API src

Found 133 results.

Related terms

SynErgie2 - Synchronisierte und energieadaptive Produktionstechnik zur flexiblen Ausrichtung von Industrieprozessen auf eine fluktuierende Energieversorgung, Teilvorhaben: C0-2-covestro

Das Projekt "SynErgie2 - Synchronisierte und energieadaptive Produktionstechnik zur flexiblen Ausrichtung von Industrieprozessen auf eine fluktuierende Energieversorgung, Teilvorhaben: C0-2-covestro" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Covestro Deutschland AG.

Zott SE & Co. KG, Neugenehmigung nach § 4 BImSchG für die Errichtung und Betrieb einer Anlage zum Lagern von Salpetersäure, Phosphorsäure und Natronlauge

Die Fa. Zott SE & Co. KG, Bäumenheimer Straße 25, 86690 Mertingen, Fl.-Nr. 1321 Gemarkung Mertingen, betreibt eine Anlage zur Verarbeitung von Milch (Molkerei), eine Ammoniakkälteanlage sowie ein Heizkraftwerk mit mehreren Dampfkesseln in der Bäumenheimer Straße 25, 86690 Mertingen (Werk 2). Diese Anlagen wurden gem. den immissionsschutzrechtlichen Vorschriften genehmigt. Die Fa. plant nunmehr die Errichtung und den Betrieb einer Anlage zum Lagern von Salpetersäure, Phosphorsäure und Natronlauge (Konzentrattanklager) um den sog. Bauteil 5. Dafür soll die bestehende CIP-Anlage (Cleaning-in-Place-Anlage) für die Reinigung von Behältern um 4 Behälter erweitert und eingehaust werden. Die neu errichteten Behälter sollen die folgenden Stoffe aufnehmen und lagern: Natronlauge (NaOH) 1 x 43 m³ Volumen (ca. 65 Tonnen), Salpetersäure (HNO3) 2 x 20 m³ Volumen (ca. 52 Tonnen) AZ Säure (Gemisch Phosphors. und Alkohole) 1 x 20 m³ Volumen (ca. 26 Tonnen). Das bestehende Tanklager für Salpeter- und AZ-Säure bzw. Natronlauge stellte bisher noch keine BImSchG-Anlage entsprechend der 4. BImSchV dar. Die Anlage ist nunmehr der Ziffer Nr. 9.3 des Anhangs 1 der 4. BImSchV i.V.m. Spalte 4 des Anhangs 2 - Stoffliste zuzuordnen. Zudem ist eine Allgemeine Vorprüfung zur Umweltverträglichkeit § 9 Abs. 4 i.V.m. § 7 Abs. 2 und Nr. 9.3.2 der Anlage 1 des Gesetzes über die Umweltverträglichkeitsprüfung, erforderlich.

ZIB - Zink-Ionen Batterien als ökonomische und ökologische Alternative für Großspeicher, ZIB - Zink-Ionen Batterien als ökonomische und ökologische Alternative für Großspeicher

Das Projekt "ZIB - Zink-Ionen Batterien als ökonomische und ökologische Alternative für Großspeicher, ZIB - Zink-Ionen Batterien als ökonomische und ökologische Alternative für Großspeicher" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Grillo-Werke AG.

Neubewertung der Reinigungswirkung von Stapellaugen in der Brauereiindustrie

Das Projekt "Neubewertung der Reinigungswirkung von Stapellaugen in der Brauereiindustrie" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Versuchs- und Lehranstalt für Brauerei in Berlin (VLB) e.V..

AlkaliBattery als Weltspeicher

Das Projekt "AlkaliBattery als Weltspeicher" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: DECHEMA Forschungsinstitut Stiftung bürgerlichen Rechts.

Optimierung der Ammoniummetawolframat-Konzentration via Umkehrosmose (AMW-OSMO)

Die H.C. Starck Tungsten GmbH produziert aus Recyclingmaterialien und Erzen hochleistungsfähige Wolfram-Pulver und Wolfram-Verbindungen für den Maschinen- und Werkzeugbau, die Automobil- und Energieindustrie, die Luftfahrt sowie die Chemische Industrie. Das Unternehmen beschäftigt weltweit 550 Mitarbeiter. Ein wichtiges Produkt der Wolframchemie ist Ammoniummetawolframat (AMW), welches u.a. als Vorstoff für Industriekatalysatoren verwendet wird. Bisher wurde dieser Stoff über ein energieintensives mehrstufiges Aufbereitungsverfahren produziert. Dabei wurden mehrere Verdampfer zum Wasserentzug bzw. zur Aufkonzentrierung der AMW-Lösung verwendet. Darüber hinaus musste die AMW-Lösung mehrmals im Kreis gefahren werden, um die gewünschte Konzentration zu erreichen. Die Umkehrosmosetechnologie wurde nach dem bisherigen Stand der Technik vorrangig im Bereich der Trinkwasseraufbereitung, der Behandlung von nitrathaltigen Abwässern in der chemischen Industrie sowie zur Meerwasserentsalzung eingesetzt. Ziel des Projektes war die energieeffiziente Herstellung von Ammoniummetawolframat (AMW) aus wolframhaltigen Schrotten durch den erstmaligen Einsatz der Hochdruckumkehrosmose zur Aufkonzentrierung von AMW. Dabei sollte der Verdampfungsprozess durch eine energieeffiziente Umkehrosmoseanlage mit Arbeitsdrücken von über 100 bar substituiert werden. Die Hauptinnovation des Projektes besteht darin, dass die Hochdruckumkehrosmose erstmalig nicht nur auf einfache anorganische Salze in wässriger Lösung angewendet wird, sondern auf Isopolyionen bildende Metallate, bei denen zum Teil sehr komplizierte Gleichgewichte zwischen verschiedenen Spezies bestehen, die durch möglicherweise auftretende selektive Ionenpermeabilitäten der Membran nicht gestört werden dürfen. Kern der Anlage sind zwei parallel geschaltete Druckrohre, von denen jedes mit maximal drei Membranwickelmodulen bestückt werden kann. Diese werden über eine Kreislaufpumpe von ihrer Stirnseite her mit mehreren Kubikmetern pro Stunde auf der Konzentratseite durchströmt. Diesem Kreislauf wird über eine vorgeschaltete Vordruckpumpe und eine Hochdruckpumpe Feedlösung geringerer Konzentration zugeführt. Die Membranen haben sich auch im Langzeitbetrieb als stabil erwiesen, was die wirtschaftliche Nutzung dieser Technologie erst ermöglicht. Im Vergleich zum herkömmlichen Verdampfungsverfahren konnte durch die Hochdruckumkehrosmose eine Energieeinsparung von über 97 Prozent erzielt werden. Bei einer jährlichen Produktionsmenge von 1.000 Tonnen AMW entspricht das einer Einsparung von 5600 Megawattstunden Energie und damit ca. 1.021 Tonnen CO 2 -Äquivalente bzw. ca. 1.023 Kilogramm CO 2 -Äquivalente pro Tonne AMW. Da die H.C. Starck Tungsten GmbH ausschließlich Strom aus erneuerbaren Quellen bezieht, beträgt die CO 2 -Einsparung 100 Prozent. Zusätzlich zur Energieeinsparung wurde auch der Verbrauch an Natronlauge (50-prozentige NaOH) um ca. 39 Tonnen pro Jahr gesenkt. Die Emissionen an Neutralsalz (Na 2 SO 4 ) über das behandelte Abwasser konnten so um etwa 35 Tonnen pro Jahr reduziert werden. Das Vorhaben hat einen sehr guten Modellcharakter und ist prinzipiell auch auf andere Anwendungen zur Aufkonzentrierung von Metallaten oder auf andere komplizierte chemische Systeme übertragbar. Branche: Chemische und pharmazeutische Erzeugnisse, Gummi- und Kunststoffwaren Umweltbereich: Klimaschutz Fördernehmer: H.C. Starck Tungsten GmbH Bundesland: Niedersachsen Laufzeit: 2018 - 2020 Status: Abgeschlossen

STEP, Teilvorhaben: Herstellung von strohbasierten Biogaspellets sowie Brennstoff- und Nährstoffpellets aus den Reststoffen der Gärrestbehandlung

Das Projekt "STEP, Teilvorhaben: Herstellung von strohbasierten Biogaspellets sowie Brennstoff- und Nährstoffpellets aus den Reststoffen der Gärrestbehandlung" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: ATS Agro Trading & Solutions GmbH.Thema: Das Gesamtprojekt thematisiert die energetische Nutzung von Geflügelmist und Stroh auf Basis der Biogaserzeugung. Neben der energetischen Bilanz (inkl. Logistik) wird vor allem das stoffliche Potenzial der entstehenden Gärreste (Dünger und Brennstoff) berücksichtigt bzw. erschlossen. Ziel: Zielsetzung ist zum einen der Nachweis der Praxistauglichkeit von strohbasierten Energiepellets in einer großtechnischen BGA und zum anderen die weitere Verbesserung der Energiebilanz bei der gezielten Aufbereitung von Gärresten zu Wertstoffen und Prozesswasser. Weiterhin soll neben der Erzeugung von Düngeprodukten ein Brennstoff aus Gärresten erzeugt werden, welcher hinsichtlich seiner Verbrennungseigenschaften für eine direkte Nutzung in Heizkesseln geeignet ist. Zur weiteren Verbesserung der thermischen Gärrestnutzung wird die Verbrennungsstrecke in praktisch relevanten Heizkesseln hinsichtlich der Emissionsminimierung optimiert. Am Ende des Projektes stehen Auslegungsparameter für die gesamte Verfahrenskette für eine großtechnische Umsetzung zur Verfügung. Maßnahmen: Durch ATS wird ein Demonstrationsversuch zur Herstellung von ca. 250 t Biogaspellets konzipiert und die notwendigen organisatorischen und sicherheitstechnischen Maßnahmen realisiert. Weiterhin übernimmt ATS zum einen die Herstellung größerer Mengen Pellets aus separierten, getrockneten sowie optional konditionierten Gärresten. Zum anderen befasst sich ATS mit der Möglichkeit, ein Düngepellet oder -granulat aus der Zusammenführung von Verbrennungsaschen und den Konzentratströmen der Gärresteindampfung herzustellen. Schwerpunkte: Pelletierung Stroh inkl. Zugabe von NaOH (großtechnisch) - Pelletierung Gärreste - Pelletierung Asche + Eindampferkonzentrat.

Alkalische Laugung von Blei/Zinn/Zinkflugstaeuben

Das Projekt "Alkalische Laugung von Blei/Zinn/Zinkflugstaeuben" wird/wurde gefördert durch: Stifterverband Metall. Es wird/wurde ausgeführt durch: Technische Hochschule Aachen, IME, Metallurgische Prozesstechnik und Metallrecycling.Fuer die Aufarbeitung von Pb/Sn/Zn-Flugstaeuben, die bei der Stahlherstellung aus Schrotten sowie bei der Gewinnung von NE-Metallen entstehen, soll ein generelles Schema hydrometallurgischer Verfahren entwickelt werden. Ausgehend von der jeweiligen Zusammensetzung der Flugstaeube (vorwiegend Zink- und andere Metalloxide) wurden folgende Loesungsalternativen untersucht: 1) Laugung mit Wasser und schwach alkalischer Loesung zur Entfernung der Cl- und SO4-Gehalte sowie auch von Alkali, eventuell von Blei. 2) Laugung mit starker Natronlauge zur Loesung von Zink und Blei. 3) Laugung mit Schwefelsaeure zur Loesung von Zink. 4) Reinigung der Laugenloesungen durch Zementation mit Zn-Pulver. 5) Absetzverhalten und Filtrationsverhalten der Trueben ohne und mit Flockungshilfsmitteln sowie Filtration. Dabei wurden folgende Ergebnisse erzielt. 1) Bei der Wasserlaugung erreicht man eine maximale Entfernung von 90 Prozent Cl und Alkali und etwa 4 Prozent SO4 nach 60 Min. Laugung bei 90 Grad C, so dass auf diese Weise Chlorid und Alkali selektiv abgetrennt werden koennen. 2) Der Zusatz von NaOH zum Wasser erhoeht nicht nur die Loeslichkeit des Cl auf 95 Prozent sondern auch die des SO4 auf bis zu 95 Prozent und die des Pb zu etwa 80 Prozent. Nach einer Wasserlaugung kann so auch Sulfat selektiv abgetrennt werden. 3) Bei der stark alkalischen Laugung erreicht man unter optimalen Bedingungen eine Aufloesung von fast 100 Prozent des Bleis und 90 Prozent des Zinks. Kupfer und Zinn zeigen dagegen eine nur niedrige Loeslichkeit von max. 40 Prozent Cu und max. 10 Prozent Sn. 4) Bei der sauren Laugung unter optimalen Bedingungen (200 g/l H2SO4 und 150 g/l Feststoff) gehen...

Sickerwasserfassung und Abwasserbehandlung zur Reduzierung der Gewässerbelastung an einem ehemaligen Haldenstandort der Kali-Chemie AG in Stolberg

Das Projekt "Sickerwasserfassung und Abwasserbehandlung zur Reduzierung der Gewässerbelastung an einem ehemaligen Haldenstandort der Kali-Chemie AG in Stolberg" wird/wurde gefördert durch: Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz Nordrhein-Westfalen. Es wird/wurde ausgeführt durch: StädteRegion Aachen, Umweltamt.In einem Werk der 'Chemischen Fabrik Rhenania' (ab 1928 Kali-Chemie AG) wurden am Stolberger/Rhld. Standort von 1852 bis 1944 in der Hauptsache Soda und später weitere Produkte wie Ätznatron, Chlorkalk und Düngemittel hergestellt. Die Produktionsrückstände gelangten neben Bauschutt und Schlacken auf eine Halde. Die so genannte Halde Kali-Chemie bzw. Rhenania-Halde nimmt bei einer Schütthöhe von bis zu 40 m eine Fläche von ca. 7,5 ha ein. Das Volumen wird auf 2,6 Mio m3 geschätzt. Die Rhenania-Halde besteht überwiegend aus Calciumsulfid (CaS), einem Abfallprodukt der hier bis 1922 bestehenden Sodaproduktion sowie aus Kalk. Niederschläge, die auf die Halde fallen und dort versickern, lösen das Calciumsulfid. Das Sickerwasser tritt auf einer Strecke von rund 170 m am nördlichen Haldenfuß aus. Bis etwa 1980 wurden dort Spitzenwerte bis 15.000 mg/l an Sulfid- bzw. Schwefelwasserstoff gemessen. In den letzten Jahren erreichten die gemessenen Maximalwerte rund 4.000 mg/l. Die ursprüngliche Sickerwasserfassung am nördlichen Haldenfuß wurde in 2009 als unterirdischer Drainagegraben ausgebaut. Damit wurde zum einem eine Möglichkeit der homogenisierten und sedimentfreien Entnahme des Sickerwassers für die spätere Abwasseraufbereitung geschaffen. Außerdem konnte die Geruchsproblematik der Schwefelwasserstoffgase nahezu unterbunden werden. Die Entwicklung einer für den Standort optimalen Sickerwasserbehandlungsanlage bedeutet die integrierte Betrachtung aller technischen, wirtschaftlichen, ökologischen, betrieblichen und genehmigungsrechtlichen Aspekte. Ferner waren die Auswirkungen auf den technischen Betrieb einer Anlage abzuschätzen, die durch die Reduzierung der Sickerwassermengen innerhalb der nächsten 20 Jahre zu erwarten sind. Die Reduzierung der Sickerwassermenge erfolgt durch die Umsetzung eines Bepflanzungskonzeptes, mit dem insbesondere in den Wintermonaten durch die Anpflanzung von Nadelgehölz die Verdunstungsrate deutlich erhöht wird. Die verfahrenstechnische Prozessauswahl erfolgte durch chemisch-mathematische Modellierung, Laborversuche, halbtechnische Versuche und einem Variantenvergleich. Durch einen kontinuierlichen Laborversuch wurde letztendlich nachgewiesen, dass das ausgewählte biologische Aufbereitungsverfahren der Firma Paques, Balk (NL), das 'Thiopaq®'-Verfaren, als technisch und wirtschaftlich am besten geeignetes Verfahren anzusehen ist. Für die konkret anfallenden Sickerwässer waren zusätzlich umfangreiche Entwicklungsarbeiten nötig. Mit dem vorliegenden Kenntnisstand ist sichergestellt, dass eine Aufbereitung der Sickerwässer unter Berücksichtigung aller oben genannten Aspekte praktikabel ist.

Chem-Anorg\Chlor(Diaphragma)-DE-2005

Chlorherstellung (Diaphragmaverfahren): Chlor in elementarer Form (Cl2) wird heute elektrochemisch dargestellt. Im Prozess wird die Herstellung von Cl2 durch Elektrolyse von Natriumchlorid (NaCl) nach dem Diaphragmaverfahren bilanziert. Der Prozess liefert neben Chlor stets Natronlauge und Wasserstoff. Ausgangsstoff ist Steinsalz (NaCl) oder direkt die Sole aus dem Bergbau. Verunreinigungen des Rohstoffs werden durch Fällung mit Natronlauge oder Soda entfernt. Bei diesem Verfahren trennt ein Diaphragma (Asbest) Anoden- und Kathodenraum. Der Elektrolyt (NaCl in Wasser) wird beim Diaphragmaverfahren im direkten Durchlauf geführt. Die Kochsalzlösung wird zuerst in den Anodenraum gepumpt. Hier entwickelt sich an der Anode (Titan) Chlor, das gekühlt, mit Schwefelsäure getrocknet und komprimiert wird. Der Elektrolyt fließt nun durch das Diaphragma zur Kathode (Stahl). An der Kathode scheidet sich Wasserstoff ab, und es bildet sich Natronlauge. Die resultierende Natronlauge ist jedoch mit NaCl verunreinigt und muß von 12 auf 50 % eingeengt werden, was den Gesamtenergieverbrauch stark erhöht. Während des Eindampfens und Abkühlens der Lösung fällt Natriumchlorid aus, das in den Prozess zurückgeführt wird. Als Rohstoffe für die Elektrolyse dienen neben Natriumchlorid in geringem Umfang auch Salzsäure und Kaliumchlorid. 1987 wurden etwa 93 % aus NaCl hergestellt. Es stehen drei verschiedene Elektrolyseverfahren für NaCl zur Verfügung: das Amalgamverfahren, das Diaphragmaverfahren und das Membranverfahren. 1985 entfielen in der BRD ca. 63 % der gesamten Chlorproduktion auf das Amalgamverfahren, ca. 31 % auf das Diaphragmaverfahren und ca. 6 % auf sonstige Verfahren (HCl, Schmelzfluß) (Tötsch 1990). Die Verteilung der weltweiten Produktionskapazitäten auf die verschiedenen Verfahren nach (Ullmann 1993) können für das Jahr 1990 der Tabelle 1 entnommen werden. Das Membranverfahren stellt das derzeit modernste Verfahren dar. In der Bundesrepublik sind jedoch nur Versuchsanlagen bei der Hoechst AG und der Bayer AG in Betrieb (UBA 1991). Die Produktion an Chlor betrug 1987 in der BRD ca. 3,5 Mio. Tonnen. Die Weltkapazität für die Chlorherstellung ist größer als 40 Mio. Tonnen pro Jahr (Ullmann 1986). Die Kennziffern dieses Prozesses beziehen sich auf die Chlorherstellung in Deutschland Ende der 80er Jahre. Tabelle 1 Produktionskapazitäten 1990 in Prozent Prozeß USA Kanada Westeuropa Japan Amalgam 18 15 65 0 Diaphragma 76 81 29 20 Membran 6 4 6 80 Allokation Bei der Elektrolyse entstehen Cl und NaOH im molaren Verhältnis von 1 zu 1. Entsprechend diesem Verhältnis werden die Gesamtwerte der Elektrolyse (Massenbilanz, Energiebedarf, Emissionen, Wasser) zwischen Chlor und Natriumhydroxid zu gleichen Anteilen aufgeteilt. Rechnet man das molare Verhältnis auf Mengen um, so enstehen pro Tonne Cl2 1,128 Tonnen NaOH (100 %ig). Bei der Elektrolyse entstehen weiterhin 28 kg Wasserstoff (H2)/t Cl2. Es wird angenommen, dass der Wasserstoff energetisch verwertet wird (Verbrennung). Entsprechend wird für H2 eine Energiegutschrift (siehe: „H2-Kessel-D“) berechnet, die zu jeweils 50 % der Chlor- und Natronlaugeherstellung gutgeschrieben wird. (Vgl. Prozeßeinheit: Chem-Anorg\NaOH). Massenbilanz: Zur Herstellung einer Tonne Cl2 (und gleichzeitig 1,128 t NaOH) werden als Rohstoff 1710 kg Natriumchlorid benötigt. Um Verunreinigungen aus dem Elektrolyten für die Elektrolyse zu entfernen werden 44 kg Fällungsmittel (NaOH, Na2CO3) eingesetzt. Die Verunreinigungen fallen als Abfall (151 kg, feucht) an. Bei der Reaktion enstehen als Nebenprodukt 28 kg Wasserstoff (Energiegutschrift bei GEMIS). (Tötsch 1990). Zur Genese der Kennziffern bei GEMIS werden nach der obigen Allokationsregel dem Chlor 50 % der aufgeführten Mengen zugeteilt. Die restlichen 50 % entfallen auf die Herstellung der Natronlauge. Energiebedarf: Der Energiebedarf für den Gesamtprozess der Herstellung einer Tonne Chlor und 1,128 Tonnen NaOH (die Werte wurden von der Natronlaugen- auf die Chlorherstellung umgerechnet) für die verschiedenen Elektrolyseverfahren kann nach (Ullmann 1993) der Tabelle 2 entnommen werden. Als Kennziffer für den hier betrachteten Prozess (Diaphragmaverfahren) wurde gemäß der Allokationsregel 50 % der Mittelwert der Werte aus Tabelle 2 - 1438 + 451 kWh/t Cl 2 - eingesetzt. Tabelle 2 Energiebedarf in kWh für die Herstellung von 1t Chlor und 1,128 t NaOH Energie [kWh] Amalgam Diaphragma Membran elektr. Energie 3158-3610 2820-2933 2594-2820 Dampf(äquivalent) 0 790-1015 102-203 Summe 3158-3610 3610-3948 2696-3023 Im Vergleich dazu wird der Gesamtenergiebedarf bei (Tötsch 1990) mit 3050 kWh/t Cl2 + 1,128 t NaOH elektrischer Energie - nach Allokation: 1525 kWh/t Cl2 - angegeben. Da die Werte aus (Ullmann 1993) besser nachvollziehbar sind, werden diese für GEMIS verwendet. Prozessbedingte Emissionen: Die Chloremissionen in die Luft werden bei (BUWAL 1991) für die Natronlaugenherstellung nach dem Diaphragmaverfahren mit 0,001 g pro kg Produkt (1 kg NaOH 100 % + 0,887 kg Cl2) beziffert. Umgerechnet auf die Chlorherstellung ergibt sich ein Gesamtemissionswert von 0,0011 g Cl2/kg Produkt (1 kg Cl2 + 1,128 kg NaOH 100 %). Für die Bildung der Kennziffern bei GEMIS wurden die obigen Gesamtemissionen je zur Hälfe der Chlor- und der Natronlaugenherstellung zugeordnet. Wasser: Das für die Chlor- und Natronlaugenherstellung benötigte Wasser setzt sich aus dem chemisch verbrauchten Wasser (508 kg, z.B. für die Bildung von Wasserstoff), dem Lösungswasser (1147 kg, Lösung von NaCl und Bildung der wässrigen NaOH), dem Niederdruckdampf (2800 kg), dem Prozeßwasser (4300 kg) und dem Kühlwasser (290000 kg) zusammen (Tötsch 1990). Abwasser: BUWAL (1991) gibt für die Natronlaugenherstellung nach dem Diaphragmaverfahren mit 0,002 g BSB5, 0,005 g CSB und 0,006 g Blei pro kg Produkt (1 kg NaOH 100 % + 0,887 Cl2) an. Umgerechnet auf die Chlorherstellung ergeben sich Werte von 0,0023 g BSB5, 0,0056 g CSB und 0,0068 g Blei für 1kg Cl2 + 1,128 kg NaOH 100%ig. Die oben aufgeführten Gesamtwassermengen und Abwasserfrachten wurden für GEMIS anteilig zu je 50 % unter den beiden Prozeßeinheiten der Chlor- und Natronlaugeherstellung aufgeteilt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 117% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften

1 2 3 4 512 13 14