API src

Found 337 results.

Similar terms

s/newel/Nebel/gi

Model Output Statistics for Newel (K509)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Wöchentliche Wassermengenberichte der Hansestadt Rostock, Landkreise Bad Doberan, Güstrow

Wöchentliche Wassermengenberichte Wöchentliche Situationberichte zur Lage im Wasserhaushalt bezüglich Niederschlag, Wasserstände der Ostsee, Warnow und Nebel, des Krakower Sees sowie der Durchflüsse am Rostocker Mühlendamm-Wehr und der Nebel in Güstrow, weiterhin den Grundwasserstand an ausgewählten Meßstellen.

Grundlagen zur Gewässersanierung und Gewässerrenaturierung (StALU MM Rostock)

Grundlagen zur Gewässersanierung und -renaturierung Planungsunterlagen zur Gewässersanierung und -renaturierung im Amtsbereich des StALU MM Rostock Gewässerentwicklungsplan Nebel

Warnungen

Als Ergebnis der ständigen Wetterüberwachung vor bzw. bei Erreichen, bei Über- oder Unterschreiten bestimmter Schwellenwerte/Warnkriterien (d. h. wenn Wettererscheinungen erwartet werden, die menschliches Leben oder Sachwerte gefährden können) herausgegebene Informationen; umfasst u. a. die Einzelleistungen "Allgemeiner Wetterwarndienst", "Wind- und Sturmwarnungen Küste und See. Die Datensätze stehen entgeltfrei unter https://opendata.dwd.de zur Verfügung. Weitere Infos finden Sie auch auf dem Leistungssteckbrief unserer Internetseite https://www.dwd.de/DE/leistungen/opendata/opendata.html.

Was ist UV -Strahlung?

Was ist UV -Strahlung? Die ultraviolette ( UV -) Strahlung , die den Wellenlängenbereich von 100 Nanometer ( nm ) bis 400 nm umfasst, ist der energiereichste Teil der optischen Strahlung . Die UV - Strahlung ist für den Menschen nicht sichtbar und kann auch nicht mit anderen Sinnesorganen wahrgenommen werden. UV - Strahlung ist krebserregend und Ursache für sofortige und langfristige Wirkungen an Haut und Augen der Menschen und ein wichtiger Umweltparameter. Einteilung der UV-Strahlen nach Wellenlängenbereichen Die ultraviolette ( UV -) Strahlung , die den Wellenlängenbereich von 100 Nanometer ( nm ) bis 400 nm umfasst, ist der energiereichste Teil der optischen Strahlung . Die UV - Strahlung ist für den Menschen nicht sichtbar und kann auch nicht mit anderen Sinnesorganen wahrgenommen werden. Aufgrund ihrer physikalischen und biologischen Eigenschaften wird die UV - Strahlung nochmals unterteilt in UV -A- Strahlung ( Wellenlänge 400 - 315 nm ) UV -B- Strahlung ( Wellenlänge 315 - 280 nm ) und UV -C- Strahlung ( Wellenlänge 280 - 100 nm ). UV -A- Strahlung schließt sich direkt an das sichtbare Licht an. UV -C- Strahlung grenzt unmittelbar an den Bereich der ionisierenden Strahlung an. Je kürzer die Wellenlänge , desto energiereicher ist die Strahlung , und umso schädigender wirkt sie. UV - Strahlung der Sonne Die UV - Strahlung der Sonne ist die so genannte "natürliche" oder "solare" UV - Strahlung . UV - Strahlung dringt wellenlängenabhängig unterschiedlich weit bis zur Erdoberfläche vor. UV -C: Die besonders energiereiche UV -C- Strahlung wird von der Erdatmosphäre in den oberen Atmosphärenschichten vollständig ausgefiltert, so dass natürliche UV -C- Strahlung die Erdoberfläche nicht mehr erreicht. UV -B: Die energiereiche UV -B- Strahlung wird abhängig vom Zustand der Ozonschicht ebenfalls durch die Atmosphäre ausgefiltert. Aber nicht vollständig: Etwa bis zu zehn Prozent der UV -B- Strahlung erreichen noch die Erdoberfläche. Bei Störungen der Ozonschicht vergrößert sich der auf die Erdoberfläche treffende UV -B-Anteil. UV -A: Die längerwellige UV -A- Strahlung erreicht im Gegensatz zu UV -B- und UV -C- Strahlung weitgehend ungehindert die Erde. Die Stärke der natürlichen UV-Strahlung auf der Erdoberfläche hängt von vielen Faktoren ab Die Stärke der UV - Strahlung auf der Erdoberfläche hängt vom Breitengrad, von der Jahreszeit und von der Tageszeit ab. Je näher man dem Äquator kommt, desto intensiver wird sie. Im Sommer ist die UV - Strahlung stärker als im Winter – und mittags ist sie intensiver als morgens oder abends. Auch die Bewölkung beeinflusst die Stärke der UV - Strahlung . Eine geschlossene, dicke Wolkenschicht kann bis zu 90 Prozent der UV - Strahlung abhalten. Dagegen können leichte Bewölkung - bei der man die Sonne noch sehen kann - und Nebel die UV - Strahlung verstärken. Eine wichtige Rolle spielt außerdem, wie hoch ein Ort liegt: Die UV - Strahlung nimmt um ca. 10 Prozent pro 1000 Höhenmeter zu. Wasser, Sand und Schnee reflektieren die UV - Strahlung und verstärken sie auf diese Weise. Schatten verringert die UV - Strahlung – zum Beispiel unter einem Sonnenschirm um ca. 10 bis 30 Prozent und unter einem Baum mit dichter, großflächiger Krone um ca. 20 Prozent. Wirkungen und Schutz UV - Strahlung ist krebserregend, Ursache für sofortige und langfristige Wirkungen an Haut und Augen der Menschen und ein wichtiger Umweltparameter. Darum wird die Intensität der UV - Strahlung weltweit ständig überwacht und als UV-Index veröffentlicht. Die UV-Strahlungsbelastung jedes Einzelnen und die damit verbundene gesundheitliche Gefährdung hängen zu einem großen Teil vom eigenen Verhalten ab. Jeder von uns kann sich bei Tätigkeiten im Freien und besonders auch im Urlaub durch sein Verhalten vor UV-Strahlung schützen. Der UV-Index bietet hierfür eine Orientierungshilfe. Künstlich erzeugte UV - Strahlung Künstlich erzeugte UV - Strahlung unterscheidet sich in ihrer Wirkungsweise nicht von der natürlichen UV - Strahlung . Künstlich erzeugte UV - Strahlung findet in Alltag, Technik, Medizin und Wellness (zum Beispiel in Solarien ) Anwendung. Stand: 05.02.2025

Pflege- und Entwicklungsplan für das NSG "Nebel"

Die Nebel als größerer Nebenfluss der Warnow stellt eine Besonderheit unter den Fließgewässern dar. Vorkommen von unterschiedlichster geol. Strukuren und eine in weiten Bereichen noch erhaltene naturnahe Fließgewässermorphologie. Die Nebel einer der fischartenreichsten Flüsse in Zentralmecklenburg.

ERA5-Land weekly: Total precipitation, weekly time series for Europe at 1 km resolution (2016 - 2020)

Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Total precipitation: Accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. It is the sum of large-scale precipitation (that precipitation which is generated by large-scale weather patterns, such as troughs and cold fronts) and convective precipitation (generated by convection which occurs when air at lower levels in the atmosphere is warmer and less dense than the air above, so it rises). Precipitation variables do not include fog, dew or the precipitation that evaporates in the atmosphere before it lands at the surface of the Earth. This variable is accumulated from the beginning of the forecast time to the end of the forecast step. The units of precipitation are depth in metres. It is the depth the water would have if it were spread evenly over the grid box. Care should be taken when comparing model variables with observations, because observations are often local to a particular point in space and time, rather than representing averages over a model grid box and model time step. Processing steps: The original hourly ERA5-Land data has been spatially enhanced from 0.1 degree to 30 arc seconds (approx. 1000 m) spatial resolution by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate proportion of ERA5-Land / aggregated CHELSA 3. interpolate proportion with a Gaussian filter to 30 arc seconds 4. multiply the interpolated proportions with CHELSA Using proportions ensures that areas without precipitation remain areas without precipitation. Only if there was actual precipitation in a given area, precipitation was redistributed according to the spatial detail of CHELSA. The spatially enhanced daily ERA5-Land data has been aggregated on a weekly basis starting from Saturday for the time period 2016 - 2020. Data available is the weekly average of daily sums and the weekly sum of daily sums of total precipitation. File naming: Average of daily sum: era5_land_prectot_avg_weekly_YYYY_MM_DD.tif Sum of daily sum: era5_land_prectot_sum_weekly_YYYY_MM_DD.tif The date in the file name determines the start day of the week (Saturday). Pixel values: mm * 10 Example: Value 218 = 21.8 mm Coordinate reference system: ETRS89 / LAEA Europe (EPSG:3035) (EPSG:3035) Spatial extent: north: 82:00:30N south: 18N west: 32:00:30W east: 70E Spatial resolution: 1km Temporal resolution: weekly Period: 01/01/2016 - 12/31/2020 Lineage: Dataset has been processed from original Copernicus Climate Data Store (ERA5-Land) data sources. As auxiliary data CHELSA climate data has been used. Software used: GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief) Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122 Other resources: https://data.mundialis.de/geonetwork/srv/eng/catalog.search#/metadata/601ea08c-0768-4af3-a8fa-7da25fb9125b Format: GeoTIFF Representation type: Grid Processed by: mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/) Contact: mundialis GmbH & Co. KG, info@mundialis.de Acknowledgements: This study was partially funded by EU grant 874850 MOOD. The contents of this publication are the sole responsibility of the authors and don't necessarily reflect the views of the European Commission.

Konzepte zur Gewässersanierung und -renaturierung 1(StALU MM Rostock)

Konzepte zur Gewässersanierung und -renaturierung Planungsunterlagen zur Gewässersanierung und -renaturierung im Amtsbereich des StALU MM Rostock Gewässerentwicklungsplan Nebel

Konzepte zur Gewässersanierung und -renaturierung 2(StALU MM Rostock)

Konzepte zur Gewässersanierung und -renaturierung Planungsunterlagen zur Gewässersanierung und -renaturierung im Amtsbereich des StALU MM Rostock Gewässerentwicklungsplan Nebel

Eigenkompostierung

Selbst erzeugter Kompost im eigenen Garten ist das „Gold der Gärtnerinnen und Gärtner“. Das ist richtig, solange durch sachgemäße Erzeugung und Verwendung der Eigenkomposte der Gartenboden nicht überdüngt wird und der Nährstoffhaushalt der Beete und Rasenflächen nicht aus der Balance gerät. Letzteres ist leider oft der Fall. Ob dies auch in Berlin zutrifft, zeigen die Ergebnisse eines von der Deutschen Bundesstiftung Umwelt geförderten Forschungsprojektes. Im Sommer 2021 bot die Berliner Senatsumweltverwaltung an, bei zwei Recyclinghöfen der BSR Berliner Stadtreinigungsbetriebe Gartenbodenproben zur kostenlosen Nährstoffanalyse abzugeben. Dem folgten rund 340 Berliner Hausgärtnerinnen und Hausgärtner und gaben über 600 Bodenproben ab, überwiegend aus Nutz- und Zierbeeten sowie Rasenflächen; dazu einen ausgefüllten Fragebogen zu Gartengröße, Flächenaufteilung, Art der Kompostverwendung, Einsatz von Düngemitteln und der Angabe, ob eine Biotonne genutzt wird. Die Bodenproben wurden im Labor auf die Nährstoffe Phosphat, Kalium und Magnesium analysiert. Die gemessenen Werte der Bodennährstoffe werden in „Gehaltklassen“ unterteilt („sehr niedrig“ bis „überhöht“). 90% der Beete weisen höhere Phosphatgehalte auf als benötigt, fast 60 % sind hoch überdüngt. Etwas abgeschwächt findet sich diese hohe Überversorgung auch beim Magnesium und Kalium wieder. Am höchsten mit Phosphat überdüngt zeigten sich die Gemüsebeete, mit 75 % in den Gehaltklassen „sehr hoch“ und „überhöht“. Beim Rasen liegt der Anteil der Überdüngung bei allen Nährstoffen deutlich niedriger. Die Angaben der Gärtnerinnen und Gärtner offenbarten, welchen Anteil Beete und Rasen an der Gesamtfläche des Gartens haben, und welche Anteile des selbst erzeugten Kompostes auf diesen Flächen ausgebracht werden. Die folgenden Abbildungen zeigen den deutlichen Unterschied zwischen diesen Anteilen: Der nährstoffreiche Kompost aus den Grünabfällen des gesamten Gartens wird zu fast 80 % auf die Beete verbracht, die aber nur knapp 40 % der Gesamtfläche bilden. Der Rasenschnitt liefert nach Flächenanteil fast die Hälfte der nährstoffhaltigen Kompost-Rohmasse, aber nur 7 % des Kompostes werden auf den Rasen zurückgeführt. Diese stark einseitige Kompostverwendung auf den Beeten erklärt, dass dort eine Überdüngung entsteht. Der Rasen würde ohne Kompostrückführung längst „verhungert“ sein – um das zu verhindern, wird er i.d.R. mit anderen (Mineral)Düngern versorgt, und diese Nährstoffe gelangen mit dem Rasenschnitt nach dessen Kompostierung letztlich auf die Beete. Durch die häufig mitkompostierten Küchenabfälle wird dort die Überdüngung noch verstärkt. Die Beteiligten gaben im Fragebogen Auskunft darüber, wie viel Liter an Kompost sie pro Jahr auf die Fläche ausbringen, aus der sie die Bodenprobe gezogen haben. Danach konnte den Nährstoff-Gehaltklassen eine jährlich ausgebrachte Kompostmenge (Median-Werte) zugeordnet werden. Eindeutig ist zu erkennen, dass die Überdüngung mit der ausgebrachten Kompostmenge steigt. Nach einschlägiger Expertenauffassung dürfen für eine bedarfsgerechte Nährstoffversorgung maximal 3 Liter Kompost pro Quadratmeter und Jahr ausgebracht werden; auch das gilt nur, wenn es sich um stark zehrendes Gemüse handelt und sich der Boden in der Gehaltklasse „Normalversorgung“ (optimal) befindet. Für Zierbeete und Rasen gelten maximal 2 l/m², a. Liegt der Boden in Gehaltklasse „hochversorgt“, sind diese Werte zu halbieren, ab Klasse „sehr hoch versorgt“ – bei den Beeten im Phosphatgehalt rd. 60 %! – ist kein Kompost mehr auszubringen. Rund die Hälfte der Befragten gab an, außer Kompost noch weitere Düngestoffe einzusetzen, im wesentlichen Mist, Hornspäne und Mineraldünger. Nur beim Mineraldünger gab es jedoch genügend auswertbare Angaben zur jährlich ausgebrachten Menge. Diese Mengenwerte konnten nun ebenfalls zugeordnet werden – es zeigte sich praktisch kein Einfluss der Mineraldüngergabe auf die Gehaltklassen. Es lässt sich zunächst zusammenfassen: Die Überdüngung speziell der Beete entsteht durch zu hohe Kompostgaben, An Küchen- und Gartenabfällen wird insgesamt zu viel selbst kompostiert – die für die Kompostverwendung bevorzugten Beete sind zu klein, um diese Kompostmengen aufzunehmen. Eine Bilanzrechnung für die gartenreichen Außenbezirke Berlins ergab: Die Biotonne erfasst pro Grundstück und Jahr rd. 450 kg an Küchen- und Gartenabfällen, mit etwa 2,5 kg darin enthaltenen, landwirtschaftlich nutzbaren Haupt-Nährstoffen (Stickstoff, Phosphor, Kalium und Magnesium). Der Vergleich der Bodenanalysen mit und ohne Biotonne zeigte: Über eine längere Nutzungsdauer der Biotonne werden speziell die hohen Phosphat-Überdüngungen in den Beeten abgebaut: Die von den Pflanzen dem Boden entzogenen Nährstoffe kehren bei der Biotonnen-Nutzung nicht mehr in den garteneigenen Kreislauf zurück, die vorher überhöhten Bodenwerte sinken allmählich ab. Zudem wird aus den in der Biotonne erfassten Küchen- und Gartenabfällen über die Vergärung Biogas gewonnen; neben der sinnvollen Verwertung der Nährstoffe wird ein regenerativer Energieträger gewonnen und damit ein Beitrag zur Klimaentlastung geleistet. Eine vollständige Nutzung der Biotonne auf allen Grundstücken der Außenbezirke Berlins erscheint danach sinnvoll und geboten. Erfolgt dies bei dem verbliebenen Drittel der Grundstücke, die derzeit noch nicht über eine Biotonne verfügen, würden über die zusätzlich erfassbaren Bioabfallmengen von rd. 21.000 Tonnen pro Jahr an ökologischen Werten erschlossen: Insgesamt rd. 180 Tonnen der Hauptnährstoffe Stickstoff, Phosphor, Kalium und Magnesium gelangen zum sinnvollen Einsatz in der Landwirtschaft. Die rd. Tonnen an umgelenktem Phosphat würden z.B. ausreichen, um pro Jahr über 20.000 Tonnen Kartoffeln zu produzieren. Über die Vergärung wird die in der organischen Masse gebundene (Sonnen)Energie in Biogas umgewandelt. Dessen Nutzung kann eine Klimaentlastung von rd. 3.300 Tonnen CO 2 -Äquivalent pro Jahr erzielen. Nein. Ob die Biotonne genutzt wird oder nicht: Die untersuchten Böden zeigten keinen Unterschied in der zu 80 % guten Humusversorgung der Böden. Bei den meisten Nährstoffen, speziell beim Phosphat, besteht ein – bei Fortsetzung der bestehenden Kompost-Praxis weiter steigender – Überschuss, der über die Nutzung der Biotonne in Richtung „Normalversorgung“ abgebaut wird. Selten auftretende Mängel an Stickstoff oder Kalium können durch entsprechende Einzeldünger (z.B. Hornspäne für Stickstoff) ausgeglichen werden. Wichtig zudem: 75 % der Beteiligten mit Biotonne gaben an, die eigene Kompostierung trotzdem fortzusetzen, und das ist mit reduzierten Mengen auch gut so. Die Bilanzrechnung ergab, dass im Mittel die Nutzerinnen und Nutzer der Biotonne noch immer einige Hundert kg pro Jahr selbst kompostieren. Auch diese Menge sollte angesichts der auch dort häufig angetroffenen Überdüngungen noch gesenkt werden. Soweit auf gleichmäßige und bedarfsgerechte Kompostverteilung geachtet wird, ist die in deutlich gemindertem Umfang fortgesetzte Eigenkompostierung für die Versorgung der Gartenböden weiter sinnvoll und damit eine gute „Partnerin“ der Biotonne. Die folgenden Infoblätter geben Ihnen ausführliche Hintergrundinformationen zu den Themen:

1 2 3 4 532 33 34