Steigende Biomasseentzüge aus Wäldern, erhöhtes Waldwachstum durch anhaltend hohe atmosphärische Stickstoffeinträge und direkte und indirekte Auswirkungen des Klimawandels rücken den Kreislauf und die Verfügbarkeit von Phosphor (P) in Waldökosystemen vermehrt in den Fokus wissenschaftlicher Untersuchungen. Den P-Verlusten mit dem Sickerwasser kommt dabei außerdem besondere Bedeutung für die Eutrophierung von Oberflächengewässern zu. Bisher liegen jedoch kaum Erkenntnisse über die Höhe und Prozessdynamik des P-Austrags und die Transportwege von P in Waldböden vor. Eigene Studien zeigten kürzlich, dass signifikante P-Verluste aus Waldböden während starker Niederschlagsereignisse auftreten können. Da der Oberflächenabfluss in Wälder in der Regel vernachlässigbar ist, spielt insbesondere der Transport über preferentielle Fließwege (z.B. Makroporen) eine wichtige Rolle. Welche Prozesse jedoch den P-Transport entlang dieser Fließwege steuern und welche P-Formen überwiegend transportiert werden, ist weitestgehend unbekannt. Ebenso wurde bisher nicht untersucht, ob unterschiedliche Ernährungsstrategien von Waldökosystemen einen Effekt auf die P-Transportmechanismen haben. Eine Grundannahme des SPP 1685 ist, dass recycelnde Systeme, in denen die P- Verfügbarkeit aus der mineralischen Phase gering ist, sich an diese P-Limitierung angepasst haben. Sie können Phosphor hoch effizient recyceln und P-Verluste aus dem System minimieren. Dagegen bestand für akquirierende Systeme, welche überwiegend verfügbares P der mineralischen Phase nutzen, vermutlich nicht die Notwendigkeit angepasste Strategien zu einem effizienten P-Recycling zu entwickeln. Um die Relevanz dieser beiden hypothetischen Ernährungsstrategien auf P-Transportprozesse in Waldböden experimentell zu überprüfen, werden wir daher Böden in Waldökosystemen mit unterschiedlicher P-Verfügbarkeit aus der mineralischen Phase betrachten (SPP-Kernstandorte). Die Ziele unserer Studie sind dabei: 1) die Identifizierung der P-Transportpfade durch den Boden und der am Transport beteiligten P-Formen; 2) die modell-basierte Abschätzung der P-Verluste aus den betrachteten Systemen. Die preferentiellen Fließwege von infiltrierendem Wasser sollen mit Hilfe von Farbtracer-Experimenten visualisiert werden. Durch die anschließende chemische Analyse der P-Fraktionen in den preferentiellen Fließwegen sollen Rückschlüsse auf P-Transportmechanismen in Waldböden gezogen werden. Zur Abschätzung der P-Verluste aus dem System werden basierend auf den identifizierten Transportmechanismen und beobachteten Fließwegen numerische Modelle parametrisiert, welche die Komponenten des Wasserhaushaltes simulieren. Durch diesen kombinierten Ansatz können erstmals die Transportmechanismen und Austragsraten von Phosphor aus Waldökosystemen in Abhängigkeit ihrer Ernährungsstrategie (P-Verfügbarkeit aus der mineralischen Phase) vergleichend betrachtet werden.
Excessive nutrient input largely impacts community structure and functioning of stream ecosystems in Central Europe (eutrophication). Within this project, we aim to evaluate the eutrophication potential of stream ecosystems. As a first step to achieve this aim, main control mechanisms influencing stream eutrophication have to be identified. We will analyze the impact of soil nutritional status (especially phosphorus), soil storage capacity, and soil nutrient release as well as land use on periphyton-grazer interaction. Therefore, we will study the periphyton-grazer interaction in the running water of 4 small catchments that differ with respect to their nutritional status, speciation and release at a forest site and an pasture site. In the field survey we will study (1) The input of macro nutrients (P and N), (2) community structure and biomass of periphyton and grazers, (3) emergence and (4) complexity of the food web and compare the results among the catchments. The periphyton-grazer interaction along nutrient gradients will be studied in more detail using laboratory flumes. By the use of geostatistical and remote sensing techniques we will interpolate macro nutrient input, -speciation and seasonality for the different catchments and link this information to periphyton quantity and quality as well as to periphyton-grazer interaction.
In dem geplanten Vorhaben soll eine neue Produktionsroute für Natron (Natriumhydrogencarbonat) und Soda (Natriumcarbonat) bis zum Technikumsmaßstab entwickelt und optimiert werden. Durch die Verwendung von regenerativen Strom biogenem Kohlendioxid aus Biogasanlagen und salzhaltigen Abwässern soll ein nachhaltigerer Prozess als das konventionellen Ammoniak-Soda Verfahren entwickelt werden. Dafür sollen modernste Membrantechnologie und bipolare Elektrodialyse eingesetzt werden, um den Energiebedarf zu minimieren. Das neue Verfahren soll eine nachhaltige Alternative bzw. Ergänzung zum konventionellen Verfahren darstellen und dazu beitragen die Abfallströme der Sodaindustrie (Entsalzung von Abwasser) zu reduzieren, fossile Rohstoffe (Kalkstein, Erdgas, Koks bzw. Anthrazit) zu vermeiden und gleichzeitig als CO2-Senke (Carbon Capture & Utilization) zu wirken. Als zusätzliches Produkt wird bei dem Verfahren Salzsäure produziert. Des Weiteren wird geprüft, inwieweit Calciumchlorid aus den entstandenen Abfallströmen abgeschieden und vermarktet werden kann. Das Projekt wird gemeinsam durch die Partner des Fraunhofer-IKTS, der CIECH Soda Deutschland, dem E.S.C.H. Engineering Service Center und Handel GmbH, dem DBI Gas- und Umwelttechnik GmbH, dem Helmholtz-Zentrum Dresden-Rossendorf und der Wemag Projektentwicklung GmbH bearbeitet.
In der industriellen Möbelfertigung ist es seit Jahrzehnten üblich die Schnittkanten von Werkstoffplatten zu beschichten. Im Bereich der Schmalflächenbeschichtung hat sich der Begriff des 'Kantenbandes' etabliert. Dabei handelt es sich um schmale Streifen aus Furnier, beharztem Papier, thermoplastischen Kunststoffen oder Aluminium. Das Verfahren zur Anbringung der Kantenbänder an verschiedene Holzwerkstoffsubstrate, wird und a. als ,,Bekantung' bezeichnet. Die meisten zur Bekantung eingesetzten Kantenbänder bestehen aus petrochemischen Kunststoffen wie PVC oder ABS und werden demnach aus nicht erneuerbaren Rohstoffen hergestellt. Ein qualitativ hochwertiges Aussehen, als auch die Summe verschiedener Materialien, die während einer Bekantung aufeinandertreffen, stellen besondere Anforderungen an die Klebtechnik. Um diesen zu genügen, werden seit den 1960er Jahren Schmelzklebstoffe, sogenannte Hotmelts, für Bekantungen eingesetzt. Sowohl die marktüblichen Materialien der Kantenbänder, als auch die für die Bekantung eingesetzten Schmelzklebstoffe basieren überwiegend auf fossilen Ressourcen. Diese zeichnen sich durch ihre Endlichkeit aus. Darüber hinaus ist die Erdölfraktionierung mit starken Belastungen für die Umwelt verbunden. Im Zuge dessen fokussiert das vorliegende Projekt die Entwicklung eines möglichst zu 100 % auf nachwachsenden Rohstoffen basierenden Klebstoff-Kantenband-Systems. Dabei soll ein Schmelzkleber entwickelt werden, der im Gegensatz zu den auf dem Markt erhältlichen Schmelzklebstoffen keinerlei Inhaltsstoffe mit petrochemischem Charakter aufweist. Weiterhin wird die Entwicklung eines aus Biokunststoff bestehenden Kantenbandes ins Auge gefasst, das ebenso rein aus nachwachsenden Rohstoffen bestehen soll. TV 1 (HS HOF) Rezepturentwicklung des Kantenbandes: In dem Teilvorhaben sollen Rezepturen auf Basis von PLA und PBS und deren Blends entwickelt werden, die dem Anforderungsprofil, welches in dem Projektantrag näher beschrieben ist, entsprechen.
In der industriellen Möbelfertigung ist es seit Jahrzehnten üblich die Schnittkanten von Werkstoffplatten zu beschichten. Im Bereich der Schmalflächenbeschichtung hat sich der Begriff des 'Kantenbandes' etabliert. Dabei handelt es sich um schmale Streifen aus Furnier, beharztem Papier, thermoplastischen Kunststoffen oder Aluminium. Das Verfahren zur Anbringung der Kantenbänder an verschiedene Holzwerkstoffsubstrate, wird und a. als ,,Bekantung' bezeichnet. Die meisten zur Bekantung eingesetzten Kantenbänder bestehen aus petrochemischen Kunststoffen wie PVC oder ABS und werden demnach aus nicht erneuerbaren Rohstoffen hergestellt. Ein qualitativ hochwertiges Aussehen, als auch die Summe verschiedener Materialien, die während einer Bekantung aufeinandertreffen, stellen besondere Anforderungen an die Klebtechnik. Um diesen zu genügen, werden seit den 1960er Jahren Schmelzklebstoffe, sogenannte Hotmelts, für Bekantungen eingesetzt. Sowohl die marktüblichen Materialien der Kantenbänder, als auch die für die Bekantung eingesetzten Schmelzklebstoffe basieren überwiegend auf fossilen Ressourcen. Diese zeichnen sich durch ihre Endlichkeit aus. Darüber hinaus ist die Erdölfraktionierung mit starken Belastungen für die Umwelt verbunden. Im Zuge dessen fokussiert das vorliegende Projekt die Entwicklung eines möglichst zu 100 % auf nachwachsenden Rohstoffen basierenden Klebstoff-Kantenband-Systems. Dabei soll ein Schmelzkleber entwickelt werden, der im Gegensatz zu den auf dem Markt erhältlichen Schmelzklebstoffen keinerlei Inhaltsstoffe mit petrochemischem Charakter aufweist. Weiterhin wird die Entwicklung eines aus Biokunststoff bestehenden Kantenbandes ins Auge gefasst, das ebenso rein aus nachwachsenden Rohstoffen bestehen soll. TV 1 (HS HOF) Rezepturentwicklung des Kantenbandes: In dem Teilvorhaben sollen Rezepturen auf Basis von PLA und PBS und deren Blends entwickelt werden, die dem Anforderungsprofil, welches in dem Projektantrag näher beschrieben ist, entsprechen.
Phosphorus (P) is an essential nutrient for living organisms. Whereas agriculture avoids P-limitation of primary production through continuous application of P fertilizers, forest ecosystems have developed highly efficient strategies to adapt to low P supply. A main hypothesis of the SPP 1685 is that P depletion of soils drives forest ecosystems from P acquiring system (efficient mobilization of P from the mineral phase) to P recycling systems (highly efficient cycling of P). Regarding P fluxes in soils and from soil to streamwater, this leads to the assumption that recycling systems may have developed strategies to minimize P losses. Further, not only the quantity but also the chemistry (P forms) of transported or accumulated P will differ between the ecosystems. In our project, we will therefore experimentally test the relevance of the two contrasting hypothetical nutritional strategies for P transport processes through the soil and into streamwater. As transport processes will occur especially during heavy rainfall events, when preferential flow pathways (PFPs) are connected, we will focus on identifying those subsurface transport paths. The chemical P fractionation in PFPs will be analyzed to draw conclusions on P accumulation and transport mechanism in soils differing in their availability of mineral bound P (SPP core sites). The second approach is an intensive streamwater monitoring to detect P losses from soil to water. The understanding of P transport processes and P fluxes at small catchment scale is fundamental for estimating the P exports of forest soils into streams. With a hydrological model we will simulate soil water fluxes and estimate P export fluxes for the different ecosystems based on these simulations.
Lignin als nachwachsender Rohstoff soll zu maximalen Anteilen den fossilen Rohstoff Phenol in Phenol-Formaldehyd (PF)-Harzen für Verklebungen im Lagenholzwerkstoffbereich ersetzen. Ziel ist die Entwicklung biobasierter Lignin-Phenol-Formaldehyd (LPF)-Klebstoffsysteme. Für solche Anwendungen sind Grundkenntnisse im industriellen Maßstab verfügbar. Durch die Herstellung dieser Klebstoffe sollen fossile Rohstoffe durch industriell verfügbare Lignine ersetzt werden. Die Auswahl der zur Verfügung stehenden Lignine wird dabei maßgeblich durch Herkunft der Biomasse, Herstellverfahren und sich ggf. anschließende Aufschlussverfahren bestimmt, die sich wesentlich auf die Wirkungsweise als Phenol-Ersatz in PF-Harzen auswirken. Die Entwicklung von LPF-Harzen für die Lagenholzwerkstoff-Herstellung steht in direkter Überein-stimmung mit dem Ziel des 'Förderprogramms Nachwachsende Rohstoffe'. Biobasierte Klebstoffe für Holzwerkstoffe stehen seit vielen Jahren im Fokus intensiver Forschungstätigkeiten. Darüber hinaus fordern sowohl Sperrholz- und LVL-Hersteller als auch der Markt die Klebstoffhersteller seit Jahren dazu auf, alternative Klebstoffsysteme auf Basis nachwachsender Rohstoffe anzubieten. Zudem definieren alle europäischen Hersteller von Lagenholzwerkstoffen mittlerweile Unternehmensziele mit Bezug auf eine nachweisliche Nachhaltigkeit von Produkten und Herstellungsprozessen.
Das hohe Aufkommen an Polymeren auf Ethylen- und Propylen-Basis führt nach deren Lebenszyklus zu erheblichen Abfallströmen. Die weltweit erwartete jährliche Menge an Kunststoffabfällen wird bis 2030 auf voraussichtlich ca. 440 Millionen Tonnen ansteigen. In Deutschland lag der Verbrauch an Kunststoff in 2019 bei 14,2 Mio. Tonnen und es fielen 6,28 Mio. Tonnen Kunststoffabfälle an. Stand der Technik ist, außer Lagerung auf Deponien, zumeist eine rein thermische Verwertung dieser Abfallströme, die zusätzlich zu den CO2-Emissionen, die bei der Herstellung entstehen, zu einer weiteren unerwünschten CO2- Freisetzung führt. Mechanisches Recycling ist nur begrenzt sinnvoll anwendbar. Somit ist bisher eine vollständige wirtschaftliche, umweltfreundliche und energieeffiziente Verwertung der anfallenden Abfallströme nicht möglich. Folglich besteht ein hoher Bedarf, diese Abfallströme als wertvollen Rohstoff einer technischen Anwendung zuzuführen. Vor dem Hintergrund der nationalen Klimaschutzziele und der notwendigen Reduktion der CO2-Emissionen im industriellen Bereich, strebt das Forschungsprojekt PYCRA eine signifikante Minderung der klimarelevanten Prozessemissionen in der deutschen Chemieindustrie an. PYCRA erforscht die Verwertung der Abfallaufkommen als Ausgangsstoff (= Feed) in Form eines chemischen Recyclings und somit als Substitut für fossile Rohstoffe (z.B. Naphtha) in petrochemischen Prozessen wie dem Steam Cracking. Hierbei soll ein völlig neues umweltschonendes Anwendungsverfahren für Pyrolyseöle entwickelt und erstmals demonstriert werden. Linde will eine erhebliche CO2-Reduktion bei der Herstellung von Ethylen im Vergleich zum Stand der Technik (Referenz: Steam-Cracker mit Naphtha-Feed) erreichen. Bei Projekterfolg kann das Verfahren neben einem nachhaltigen Beitrag zu einer Circular Economy, einen entscheidenden Hebel zur Energieeinsparung und der Reduktion von energiebedingten CO2-Emissionen darstellen.
Origin | Count |
---|---|
Bund | 339 |
Land | 27 |
Type | Count |
---|---|
Ereignis | 4 |
Förderprogramm | 282 |
Text | 53 |
Umweltprüfung | 3 |
unbekannt | 23 |
License | Count |
---|---|
geschlossen | 82 |
offen | 282 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 343 |
Englisch | 62 |
Resource type | Count |
---|---|
Bild | 3 |
Datei | 3 |
Dokument | 24 |
Keine | 260 |
Multimedia | 1 |
Webseite | 95 |
Topic | Count |
---|---|
Boden | 365 |
Lebewesen und Lebensräume | 295 |
Luft | 216 |
Mensch und Umwelt | 365 |
Wasser | 177 |
Weitere | 335 |