfragen bereitzustellen. Datenaustausch und internationale Zusammenarbeit Das Zentrum fungiert als Schnittstelle zwischen europäischen und internationalen Institutionen und koordiniert den Austausch von Bodendaten mit nationalen Einrichtungen. Plattform und Kartenviewer Eine gemeinsame Plattform mit einem Kartenviewer wird eingerichtet, um Wissenschaftlern und Behörden einen einfachen Zugang zu bodenbezogenen Messdaten zu ermöglichen. Wie soll das Zentrum organisiert sein? Das Netzwerk des Nationalen Bodenmonitoringzentrums ist grundsätzlich Gremien-gesteuert: Diese werden nach der Eröffnungsveranstaltung in der zweijährigen Aufbauphase gebildet. Von ministerieller Seite, unter zusätzlicher Berücksichtigung der Bundesländer, Staatliche Geologischen Dienste und der Waldmonitoringprogramme, wird das Zentrum von einer interministeriellen Steuerungsrunde geleitet. Dieses Gremium beauftrag das Zentrum und mandatiert die einzelnen Fachinstitutionen. Die zweite wichtige Instanz besteht aus dem Fachgremium, bestehend aus den nachgeordneten Institutionen wie der Arbeitsgemeinschaft Boden, der Bundesanstalt für Mineralforschung und -prüfung, dem Bundesamt für Naturschutz, der Bundesanstalt für Geowissenschaften und Rohstoffe, der Bund-Länder-Arbeitsgruppe Bodenzustandserhebung Wald, der Bund/Länder-Ausschuss der Staatlichen Geologischen Dienste, des Bundesländer/ Ständigen Ausschusses "Vorsorgender Bodenschutz" BOVA, Vertretende der Boden-Dauerbeobachtung, dem Deutschen Wetterdienst, dem Nationalen Monitoringzentrum zur Biodiversität , der Deutschen Gesellschaft für Internationale Zusammenarbeit GmbH, dem Julius Kühn-Institut, dem Thünen Institut, dem Umweltbundesamt ( UBA ) und weiteren. Dieses fachlich-inhaltlich steuernde Gremium bildet mit seinen Expert*innen das prozessuale Kernstück des Nationalen Bodenmonitoringzentrums. Was bedeutet Bodenmonitoring? Beim Bodenmonitoring werden verschiedene Parameter der Böden erfasst. Bodenproben werden auf physikalische, chemische und biologische Eigenschaften untersucht, wie etwa Textur, Struktur, Feuchtigkeit, Humus- und Nährstoffgehalte, Versauerung , Schadstoffe und Bodenbiodiversität. Dadurch lassen sich der Zustand der Böden bestimmen, Veränderungen erkennen und bewerten sowie zukünftige Entwicklungen voraussagen. Um die Ursachen von Bodenveränderungen zu verstehen, ist es wichtig, die Monitoring -Ergebnisse mit den Besonderheiten der jeweiligen Standorte und Regionen zu verknüpfen. Veränderungen können unter anderem durch Bodenversiegelung, geänderte Nutzung, Stoffeinträge, mechanische Belastungen sowie Klima - und Wetterextreme verursacht werden. Um den Bodenzustand auf größeren Flächen zu beurteilen, werden sogenannte Pedotransferfunktionen, also Abschätzung eines Parameters mithilfe von anderen Bodeneigenschaften durch mathematische Formeln, und digitale Methoden wie die Fernerkundung und das Digital Soil Mapping eingesetzt. Dieses Wissen zu Bodenveränderungen und ihren Gründen ist ein wesentlicher Baustein für eine nachhaltige Bodennutzung in Land- und Forstwirtschaft sowie in der Siedlungs- und Infrastrukturentwicklung. Weiterhin werden daraus zielorientierte Politiken entwickelt, die dem Schutz von Böden und deren Ökosystemleistungen dienen. Zur Prüfung der Wirksamkeit von Maßnahmen werden die einzelnen Daten und Informationen aus dem Bodenmonitoring zu Indikatoren zusammengefasst. Hintergrund In Deutschland existieren eine Reihe von unabhängigen Bodenmonitoringaktivitäten und -programmen, die in verschiedenen Verantwortungsbereichen geregelt und nicht übergreifend aufeinander abgestimmt sind. Mit Ausnahme des Monitorings im Wald im Rahmen des forstlichen Umweltmonitorings und bundesweiter Erhebungen zu einzelnen Aspekten, unterscheiden sich die methodischen Ansätze, die Strukturen der Datenhaltung und die verwendeten Formate der verschiedenen Monitoringaktivitäten in den Ressorts und zwischen den Bundesländern. Daher bekennt sich die Bundesregierung zum europäischen Bodenschutz und zum Aufbau eines Nationalen Bodenmonitoringzentrums im Koalitionsvertrag zur 20. Legislaturperiode .
Bioabfälle Die Menge getrennt gesammelter biologisch abbaubarer Abfälle stagnierte bis 2022 trotz einer Ausweitung der getrennten Sammlung. Ein Grund hierfür könnte die langjährige trockene Witterung und das damit verbundene geringere Pflanzenwachstum sein. Erstmals wurden im Jahr 2022 mehr Bioabfälle in Anlagen mit Vergärungsstufe und Biogasgewinnung behandelt als in reinen Kompostierungsanlagen. Bioabfälle: Gute Qualität ist Voraussetzung für eine hochwertige Verwertung Die getrennte Erfassung von Bioabfällen ist eine wesentliche Voraussetzung für die Wiederverwertung von organischen Substanzen und Nährstoffen. Nur aus sauber getrennten und fremdstoffarmen Bioabfällen lassen sich hochwertige Komposte und Gärreste herstellen, die für eine landwirtschaftliche oder gärtnerische Nutzung geeignet sind. Zu diesen Abfällen zählen Bioabfälle aus Haushalten und Gewerbe, Garten- und Parkabfälle sowie Speiseabfälle, Abfälle aus der Lebensmittelverarbeitung und Abfälle aus der Landwirtschaft (siehe Abb. „Zusammensetzung der an biologischen Behandlungsanlagen angelieferten biogenen Abfälle“). Auch Klärschlämme, die in Klärschlammkompostierungsanlagen behandelt werden, werden in der Abfallstatistik zu den biologischen Abfällen gezählt. Klärschlämme gehören jedoch nicht zu den Bioabfällen gemäß Bioabfallverordnung, ihre Verwertung unterliegt der Klärschlammverordnung. Ebenso wird der Teil der in Deutschland anfallenden Mengen an Gülle und Mist, der in Bioabfallbehandlungsanlagen mitbehandelt wird, laut Abfallstatistik zu den biologischen Abfällen gezählt. Zu beachten ist, dass der Großteil der landwirtschaftlichen Rückstände jedoch nicht in der Abfallstatistik auftaucht, da er nicht in Abfallbehandlungsanlagen behandelt, sondern in der Landwirtschaft direkt verwertet wird. Sammlung von Bioabfall In Deutschland begann im Jahr 1985 die getrennte Sammlung biogener Abfälle aus Haushalten. Die gesammelten Abfälle werden zu speziellen Bioabfallbehandlungsanlagen transportiert, wo sie kompostiert (mit Sauerstoff = aerob) oder vergoren (ohne Sauerstoff = anaerob) werden. Von 1990 bis 2002 ist die Menge der behandelten biogenen Abfälle nach Angaben des Statistischen Bundesamtes stark angestiegen (siehe Abb. „An biologischen Behandlungsanlagen angelieferte biogene Abfälle“). Danach wuchs die gesammelte Menge nur noch langsam weiter an. Im Jahr 2022 wurden in Deutschland etwa 15,75 Millionen Tonnen (Mio. t) biogene Abfälle biologisch behandelt. Ohne die Klärschlammkompostierung und die Abfälle die in sonstigen biologischen Behandlungsanlagen behandelt wurden, blieben im Jahr 2022 14,09 Mio. t echte Bioabfälle. Von diesen Bioabfällen wurden 6,66 Mio. t in reinen Kompostierungsanlagen behandelt. 7,44 Mio. t, also etwa 53 % der gesamten Bioabfälle wurden laut Statistik in Vergärungsanlagen oder kombinierten Kompostierungs- und Vergärungsanlagen behandelt. Damit wurden im Jahr 2022 erstmals mehr Bioabfälle in Anlagen mit Vergärungsstufe behandelt als in reinen Kompostierungsanlagen (siehe Abb. Eingesetzte Bioabfälle in Kompostierungs- und Vergärungsanlagen“). Aus den gesammelten Bioabfällen wurden rund 1,21 Mio. t Bioabfallkompost 2,12 Mio. t Grünabfallkompost sowie 4,02 Mio. t Gärreste und kompostierte Gärreste erzeugt und an Nutzer abgegeben (Statistisches Bundesamt 2024) . Die Entwicklung der abgegebenen Kompost- und Gärrestmengen ist in Abbildung „Abgesetzte Komposte und Gärreste“ dargestellt. An Bioabfallbehandlungsanlagen angelieferte biologisch abbaubare Abfälle Quelle: Statistisches Bundesamt Diagramm als PDF Diagramm als Excel mit Daten Eingesetzte Bioabfälle in Kompostierungs- und Vergärungsanlagen Quelle: Statistisches Bundesamt Diagramm als PDF Diagramm als Excel mit Daten Abgesetzte Komposte und Gärreste Quelle: Statistisches Bundesamt Diagramm als PDF Diagramm als Excel mit Daten Verwertungswege für Bioabfälle Wie Bioabfall am sinnvollsten zu verwerten ist, hängt von dessen Zusammensetzung ab. Bei der Verwertung lässt sich unterscheiden: Nasse Bio- und Speiseabfälle sind für eine Vergärung mit Biogasnutzung und anschließender stofflicher Verwertung (möglicherweise mit Nachrotte) der Gärreste geeignet. Für lignin- und zellulosereiches Pflanzenmaterial ist die Kompostierung und die Herstellung von Fertigkompost die beste Verwendung. Holzhaltige Bestandteile des Grünabfalls lassen sich neben der Kompostierung auch energetisch nutzen und können etwa als Brennstoff in Biomasseheizkraftwerken eingesetzt werden (siehe Schaubild „Verwertungswege des Bioabfalls“). Etwa die Hälfte der Bioabfälle aus Haushalten wird derzeit noch kompostiert, wobei die enthaltene Energie nicht genutzt werden kann. Ziel ist es daher, den Anteil der Vergärung mit Biogasgewinnung bei den geeigneten Bioabfällen in Zukunft zu erhöhen. Dies gilt insbesondere für Bioabfälle aus Haushalten (Biotonne), bei denen noch große Potenziale für eine Vergärung bestehen. Nutzung der Gärreste und des Komposts Die Landwirtschaft profitiert von der Verwertung biogener Abfälle. Nach Aussage der Bundesgütegemeinschaft Kompost (BGK) werden fast alle Gärreste als Dünger genutzt. Landwirtschaftliche Betriebe verwendeten im Jahr 2023 zudem rund 57 % allen Komposts. Durch den Einsatz von Gärresten und Kompost wird in der Landwirtschaft vor allem Kunstdünger ersetzt. Eine ausführliche Beschreibung der Eigenschaften von Komposten und Gärresten sowie der Vorteile und Schwierigkeiten bei deren Anwendung in der Landwirtschaft findet sich in dem Positionspapier „Bioabfallkomposte und -gärreste in der Landwirtschaft“ . Durch den Einsatz von Kompost im Gartenbau und in Privatgärten kann dort unter anderem Torf ersetzt werden (siehe Abb. „Absatzbereiche für gütegesicherte Komposte 2023“). Auch in Blumenerden und Pflanzsubstraten kann Torf zum Teil durch Kompost ersetzt werden. Qualitätsanforderungen für Kompost und Gärreste Der Gesetzgeber regelt seit 1998 in der Bioabfallverordnung (BioAbfV) , unter welchen Bedingungen Kompost und Gärreste aus Bioabfällen Böden verwertet werden dürfen. Die Bioabfallverordnung enthält Grenzwerte für die höchstens zulässigen Schwermetallgehalte bei der Verwertung von Bioabfällen: Es gibt zwei Kategorien von Grenzwerten (siehe Tab. „Grenzwerte für Schwermetalle in Bioabfällen“): Von Kompost, der die Grenzwerte in der Spalte A der Verordnung einhält, dürfen innerhalb von drei Jahren bis zu 20 t Trockenmasse auf einen Hektar ausgebracht werden. Von Kompost, der die strengeren Grenzwerte der Spalte B einhält, dürfen innerhalb von drei Jahren bis zu 30 t Trockenmasse je Hektar aufgebracht werden. Neben den Schwermetallgrenzwerten werden in der Bioabfallverordnung auch Anforderungen an die Hygiene der erzeugten Komposte und Gärreste gestellt. Seit Bestehen der Bioabfallverordnung hat sich die Qualität der erzeugten Produkte deutlich verbessert. Gärreste und Kompost wiesen in den Jahren 1999 bis 2002 höhere durchschnittliche Nährstoffgehalte auf sowie weniger Blei, Quecksilber und Cadmium als noch Anfang der 90er Jahre. Das zeigt eine vom Umweltbundesamt initiierte Untersuchung bei der Daten der Bundesgütegemeinschaft Kompost (BGK) ausgewertet wurden ( Reinhold 2004 ). Bis heute sind sowohl Schadstoff- als auch Fremdstoffgehalte weiter zurückgegangen. (siehe Tab. „Entwicklung der Kompostqualität“). Ein weiteres wichtiges Qualitätskriterium für Komposte und Gärreste aus Bioabfällen ist ihr Gehalt an Fremdstoffen und insbesondere an Kunststoffen. Sowohl auf dem Acker als auch in Blumenerde sind Folienschnipsel oder Glasscherben nicht erwünscht. Die Wirkung von sichtbaren Kunststoffpartikel und von nicht sichtbaren Mikropartikeln auf das Bodenleben und auf Pflanzen wird derzeit noch untersucht. Insbesondere wegen ihrer sehr langen Haltbarkeit in der Umwelt gilt es jedoch den Eintrag von Kunststoffen in die Umwelt zu minimieren. Der Anteil an Fremdstoffen in Komposten und Gärresten wird in der Bioabfallverordnung begrenzt. Dabei wird seit 2017 unterschieden in verformbare Kunststoffe (Folienbestandteile), die auf 0,1 Massenprozent in der Trockensubstanz begrenzt sind und alle anderen Fremdstoffe (Hartkunststoff, Glas, Metall etc.), für die ein Grenzwert von 0,4 Massenprozent in der Trockensubstanz gilt. Die durchschnittlichen Gehalte an Kunststoffen und Fremdstoffen insgesamt in gütegesicherten Komposten und Gärresten zeigt die Tabelle „Fremd- und Kunststoffgehalte in Komposten und Gärresten“. Datengrundlage für die Berechnung der Werte sind Analyseergebnisse aus der RAL-Gütesicherung. Tab: Grenzwerte für Schwermetalle in Bioabfällen Quelle: Bioabfallverordnung Tabelle als PDF Tabelle als Excel Tab: Entwicklung der Kompostqualität Quelle: Bundesgütegemeinschaft Kompost e.V. Tabelle als PDF Tabelle als Excel Tab: Fremd- und Kunststoffgehalte in Komposten und Gärresten Quelle: Bundesgütegemeinschaft Kompost e.V. Tabelle als PDF Tabelle als Excel
Die Zustandsbestimmung 2021 der Oberflächenwasserkörper (OWK) basiert auf den Vorgaben der Oberflächengewässerverordnung vom 20. Juni 2016 (OGewV). Diese Vorgaben wurden durch Abstimmungen zwischen den Bundesländern in der Länderarbeitsgemeinschaft Wasser (LAWA) und den Flussgebietsgemeinschaften (FGG) Weser und Elbe konkretisiert. Die EU unterscheidet bei den oberirdischen Gewässern zwischen natürlichen Wasserkörpern, erheblich veränderten Wasserkörpern und künstlichen Wasserkörpern . Welche Wasserkörper erheblich verändert oder künstlich sind, wird nach einer europaweit abgestimmten Methodik ermittelt. Als erheblich verändert kann ein Oberflächenwasserkörper dann eingestuft werden, wenn sich Verbesserungen an ihm signifikant negativ auf die Nutzung auswirken. Wichtige spezifische Nutzungen in Wasserkörpern, in deren Folge eine Ausweisung als erheblich verändertes oder künstliches Gewässer erfolgte, sind in Sachsen-Anhalt die Landbewässerung und Landentwässerung, der Hochwasserschutz, der Bergbau und die Schifffahrt. Die Verteilung von natürlichen, künstlichen und erheblich veränderten Wasserkörpern sind im nebenstehenden Diagramm veranschaulicht. Für die natürlichen Oberflächenwasserkörper sind der ökologische und der chemische Zustand zu bestimmen. Für die künstlichen und erheblich veränderten Wasserkörper sind das ökologische Potenzial und der chemische Zustand zu ermitteln. Bei der Ermittlung des ökologischen Zustandes/ Potenzials stehen biologische Komponenten im Mittelpunkt. Dazu gehören u.a. am Gewässergrund lebende wirbellose Kleinlebewesen, Fische, Wasserpflanzen sowie Algen. Die allgemeinen physikalisch-chemischen Parameter, wie Sauerstoff-, Nährstoff- oder Salzgehalte gehen unterstützend in die Bewertung der biologischen Komponenten ein. Das gleiche gilt für die Bewertung der hydromorphologischen Komponenten, die den Wasserhaushalt, die Durchgängigkeit und die Struktur der Gewässer umfassen. Aber auch bestimmte Schadstoffe sind bei der Bewertung des ökologischen Zustandes heranzuziehen. Die Bewertung des chemischen Zustandes erfolgte nach Anlage 7 der Oberflächengewässerverordnung (OGewV). Lediglich 3 Prozent der 334 Oberflächengewässerkörper Sachsen-Anhalts befinden sich zurzeit in einem guten ökologischen Zustand oder haben ein gutes ökologisches Potenzial. Defizite bestehen hier vor allem hinsichtlich des Lebensraums und der Artenvielfalt von Tieren und Pflanzen in den Gewässern (biologische Komponenten). Vielfach sind Verlauf und Struktur der Gewässer verändert oder die Durchgängigkeit unterbrochen worden. Auch beim Gehalt an Sauerstoff, Nährstoffen und Salz und bei spezifischen Schadstoffen sind noch Defizite zu verzeichnen. Eine Ursache dafür ist die intensive landwirtschaftliche Nutzung sowie die damit verbundene Belastung aus diffusen Quellen. Hinsichtlich des chemischen Zustandes weist kein Wasserkörper einen guten Zustand auf. Hauptgrund dafür ist die bundesweit flächendeckende Überschreitung der sehr niedrigen Umweltqualitätsnormen für Quecksilber und für bromierte Diphenylether (BDE) in Biota sowie für weitere ubiquitär verbreitete Stoffe im Wasser (Polyzyklische aromatische Kohlenwasserstoffe, Tributylzinn, Perfluoroktansäure). Ohne Berücksichtigung von Quecksilber und BDE weisen 52 Prozent der Wasserkörper Sachsen-Anhalts einen guten chemischen Zustand auf. Die Defizite des chemischen Zustandes sind neben der ubiquitären Belastung vor allem auf historisch bedingte Altlasten und Altbergbau zurückzuführen. Zurück zu Bestandsaufnahme und Zustandsbestimmung
Böden besitzen in Abhängigkeit von Ausgangsmaterial, Korngrößenzusammensetzung, Humusgehalt, Relief und Grundwasserflurabstand große Spannbreiten in ihren ökologischen Eigenschaften. Wesentliche, die ökologischen Eigenschaften eines Bodens kennzeichnende Parameter sind nutzbare Feldkapazität, Durchlüftung, Kationenaustauschkapazität, pH-Wert, effektive Durchwurzelungstiefe und Sommerfeuchtezahl. Die nutzbare Feldkapazität ist das Maß für die Menge des pflanzenverfügbaren Wassers im Boden. Es ist das langsam bewegliche Sickerwasser und Haftwasser in engen Grobporen und Mittelporen des Bodens. Bodenwasser in den Feinporen (Totwasser) unterliegt hohen Saugspannungen und ist von Pflanzen nicht aufnehmbar. Die Menge des im Boden speicherbaren Wassers wird vom Porenvolumen, von der Porengrößenverteilung, der Korngrößenzusammensetzung und vom Humusgehalt des Bodens bestimmt. Die Durchlüftung des Bodens (Gasaustausch zwischen Atmosphäre und Boden durch Diffusion) ist entscheidend für das Wachstum der Pflanzenwurzeln und die Existenz und Tätigkeit der Bodenlebewesen. Die Intensität des Gasaustausches ist abhängig vom Porenvolumen, insbesondere dem Anteil an Grobporen, sowie deren Kontinuität, von der Korngrößenzusammensetzung, vom Gefüge und vom Wassergehalt des Bodens. Unter der Kationenaustauschkapazität ist die Menge der im Boden an Tonmineralen und Huminstoffen austauschbar gebundenen Kationen (z.B. Ca 2+ , Mg 2+ , K + , Na + , NH 4 + , H + ) zu verstehen. Die Kationenaustauschkapazität liefert eine Aussage über das Vermögen des Bodens, Nährstoffe zu binden und zu speichern. Dieses Bindungsvermögen bzw. Nährstoffspeichervermögen ist von der Art und der Menge der Tonminerale, vom Humusgehalt und vom pH-Wert abhängig. Das aktuelle Nährstoffangebot des Bodens kann daher deutlich geringer sein als das potentielle. Die potentielle (das heißt maximale) Kationenaustauschkapazität wird bei einem pH-Wert von 8,2 und die effektive Kationenaustauschkapazität für den aktuellen pH-Wert des Bodens ermittelt. Die effektive Kationenaustauschkapazität ist u. a. neben Luft- und Wasserverhältnissen, biologischer Aktivität, Redoxeigenschaften usw. ein entscheidender Faktor für die Beurteilung des tatsächlich verfügbaren Nährstoffangebotes des Bodens. Vom pH-Wert werden direkt und indirekt verschiedene Vorgänge und Eigenschaften des Bodens bestimmt. Das sind unter anderem Verwitterungsvorgänge, Bodenbildungsprozesse (wie Podsolierung oder Tonverlagerung), Aktivität und Artenspektrum der Bodenlebewesen, Huminstoffbildung, Gefügestabilität, Bodenversauerung und Verschlämmungsneigung. Unter effektiver Durchwurzelungstiefe ist die Bodentiefe zu verstehen, aus der Pflanzenwurzeln dem Boden Wasser entziehen können. In anthropogen veränderten Böden kann die Durchwurzelbarkeit durch undurchdringliche Schichten (z.B. Betonfundamente), Luftmangel oder Methanbildung, beispielsweise in Deponieböden, eingeschränkt sein. Die Sommerfeuchtezahl ist ein Ausdruck für das nutzbare Wasserangebot in kritischen Trockenperioden während der Hauptvegetationszeit im effektiven Wurzelraum und berücksichtigt nutzbare Feldkapazität, Klima, Relief und Grundwassereinfluss. Parabraunerden, Fahlerden, Braunerden, Rostbraunerden, Podsol-Braunerden, Podsole, Gleye und moorige Böden sind im Berliner Raum verbreitete, durch ihre Nutzung wenig beeinflusste naturnahe Böden mit einer langen Entwicklungsgeschichte. Diese Böden kommen fast ausschließlich im weniger dicht besiedelten und unbesiedelten städtischen Außenbereich vor. Parabraunerden und Fahlerden sind die vorwiegend vorkommenden Böden der sandüberlagerten Geschiebemergelhochflächen des Barnims und des Teltows, wobei sie bis in 1 bis 2 m Tiefe entkalkt sind. Fahlerden kommen dabei vor allem in Gebieten mit Waldnutzung vor. Parabraunerden haben aufgrund ihres höheren Humus- und Tongehaltes im Oberboden ein deutlich höheres Nährstoffangebot als Fahlerden. Sie besitzen ein mittleres bis hohes Speichervermögen für Wasser und Nährstoffe und sind gut durchlüftet. Parabraunerden stellen damit besonders in Rudow, Mariendorf, Lichtenrade (Teltow-Hochfläche), Kladow (Nauener Platte) sowie Hohenschönhausen, Hellersdorf, Weißensee und Pankow (Barnim-Hochfläche) günstige Pflanzenstandorte für den Ackerbau dar. Sind unter forstwirtschaftlicher Nutzung die pH-Werte im Oberboden zumeist niedrig (pH-Wert 3 bis 4, Bodenversauerung durch Humin- und Fulvosäuren sowie “sauren Regen”), so haben Ackerböden durch den Einsatz von Düngemitteln und Kalkung einen höheren pH-Wert. Auf Forstflächen ist das Nährstoffangebot im Flachwurzelraum (bis 0,3 m Tiefe) sehr gering bis mäßig und auf Ackerflächen gering bis erhöht. Im Tiefwurzelraum (bis 1,5 m Tiefe) ist das Nährstoffangebot durch Zunahme des pH-Wertes mittel bis hoch (Grenzius 1987). Fahlerden weisen im Unterboden (Bt-Horizont) ein höheres Nährstoffangebot auf als im tonverarmten Oberboden. Wasserhaltevermögen und Durchlüftung sind ausreichend. Braunerden entwickeln sich auf sandigen Bereichen der Geschiebemergelhochflächen des Barnims und des Teltows, an den Unterhängen der Hochflächen, Moränenhügel und Endmoränen insbesondere als kolluviale Bildung, auf z. T. schluffhaltigen Mittel- und Feinsanden des Berliner Urstromtals und des Panke-Tals sowie in Senken der Dünenlandschaften. In Abhängigkeit vom früheren und aktuellen Grundwasserstand treten v. a. im Urstromtal auch vergleyte und reliktisch vergleyte Braunerden und Gley-Braunerden auf. Braunerden sind tief durchwurzelbar und gut durchlüftet. Sie weisen ein geringes Wasserspeichervermögen, an Unterhängen der Endmoränen durch Wasserzufuhr und Einlagerung von Lehm z. T. ein mittleres Wasserspeichervermögen auf. Dabei handelt es sich für Flachwurzler um trockene, für Tiefwurzler um frische Standorte, wobei die vergleyten Braunerden und Gley-Braunerden des Urstromtals vor der Grundwasserabsenkung feuchte Standorte darstellten. Braunerden haben meist ein mittleres Nährstoffspeichervermögen. Jedoch ist das tatsächliche Nährstoffangebot der Braunerden unter forstlicher Nutzung und unter Getreideanbauflächen bei niedrigen pH-Werten sehr gering bis mäßig, bei höherem Humusgehalt und pH-Wert (Gemüseanbauflächen, Gartennutzung) auch erhöht. Rostbraunerden sind auf den Geschiebesanden der Nauener Platte (Gatow-Kladow), des Barnims und des Teltows verbreitet und stellen außerdem den dominierenden Boden der Stauchmoränen (Pichelsberg Charlottenburg-Wilmersdorf) dar. Sie bilden sich ebenfalls auf grundwasserfernen Talsanden (z.B. Forst Jungfernheide) und sind gemeinsam mit den Podsol-Braunerden Leitböden der Dünen im Spandauer, Tegeler und Köpenicker Forst. Sowohl Rost- als auch Podsol-Braunerden sind tief durchwurzelbar und gut durchlüftet. Sie besitzen eine geringe bis mittlere nutzbare Feldkapazität und ein mittleres Nährstoffspeichervermögen. Sie sind sehr trockene bis trockene und sehr nährstoffarme Standorte. Bei Einlagerung von Schluffen im Unterboden und unter Gartennutzung bzw. in der Nachbarschaft mit Mooren (vergleyte Podsol- bzw. Rostbraunerden und Rostbraunerde- bzw. Podsol-Braunerde-Gleye) ist ihr Wasser- und Nährstoffspeichervermögen erhöht. Für die Bildung von Podsolen sind spezielle klimatische Verhältnisse (niedrige Temperaturen, erhöhte Niederschläge) eine wesentliche Voraussetzung. Podsole entwickeln sich aus feinkörnigen, kalkfreien, sandigen Substraten und kommen in den Berliner Forsten nur an wenigen Stellen vor, v. a. an Nordosthängen von Dünen im Tegeler Forst (vgl. Grenzius 1987) und in den Püttbergen im Köpenicker Forst (vgl. Smettan 1995). Podsole sind in der Regel tief durchwurzelbare und gut durchlüftete, jedoch trotz des mittleren bis erhöhten Wasser- und Nährstoffspeichervermögens nährstoffarme und trockene Böden. Gleye bilden sich auf Standorten mit hohem Grundwasserstand aus sandigen oder schluffigen Substraten. Sie treten in Senken der Talsandebenen im Spandauer Forst auf. Reliefbedingt sind sie häufig mit Nassgleyen, Anmoorgleyen und Mooren vergesellschaftet. Sie stellen gemeinschaftlich die Böden der Senken in Dünenbildungen im Spandauer Forst und im Forstrevier Schmöckwitz südlich des Seddinsees, der Schmelzwasserrinnen (wie die Kuhlake, das Breite Fenn, das Rudower Fließ, das Tegeler Fließ, die Wuhle, das Neuenhagener Mühlenfließ, die Krumme Laake) und der Toteissenken (Großer Rohrpfuhl und Teufelsbruch in Spandau sowie die Toteissenke Teufelssee in Köpenick) dar. Die ökologischen Eigenschaften der Gleye sind je nach Ausgangsmaterial, Humusgehalt, Grundwasserstand und Nährstoffgehalt des Grundwassers sehr unterschiedlich. Im Berliner Stadtgebiet sind neben den Gleyen in Bereichen mit geringen Grundwasserflurabständen aufgrund von Grundwasserabsenkungen reliktische Gleye zu finden, die noch typische Gleymerkmale im Profilaufbau besitzen, sich in ihren ökologischen Eigenschaften aber von den Gleyen sehr stark unterscheiden. Gleye sind in der Regel für Flachwurzler im Oberboden feuchte Standorte und für Tiefwurzler im Unterboden nasse Standorte. Demzufolge gestaltet sich das Luftangebot umgekehrt proportional zum Wassergehalt des Bodens. Die Folge ist ein luftarmer Unterboden und in Abhängigkeit vom Wasserstand ein gut bis schlecht durchlüfteter Oberboden (z. T. wechseltrocken bis nass) mit einer mittleren Durchwurzelbarkeit. Gleye besitzen in Abhängigkeit vom Humusgehalt ein erhöhtes bis hohes Nährstoffspeichervermögen sowie ein mäßiges bis hohes Nährstoffangebot. Das Nährstoffangebot ist erhöht, wenn über eutrophiertes Grundwasser und dessen kapillaren Aufstieg eine zusätzliche Nährstoffzufuhr erfolgt. Reliktgleye sind trockene bis sehr trockene, bis in den Unterboden gut durchlüftete und demzufolge tiefgründig durchwurzelbare Standorte mit zumeist mittleren bis erhöhten Wasserkapazitäten. In Abhängigkeit vom Humusgehalt und pH-Wert ist ihr Nährstoffangebot gering bis mittel. Eine Nährstoffzufuhr durch das Grundwasser bleibt weitgehend aus. Moore mit ihrem hohen Wasserstand sind sehr schlecht durchlüftet und nur flach durchwurzelbar. Sie haben ein sehr hohes Wasser- und ein mittleres bis erhöhtes Nährstoffspeichervermögen. Sie sind nicht entwässerte, naturnahe Standorte mit unterschiedlichen Nährstoffangeboten. Moore unterliegen zumeist der Vererdung und Mineralisierung infolge von Grundwasserabsenkungen und haben dadurch veränderte Standorteigenschaften für Pflanzen. Vererdete moorige und anmoorige Böden sind im Gegensatz zu intakten Mooren sehr tief durchwurzelbare, relativ gut durchlüftete und feuchte Standorte. Sie kommen z.B. im Urstromtal in Kleingartengebieten entlang des Teltow- und des Neuköllner Kanals sowie in Treptow entlang des Hochflächenrandes der Teltow-Hochfläche vor. Die Bodentypen Lockersyrosem, Regosol und Pararendzina charakterisieren relativ junge Bodenbildungen im Vergleich zu Böden mit hundert- bzw. tausendjährigen Entwicklungszeiträumen. Sie entwickeln sich sowohl auf jungen Abtragungsflächen aus natürlich anstehenden Gesteinen als auch auf Flächen aus anthropogen geschütteten Materialien. Der Bodenabtrag erfolgt dabei einerseits ohne Zutun des Menschen, z.B. durch Wind- oder Wassererosion an Hängen der Dünen sowie der Kames- und Moränenhügel, andererseits infolge der Nutzung des Bodens durch die Menschen. Bodenaufträge können durch natürliche Um- und Verlagerungsprozesse und ebenso durch den Menschen in Form von Aufschüttungen entstehen. Dabei wird in Aufschüttungen von natürlichem Material (z.B. Bodenaushub, Kies) und in Aufschüttungen von technogenen Substraten (Trümmer- und Bauschutt, Schlacke usw.) unterschieden. Lockersyroseme, Regosole und Pararendzinen aus anthropogen geschüttetem Material durchlaufen die gleiche Bodenentwicklung wie aus natürlichen Gesteinen. Ihr unterschiedliches Ausgangsmaterial wird durch die Bodenform, z.B. Regosol aus Geschiebesand bzw. Regosol aus Trümmerschutt, beschrieben (vgl. Grenzius 1987). Die Böden des Berliner Stadtgebietes sind durch intensive anthropogene Eingriffe infolge von Besiedlung, Abriss von Gebäuden, Kriegszerstörungen (2. Weltkrieg) sowie Baumaßnahmen gekennzeichnet. Einerseits gibt es großflächige Aufschüttungen von Trümmerschutt, Schlacken und Bauschutt, andererseits Abtragsflächen infolge von Baumaßnahmen (Straßen, Bahntrassen) sowie den Abbau von Kies, Sand und Ton in Tagebauen. Daher sind Lockersyroseme, Regosole und Pararendzinen im Berliner Stadtgebiet weit verbreitete Böden. Lockersyroseme auf Abtragsflächen natürlich anstehender Gesteine kommen v. a. im äußeren Stadtgebiet vor. Sie entwickeln sich überall dort, wo Rostbraunerden und Braunerden der Geschiebe-, Tal- und Flugsandflächen infolge der Nutzung, z.B. als Truppenübungsplätze oder im Tagebau, abgetragen wurden. Auf kleinflächigen, geringfügig beeinträchtigten Bodenarealen der Truppenübungsplätze sind noch naturnahe Böden erhalten. Größere Truppenübungsplätze befinden sich in Heiligensee (Baumberge), im Grunewald und im Köpenicker Forst (Jagen 161). Tagebaue im Berliner Stadtgebiet sind die Kaulsdorfer Seen, der Kiessee Arkenberge in Pankow, der Tegeler Flughafensee sowie der Laszinssee in Spandau. Die ökologischen Eigenschaften werden vom natürlichen Untergrund und dem Grundwasserstand geprägt. Zum Beispiel sind Lockersyroseme, die durch Erosion aus Rostbraunerden entstanden sind, gut durchlüftete, meist trockene und nährstoffarme Böden. Lockersyroseme auf Aufschüttungsflächen aus aufgetragenen anthropogenen Gesteinen, wie Trümmerschutt, Bauschutt, Gleisschotter, Industrieschotter, sind auf Freiflächen des gesamten dicht besiedelten Stadtgebietes (Innenstadt, alle im Krieg stark zerstörten Bereiche (Bodengesellschaft 2500), Industrie- und Gewerbestandorte (Bodengesellschaft 2540)) zu finden. Zudem treten sie auf Trümmer- und Bauschuttdeponien, wie Eichberge in Köpenick, Arkenberge in Pankow, Teufelsberg im Grunewald, Trümmerberg im Friedrichshain und Volkspark Prenzlauer Berg, und an den das gesamte Stadtgebiet durchziehenden Gleisanlagen auf. Seltener kommen Lockersyroseme auf aufgeschütteten bzw. umgelagerten natürlichen Gesteinen, so z.B. auf geschütteten Wällen von Truppenübungsplätzen einschließlich Schießplätzen, vor. Die ökologischen Eigenschaften dieser Lockersyroseme werden durch das Aufschüttungsmaterial bestimmt. Lockersyroseme aus Sanden und technogenen Substraten bilden sehr trockene bis trockene, bei Teer- oder Betondecken im Untergrund wechselfeuchte Standorte. Die Durchlüftung und damit das Sauerstoffangebot sind gut, die Durchwurzelbarkeit ist dagegen bei hohem Steingehalt eingeschränkt, bei steinfreien sandigen Böden jedoch tief. Nährstoffangebot und -speichervermögen sind je nach Ausgangsgesteinen und Nutzungseinflüssen gering bis hoch. Regosole entwickeln sich aus den Lockersyrosemen der natürlich oder anthropogen induzierten Erosionsflächen auf Kames-, Moränen- oder Dünensanden durch Humusanreicherung im Ah-Horizont (vgl. Grenzius 1987). Diese Regosole treten z.B. an den steileren Hangbereichen im Grunewald entlang der Havel, im Düppeler Forst und an den Hängen der Müggelberge auf. Bodenauf- und -abträge durch das Anlegen und Einebnen der Rieselfelder in den nördlichen Gebieten der Stadtbezirke Pankow, Weißensee und Hohenschönhausen bedingten ebenfalls die Entstehung von Regosolen aus natürlichem Material (Bodengesellschaften 2560 [60], 2580 [62], 2590 [63]). Regosole aus sandigen kalkfreien Aufschüttungen entwickeln sich vor allem im gesamten dicht bebauten Stadtgebiet einschließlich kleinerer Grün- und Parkanlagen. Sie sind meist nährstoffarm. Humusanreicherung im Oberboden verbessert das Nährstoffangebot. Sie weisen oft ein geringes Wasserhaltevermögen, eine gute Durchlüftung und eine vom Steingehalt abhängige tiefe bis mittlere Durchwurzelbarkeit auf. Pararendzinen entwickeln sich aus Lockersyrosemen kalkhaltiger Substrate. Pararendzinen natürlicher Herkunft entwickeln sich auf abgetragenen Bereichen offen gelassener Mergelgruben, auf umgelagertem Mergel (z.B. bei Tiefbaumaßnahmen) und an erodierten Hangbereichen von Gewässern und Rinnen der Geschiebemergelhochflächen. Im Niederungsgebiet der Bäke am Landgut Eule und an Albrechts Teerofen bildeten sich Pararendzinen aus den beim Bau des Teltowkanals ausgebaggerten und wieder abgelagerten Kalkmudden bzw. aus gestörten Flachwassersedimenten (vgl. Grenzius 1987). Pararendzinen aus anthropogenem Aufschüttungsmaterial entstehen auf allen Flächen, die mit Trümmer- oder Bauschutt aufgefüllt wurden, so im gesamten dicht bebauten Stadtgebiet, auf allen im Krieg stark zerstörten Bereichen mit Trümmerschuttauffüllungen und auf Bahnanlagen. Pararendzinen sind ebenso entlang der vielen überschütteten Ufer und Niederungen von Havel, Spree und deren seenartigen Erweiterungen anzutreffen. Pararendzinen aus Geschiebemergel weisen durch ihren höheren Tongehalt ein erhöhtes Nährstoffspeichervermögen sowie eine mittlere bis hohe nutzbare Feldkapazität auf. Pararendzinen aus Trümmerschutt sind dagegen nährstoffärmer und trocken. Die Durchlüftung ist gut, die Durchwurzelbarkeit bei Pararendzinen aus Trümmerschutt fällt aufgrund des Steingehaltes flach aus. Pararendzinen aus Kalkmudden stellen frische, nährstoffreiche sowie je nach Grundwasserstand gut bis schlecht durchlüftete Standorte dar. Von den derzeit 78 Bodengesellschaften (siehe Tab. 7) werden im Folgenden einige charakteristische Bodengesellschaften beschrieben. Eine ausführliche Beschreibung der Bodengesellschaften erfolgte durch Grenzius (1987). Die abgebildeten Landschaftsschnitte stammen aus der Dissertation von Grenzius (1987). BG 1010 [1] Parabraunerde – Sandkeilbraunerde Grundmoränenhochfläche aus Geschiebemergel Ausgangsgestein der in dieser Bodengesellschaft vereinten Bodentypen ist die aus Geschiebelehm bzw. -mergel bestehende Grundmoränenhochfläche, die durch Schrumpfung entstandene, mit Sand verfüllte Keile aufweist und durch Flugsande überlagert wurde. Eine Durchmischung des Flugsandes mit dem Geschiebemergel führte zur Ausbildung des Geschiebedecksandes. Auf den mit einer geringen Geschiebesanddecke überlagerten Geschiebelehm- bzw. -mergelflächen entwickelten sich Parabraunerden, auf den 1 bis 3 m tiefen Sandkeilen Sandkeilbraunerden. Diese Bodengesellschaft ist vor allem auf den Geschiebemergelhochflächen des Teltows und des Barnims verbreitet. BG 1070 [6] Rostbraunerde – kolluviale Braunerde (Sander über) Moränenfläche aus geschiebehaltigem Sand Diese Bodengesellschaft umfasst die Rostbraunerden auf den sandigen, morphologisch relativ ebenen Bereichen der Geschiebemergelhochflächen bzw. der Grundmoränen des Teltows (Grunewald, Düppeler Forst) und vereinzelt des Barnims. Dabei tritt in den oberen 2 m des Geschiebesandes kein Geschiebelehm bzw. -mergel auf. Rostbraunerden kommen auch auf der Stauchmoränenbildung in Pichelsberg vor. Da sie dort jedoch einen anderen räumlichen Bezug (geomorphologische Einheit) besitzen, wurden sie für diese geomorphologische Einheit mit einem anderen auftretenden Bodentyp zu weiteren Bodengesellschaften zusammengefasst (BG 1040 [4] und 1060 [5]). Eigene Bodengesellschaften (BG 1020 [2] bzw. 1030 [3]) bilden ebenfalls Rostbraunerden auf mehr oder weniger hohen Moränenhügeln aus Geschiebesanden mit teilweise auftretenden Geschiebemergel- bzw. Geschiebelehmresten innerhalb der ersten zwei Meter des Geschiebesandes. BG 1090 [9] Podsol-Braunerde – Podsol – kolluviale Rostbraunerde (Düne aus Feinsand) BG 1100 [10] Podsol-Braunerde – Rostbraunerde – kolluviale Rostbraunerde (Düne aus Feinsand) Die Bodengesellschaften 1090 [9] und 1100 [10] sind die Einheiten der grundwasserfernen, mehrere Meter mächtigen Dünen sowie größeren Dünengebiete mit Geländehöhen über 40 m NHN. Sie unterscheiden sich im Wesentlichen durch das Auftreten von Podsolen. Sie kommen v. a. im Tegeler und Frohnauer aber auch im Köpenicker Forst vor. Ohne Bodenprofiluntersuchungen können keine Aussagen zum Vorhandensein von Podsolen gemacht werden. Diese beiden Bodengesellschaften wurden im östlichen Stadtgebiet teilweise als Sammelgesellschaft, bei Vorhandensein von Kartierungen (Standortskarten des Forstbetriebes Ost-Berlin, Smettan 1995) getrennt ausgewiesen. BG 1160 [15] Rostbraunerde – vergleyte Braunerde – Gley-Braunerde (Talsandfläche aus Mittel- und Feinsand) Diese Bodengesellschaft ist eine weit verbreitete Bodengesellschaft im Berliner Urstromtal. Das Berliner Urstromtal stellt das Abflusstal der Schmelzwässer der Frankfurter Phase der Weichseleiszeit dar. Die durch die Schmelzwässer transportierten und im Talbereich abgelagerten Mittel- und Feinsande bilden das Ausgangsgestein für die Bildung der Braun- und Rostbraunerden. Unterschiedliche Grundwasserstände verursachten die Ausbildung von Gleymerkmalen (z.B. Rostflecken) in verschiedenen Tiefen. Dafür stehen die Bodentypen vergleyte Braunerde und Gley-Braunerde. Da das Grundwasser in diesem Jahrhundert durch die Grundwasserförderung der Berliner Wasserwerke abgesenkt wurde, liegen die Gleymerkmale häufig nur noch als Relikte vor, d. h. das Grundwasser steht heute tiefer an als die von ihm erzeugten Gleymerkmale. Diese Bodengesellschaft wird vor allem vom Spreetal in Köpenick und von den Talsandflächen der Forsten Spandau, Tegel und Jungfernheide eingenommen. BG 1231 [22a] Gley-Braunerde – Gley – Niedermoor (Schmelzwasserrinne in Talsandfläche ohne Düne) Die während des Glazials aufgrund des hohen Drucks des Gletschers auf seiner Sohle entstandenen subglazialen Schmelzwässer sowie die in der Zeit zwischen den Eiszeiten durch Erwärmung des Klimas entstandenen Schmelzwässer flossen in die großen Urstromtäler ab und schufen durch ihre Erosionskraft z. T. tiefe (subglaziale) Schmelzwasserrinnen. Die im Bereich des Grundwassers liegenden Rinnen verlandeten und vermoorten nach der letzten Eiszeit. Viele dieser Rinnen, insbesondere im Gebiet der Berliner Innenstadt, wurden anthropogen verfüllt und überbaut und sind deshalb heute nicht mehr sichtbar. Solche glazifluvialen Schmelzwasserrinnen innerhalb der Talsandflächen sind z.B. Teilbereiche der Wuhle, des Neuenhagener Mühlenfließes, die Spektelake, die Egelpfuhlwiesen und das Breite Fenn. Im unmittelbaren Rinnenzentrum entstanden je nach Grundwasserstand Anmoorgleye, teilweise auch Niedermoortorfe. Zu den Rinnenrändern hin folgen je nach Grundwasserstand Gley-Braunerden bzw. Gley-Rostbraunerden sowie vergleyte Braun- bzw. Rostbraunerden. Anthropogene Bodengesellschaften BG 2420 [41] Nekrosol + Gley-Braunerde-Hortisol + Gley (Friedhof auf Talsandfläche aus Mittel- und Feinsand) Bei dieser Bodengesellschaft wurden die Böden der Talsandflächen zusammengefasst, die durch die Nutzung als Friedhof teilweise einer anthropogenen Beeinflussung unterliegen. Als Nekrosole werden dabei die durch tiefgründiges Graben beim Anlegen der Gräber entstehenden Böden bezeichnet. Auf den ungenutzten Flächen des Friedhofs auf Talsand sind dagegen noch reliktische Gley-Braunerden und Gleye zu finden. Infolge einer langjährigen Humuszufuhr entwickelten sich Humusregosole, Hortisol-Gley-Braunerden und Hortisole. Bei anderen Nutzungen sind die Böden so stark anthropogen verändert, dass ehemals natürliche Böden weitgehend zerstört bzw. durch Fremdmaterialien überschüttet wurden. BG 2470 [49] Syrosem + Kalkregosol + Pararendzina (Gleisanlage auf Aufschüttungs- und Abtragungsfläche) Zu dieser Bodengesellschaft sind die Böden, die einer Nutzung als Bahnanlagen und Bahnhof unterliegen, zusammengefasst. Die Gleiskörper bestehen aus groben Schottern unterschiedlichen Materials; Bahndämme aus Sand, auch Trümmer- und Industrieschutt wurden aufgeschüttet. Je nach Bodensubstrat kam es zur Ausbildung vor allem von Syrosemen, Lockersyrosemen, Pararendzinen und Kalkregosolen. BG 2490 [51] Lockersyrosem + Humusregosol + Pararendzina (dichte Innenstadtbebauung, im Krieg nicht zerstört, auf Aufschüttung) Diese Bodengesellschaft charakterisiert Böden innerhalb von Flächen geschlossener Bebauung der Innenstadt, die vor dem 2. Weltkrieg erbaut und nicht bzw. kaum zerstört wurden sowie stark versiegelt sind. Die in den Hinterhöfen auftretenden Böden, die einer Gartennutzung unterlagen bzw. noch unterliegen, sind durch humose Oberböden gekennzeichnet und konnten sich zu Humusregosolen, Hortisolen und Humuspararendzinen entwickeln. Auf den anderen Flächen der Hinterhöfe, die geringfügig auch mit Trümmerschutt bedeckt sein können, bildeten sich Lockersyroseme und Regosole. BG 2500 [52] Lockersyrosem + Regosol + Pararendzina (Innenstadt auf Aufschüttung) Diese Bodengesellschaft beschreibt die Böden ehemals dicht bebauter Innenstadtbereiche, die während des 2. Weltkrieges zum Teil vollständig zerstört wurden. Der Trümmerschutt verblieb größtenteils an Ort und Stelle. Auf vielen nicht durch Gebäude beanspruchten Flächen sind die Bodenschichten von wenigen Dezimetern bis zu zwei Metern mit Trümmerschutt und/oder Bausand durchsetzt bzw. bestehen aus diesem (vgl. Grenzius 1987). Wie in Abb. 10 ersichtlich, entwickelten sich auf diesen Flächen Syroseme und Pararendzinen, auf Flächen ohne Trümmerschutt Syroseme und Regosole. Die Karte der Bodengesellschaften, erarbeitet aus vorhandenen Daten unterschiedlicher Art, gibt einen Überblick über die je nach Ausgangsmaterial, Geomorphologie bzw. Landschaftsausschnitt, Grundwasserstand und Nutzung zu erwartenden Vergesellschaftungen von naturnahen und/oder anthropogenen Böden. Aus den Bodengesellschaften lassen sich die Hauptbodentypen und weitere Standorteigenschaften ableiten: Durchlüftung, Durchwurzelbarkeit, Feldkapazität und nutzbare Feldkapazität, Nährstoffspeichervermögen, potentielle und effektive Kationenaustauschkapazität als Maß für das Nährstoffspeichervermögen (vgl. Grenzius 1987). Unter Zuhilfenahme zusätzlicher Informationen (z.B. topographische Karten, aktueller Grundwasserstand) und der Bodengesellschaft ist es möglich, ohne Kartierung den jeweiligen Bodentyp im Gelände und dessen ökologische Eigenschaften mit einer gewissen Wahrscheinlichkeit herzuleiten. Aussagen zu vergleyten oder reliktisch vergleyten Böden und damit zu feuchten oder trockenen Standorten können im Zuge dieser Vorgehensweise nur unter Berücksichtigung der aktuellen Grundwasserstände gemacht werden. Da die Böden als wesentliches Landschaftselement eines Gebietes die Standortvielfalt von Flora und Fauna mitbestimmen, werden besonders seltene und unveränderte bzw. wenig veränderte Böden bei der Ausweisung von Schutzgebieten berücksichtigt. Neben der Ableitung von Standorteigenschaften ist die Bodengesellschaftskarte 01.01 auch geeignet, Auswertungen hinsichtlich des Bodenschutzes und der Bodenfunktionen vorzunehmen. In den Karten 01.06 des Umweltatlas sind Bodenkundliche Kennwerte, in den Karten 01.11 Kriterien für die Ableitung der Bodenfunktionen und in den Karten 01.12 eine Bewertung der Bodenfunktionen dokumentiert, aus denen die Karte 01.13 der „Planungshinweise zum Bodenschutz“ abgeleitet ist.
Origin | Count |
---|---|
Bund | 889 |
Land | 122 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 820 |
Taxon | 2 |
Text | 70 |
Umweltprüfung | 1 |
unbekannt | 66 |
License | Count |
---|---|
geschlossen | 86 |
offen | 866 |
unbekannt | 8 |
Language | Count |
---|---|
Deutsch | 897 |
Englisch | 151 |
Resource type | Count |
---|---|
Archiv | 3 |
Bild | 15 |
Datei | 10 |
Dokument | 32 |
Keine | 652 |
Webdienst | 36 |
Webseite | 281 |
Topic | Count |
---|---|
Boden | 833 |
Lebewesen & Lebensräume | 939 |
Luft | 633 |
Mensch & Umwelt | 960 |
Wasser | 760 |
Weitere | 952 |