Pflanzenschutzmitteln (PSM) werden zur Bekämpfung bestimmter Schadorganismen oder Krankheiten, die ein Risiko für den Ertrag der Kulturpflanze darstellen, eingesetzt. Häufig wird dabei jedoch auch ein breites Spektrum von Nichtzielorganismen getötet oder geschädigt. Nicht nur die Anwendungsfläche, sondern auch angrenzende, unbehandelte Flächen können von PSM-Auswirkungen betroffen sein. Ein ausreichender Anteil an geeigneten Flächen zur Förderung der Biodiversität kann negative Auswirkungen einer PSM-Anwendung auf Nichtzielorganismen mitunter kompensieren. Dieser Bericht gibt einen Überblick über biodiversitätsfördernde Maßnahmen für die Raumkulturen Obst, Wein und Hopfen und stellt ein Konzept zum Ausgleich negativer Auswirkungen vor. Veröffentlicht in Texte | 13/2025.
Tipps für einen umweltbewussten Verzehr von Fisch und Meeresfrüchten Das sollten Sie beachten beim Kauf von Fisch und Meeresfrüchten Kaufen Sie Fisch mit Umweltsiegeln. Als besonders glaubwürdig haben sich dabei das Naturland-, das Bioland- und das Bio-Siegel erwiesen. Bevorzugen Sie Fisch und Meeresfrüchte aus nicht übernutzten Beständen, die mit ökologisch verträglichen Methoden gewonnen wurden wie beispielsweise mit Hand- und Angelleinen oder aus extensiver Teichwirtschaft Bevorzugen Sie Friedfische aus Aquakultur und Meeresfrüchte, die mit wenig oder ohne Fischmehl und -öl in ihren Futtermitteln auskommen Nutzen Sie Einkaufsratgeber, zum Beispiel von der Verbraucherzentrale oder dem WWF Machen Sie sich bewusst, dass Fisch ein Luxusprodukt ist und schränken Sie Ihren Konsum ein. Gewusst wie Fisch ist grundsätzlich gesund. Aber weltweit sind mehr und mehr Fischarten durch Überfischung in ihrem Bestand bedroht und marine Säuger, Seevögel oder Meeresschildkröten verenden häufig als Beifang. Die meisten Aquakulturen sind keine Alternative, da Fischmehle und -öle aus Wildfang verfüttert werden, wodurch ebenfalls Druck auf die Weltmeere erzeugt wird. Fische und Meeresfrüchte sind weiterhin mit Schadstoffen und immer mehr auch durch Mikroplastik belastet, wodurch der Konsum auch aus gesundheitlicher Sicht zu überdenken ist. Es gibt auch andere gute Omega-3-Quellen wie Leinsamen, Walnüsse und bestimmte Öle wie Lein- oder Hanföl. Mit Siegel einkaufen : Insbesondere das Siegel von "Naturland" kennzeichnet nachhaltig erwirtschafteten Wildfisch aus kleinen, handwerklichen und besonders vorbildlichen Fischereien. Die Siegel von "Bioland", "Naturland" und das Biosiegel weisen auf nachhaltig erwirtschafteten Zuchtfisch hin. Die häufig anzutreffenden Siegel des und des ASC für Zuchtfisch haben zwar niedrigere Standards, so gibt es z.B. weder Vorgaben zum Tierwohl beim Fang noch zu sozialen Belangen, sind aber trotzdem nicht zertifiziertem Fisch und Meeresfrüchten vorzuziehen. Aufschriften oder Aufdrucke wie "delfinfreundlich", "dolphin friendly", oder auch Bilder mit durchgestrichenem Delphin sind ungeschützte Kennzeichnungen, die von Firmen ohne Prüfung verwendet werden können und weder überprüfbar noch vertrauenswürdig sind. Empfehlenswerte Fisch- und Fangarten: Empfehlenswert sind Fischarten, die nicht in ihrem Bestand gefährdet sind oder bei der Zucht nicht auf Fischmehl angewiesen sind. Nutzen Sie für eine genaue Auflistung akzeptabler Arten und Fangmethoden die Einkaufsratgeber der Verbraucherzentrale und des WWF . Beachten Sie dabei auch die Unterscheidung Fangebieten, da nicht immer der Bestand eines ganzen Gebiets bedroht ist, sondern manchmal lediglich Populationen in einem Teilgebiet. Gute Alternativen sind Friedfische und Muscheln: Zum Beispiel Karpfen, Tilapia und Welse lassen sich nachhaltig züchten, da sie mit sehr wenig oder gar keinem Fischmehl- und -öl-Zusatz im Futter auskommen. Dabei ist darauf zu achten, dass sie aus europäischer Zucht stammen, um die Klimabelastung aus Transportwegen zu minimieren. Auch Muscheln sind eine gute Alternative zu fischfressenden Zuchtfischen. Sie weisen den kleinsten ökologischen Fußabdruck auf, da sie als Filtrierer alle benötigten Nährstoffen selbst aus dem Umgebungswasser aufnehmen. Was Sie noch tun können: Kaufen Sie im Supermarkt nur Fisch und Meeresfrüchte, deren Herkunft und Fangmethode auf der Verpackung gekennzeichnet ist. Erfragen Sie diese Informationen bei Frischfisch an der Theke, falls diese Informationen nicht erkenntlich sind. Beachten Sie unsere Tipps zu Biolebensmitteln . Beachten Sie unsere Tipps zu Lebensmittelverschwendung . Essen Sie Fisch bewusst und probieren Sie auch vegetarische Alternativen aus. Beachten Sie dazu auch unsere Tipps zu klima- und umweltfreundlicher Ernährung . Hintergrund Weltweit gelten 37 Prozent der kommerziell genutzten Fischbestände als überfischt und weitere 50 Prozent als maximal genutzt (FAO 2024). Obwohl das Ziel der EU-Politik darin bestand, bis 2020 alle Bestände wiederherzustellen, werden im Nordost-Atlantik inklusive der Nordsee immer noch 32 Prozent der Bestände überfischt. Besonders dramatisch gestaltet sich die Situation in der Ostsee: von acht Fischbeständen, zu denen Daten vorliegen, befinden sich sechs außerhalb sicherer biologischer Grenzen, darunter auch Hering und Dorsch. Der Begriff Fischbestand wird dabei als Gesamtmasse einer Fischereiressource definiert. Solche Bestände werden normalerweise anhand ihres Standorts identifiziert. Laut WWF gehen etwa 40 Prozent des weltweiten Fischfangs ungewollt in Netz. Die Beifangmenge ist abhängig von der Fangmethode und besonders hoch bei der Grundschleppnetzfischerei auf bodenlebende Arten, wie Schollen, Seezungen oder Garnelen. Zusätzlich sind Nichtzielarten wie Meeressäuger betroffen, die mitgefangen werden. Sie werden meist tot oder sterbend zurück ins Meer geworfen (DAVIES RWD et al. 2009)So werden nach Angaben der Internationalen Walfangkommission beispielsweise jährlich circa 650.000 Robben, Delfine und Wale beigefangen (WCL 2022). Damit sterben heute durch Beifang mehr Wale pro Jahr als zur Blütezeit des kommerziellen Walfangs. Laut der OSPAR -Kommission zum Schutz der Meeresumwelt des Nordostatlantiks ist die Fischerei weiterhin eine der Hauptverursacher von Schäden an marinen wie Seeberge, Seegraswiesen oder Korallenriffe (OSPAR QSR 2023). Auch die Fischzucht (Aquakultur) trägt zur Überfischung bei: Um Fisch aus Aquakultur zu züchten, wird zusätzlich Wildfisch gefangen und verfüttert. Jährlich werden circa 20 Prozent der weltweiten Fänge zu Fischmehl und -öl verarbeitet (FAO 2018). Für die "Produktion" von nur einem Kilo Lachs können bis zu drei Kilo Fischmehl oder Fischöl nötig sein. Nach Angaben von Fischereiexperten wären 90 Prozent der Fische, die für die Herstellung von Fischmehl gefangen werden, für den menschlichen Verzehr geeignet (Cashion et al. 2017). Außerdem nehmen diese Futterfische (kleine bis mittelgroße pelagische Fischarten wie Sardinen, Sardellen oder Hering) eine wichtige Rolle in der Nahrungskette ein und sind eigentlich Hauptnahrungsquelle für Fische, Seevögel und Meeressäuger (Oceancare 2021). Aquakulturen können große Umweltschäden verursachen, wenn Chemikalien, Kunststoffabfälle, Nahrungsreste, Fischkot und Antibiotika aus den offenen Netzkäfigen in die Flüsse und Meere gelangen. Da die rasant wachsende Aquakultur viel Fläche in den Küstenregionen tropischer und subtropischer Länder vereinnahmt, kommt es zu sozialen Konflikten. Weiterhin werden durch den Bau von Zuchtanlagen wertvolle Lebensräume wie Mangrovenwäldern verloren. Laut Schätzungen der FAO (2018) sind seit 1980 3,6 Millionen Hektar Mangrovenwälder weltweit verloren gegangen, ein wesentlicher Grund dafür sind Shrimpzuchten. Weiterhin sterben jährlich Millionen von Zuchtfischen infolge schlechter Haltungsbedingungen. Mittlerweile ist unbestritten, dass Fische fähig sind, zu leiden und Schmerz zu empfinden. Und doch sind Zuchtfische die am wenigsten geschützten Nutztiere (Oceancare 2021). Quellen: Cashion T., Le Manach F., Zeller D., Pauly D. 2017. Most fish destined for fishmeal production are food-grade fish. Https://doi.org/10.1111.faf.12209 FAO 2022. The State of World Fisheries and Aquaculture. Towards Blue Transformation. Rome, FAO. FAO 2018. The state of world fisheries and aquaculture: Meeting the sustainable development goals. Licence: CC BY-NC-SA 3.0 IGO. Rome: FAO. DAVIES RWD, et al. 2009. Defining and estimating global marine fisheries bycatch. Marine Policy, doi:10.1016/j.marpol.2009.01.003Oceancare 2021. Überfischung: Wildfisch als Fischfutter in Aquakulturen – Schweizer Detailhändler im Vergleich OSPAR QSR 2023: https://oap.ospar.org/en/ospar-assessments/quality-status-reports/qsr-2023/ WLC 2022
Pflanzenschutzmitteln (PSM) werden zur Bekämpfung bestimmter Schadorganismen oder Krankheiten, die ein Risiko für den Ertrag der Kulturpflanze darstellen, eingesetzt. Häufig wird dabei jedoch auch ein breites Spektrum von Nichtzielorganismen getötet oder geschädigt. Nicht nur die Anwendungsfläche, sondern auch angrenzende, unbehandelte Flächen können von PSM-Auswirkungen betroffen sein. Ein ausreichender Anteil an geeigneten Flächen zur Förderung der Biodiversität kann negative Auswirkungen einer PSM-Anwendung auf Nichtzielorganismen mitunter kompensieren. Dieser Bericht gibt einen Überblick über biodiversitätsfördernde Maßnahmen für die Raumkulturen Obst, Wein und Hopfen und stellt ein Konzept zum Ausgleich negativer Auswirkungen vor.
The ELONTA project aimed at understanding the relationships between landscape structure, source-sink dynamics and the risk of pesticide use for Non-Target Arthropods (NTAs). It also investigated the effectiveness of introducing two landscape-based mitigation measures: grassy field boundaries and unsprayed field margins. The project used a model NTA species, Bembidion lampros , a small, univoltine, spring-breeding carabid beetle that is common in temperate European agricultural landscapes. The project combined high-resolution dynamic landscape models with advanced spatially-explicit population models to simulate changes in B. lampros population dynamics in agroecosystems. The impact of pesticide use on B. lampros populations and the effectiveness of mitigation measures were assessed in a set of 611 study plots of 10x10 km 2 in Brandenburg and Lower Saxony regions, varying in landscape and farmland heterogeneity. Our analysis showed that beetle populations were better supported in more diverse and heterogeneous landscapes with a high proportion of herbaceous semi-natural habitats and permanent pastures. The negative impact of pesticide use was greater in more homogeneous landscapes with low initial beetle populations, high arable land coverage and low beetle source habitat coverage. The study showed that grassy field boundaries were a more effective mitigation measure than unsprayed field margins. It also revealed the influence of source-sink dynamics on the effect of pesticide application on B. lampros populations, with significant exclusive off-field effects that persisted despite mitigation measures. Landscape management in agroecosystems should focus on maintaining and protecting these habitats, especially in highly homogeneous landscapes. Veröffentlicht in Texte | 58/2024.
The ELONTA project aimed at understanding the relationships between landscape structure, source-sink dynamics and the risk of pesticide use for Non-Target Arthropods (NTAs). It also investigated the effectiveness of introducing two landscape-based mitigation measures: grassy field boundaries and unsprayed field margins. The project used a model NTA species, Bembidion lampros, a small, univoltine, spring-breeding carabid beetle that is common in temperate European agricultural landscapes. The project combined high-resolution dynamic landscape models with advanced spatially-explicit population models to simulate changes in B. lampros population dynamics in agroecosystems. The impact of pesticide use on B. lampros populations and the effectiveness of mitigation measures were assessed in a set of 611 study plots of 10x10 km2 in Brandenburg and Lower Saxony regions, varying in landscape and farmland heterogeneity. Our analysis showed that beetle populations were better supported in more diverse and heterogeneous landscapes with a high proportion of herbaceous semi-natural habitats and permanent pastures. The negative impact of pesticide use was greater in more homogeneous landscapes with low initial beetle populations, high arable land coverage and low beetle source habitat coverage. The study showed that grassy field boundaries were a more effective mitigation measure than unsprayed field margins. It also revealed the influence of source-sink dynamics on the effect of pesticide application on B. lampros populations, with significant exclusive off-field effects that persisted despite mitigation measures. Landscape management in agroecosystems should focus on maintaining and protecting these habitats, especially in highly homogeneous landscapes.
Background Several large-scale studies revealed impacts and risks for aquatic communities of small rural lakes and streams due to pesticides in agricultural landscapes. It appears that pesticide risk assessment based on single products does not offer sufficient protection for non-target organisms, which are exposed repeatedly to pesticide mixtures in the environment. Therefore, a comprehensive stream mesocosm study was conducted in order to investigate the potential effects of a realistic spraying sequence for conventional orchard farmed apples on a stream community using pesticides at their regulatory acceptable concentrations (RACs). Eight 74-m-long stream mesocosms were established with water, sand, sediment, macrophytes, plankton and benthic macroinvertebrates. In total, nine fungicidal, four herbicidal and four insecticidal pesticides were applied in four of the eight stream mesocosms on 19 spraying event days in the period from April to July while the remaining four stream mesocosms served as controls. The community composition, the abundance of benthos, periphyton and macrophytes, the emergence of insects, physico-chemical water parameters, and drift measurements of aquatic invertebrates were measured. Results The pesticide spraying sequence induced significant effects on invertebrates, periphyton, and macrophytes as well as on the water ion composition especially in the second half of the experiment. It was not possible to relate the observed effects on the community to specific pesticides applied at certain time points and their associated toxic pressure using the toxic unit approach. The most striking result was the statistically significant increase in variation of population response parameters of some taxa in the treated mesocosms compared to the controls. This inter-individual variation can be seen as a general disturbance measure for the ecosystem. Conclusions The pesticide spraying sequence simulated by using RAC values had notable effects on the aquatic stream community in the conducted mesocosm study. The results indicate that the current risk assessment for pesticides may not ensure a sufficient level of protection to the field communities facing multiple pesticide entries due to spraying sequences and other combined stress. Hence, there is still room for improvement regarding the prospective risk assessment of pesticides to further reduce negative effects on the environment. © The Author(s) 2023
Biozide in der Tierhaltung: Umwelteinträge minimieren Ein Forschungsvorhaben hat die Anwendungspraxis von Bioziden zur Desinfektion und Insektenbekämpfung untersucht. Um Einträge in die Umwelt zu minimieren, wird beispielsweise empfohlen, Temperatur- und Mengenvorgaben bei Desinfektionsmitteln genau einzuhalten und deren Anwendung in ein ganzheitliches Hygienemanagementkonzept zu integrieren. In dem Vorhaben „ The use of biocides in animal housings: elaboration of recommendations for the application of biocidal products for veterinary hygiene (PT 03) and for the control of arthropods (PT 18) with regard to the environment “ wurde im Auftrag des Umweltbundesamtes die derzeitige Anwendungspraxis von Biozid-Produkten in der Nutzierhaltung analysiert. Zudem wurden Maßnahmen abgeleitet, die den Eintrag von Bioziden in die Umwelt minimieren. Erkenntnisse aus dem Projekt Eine wichtige Möglichkeit Umwelteinträge zu minimieren besteht darin, Anwendungsfehler zu vermeiden, wie zum Beispiel die geprüften Temperaturbedingungen für die Anwendung von Desinfektionsmitteln zu beachten oder falsch dosierte Gebrauchslösungen zu vermeiden. Diese und weitere Maßnahmen können als Grundlage für die Erstellung von betriebsspezifischen Standardarbeitsanweisungen (SOPs) oder Gesamthygienekonzepten verwendet werden und auf diese Weise einen wichtigen Beitrag leisten, den Einsatz von Biozid-Produkten in der Tierhaltung zu reduzieren und die Belastung der Umwelt zu minimieren. Insgesamt hat sich gezeigt, dass Einträge von Bioziden aus der Nutztierhaltung in die Umwelt von vielen Variablen abhängig sind, sodass es nicht immer zielführend ist, pauschale Empfehlungen für die verschiedenen Anwendungssituationen, Haltungssysteme und Nutztierarten abzuleiten. Entsprechend wurde der Schwerpunkt der ausgearbeiteten Anwendungsempfehlungen zur Minimierung von Umwelteinträgen auf das allgemeine Hygienemanagement und die verschiedenen Phasen bei einer Biozidanwendung, einschließlich Vorbereitung, tatsächlicher Anwendung und Erfolgskontrolle gelegt. Das Forschungsprojekt (FKZ 3717 63 411 0) wurde durchgeführt von der Ramboll Deutschland GmbH, der Stiftung Tierärztliche Hochschule Hannover und der Hydor Consult GmbH. Wie gelangen Biozide aus dem Stall in die Umwelt? Der Einsatz von Desinfektionsmitteln und Insektiziden in der Nutztierhaltung ist notwendig, um den Keimdruck und die Wahrscheinlichkeit des Ausbruchs von zum Beispiel hochansteckenden Tierkrankheiten zu minimieren. Die dazu eingesetzten Biozid-Produkte wirken jedoch nicht nur auf Schadorganismen, sondern können auch Nichtzielorganismen schädigen, wenn die darin enthaltenen Wirkstoffe in die Umwelt gelangen. Dies kann zum Beispiel bei der Ausbringung von Gülle passieren.
Im Zuge der vorliegenden Konzeptstudie wurde zuerst ein Anforderungskatalog mit 21 Kriterien erstellt, anhand dessen die Eignung potentieller Wirkstoffe für eine wirksame und umweltverträglichere Nagetierbekämpfung abgeschätzt werden kann. Anschließend wurden Methoden ermittelt, die unter anderem über physiologische oder biochemische Systeme eine erhöhte Zieltierspezifität (Selektivität) von Rodentiziden ermöglichen und somit die Gefahr von Primär- und Sekundärvergiftungen von Nicht-Zieltieren verringern können. Um kurzfristig umsetzbare Stragien zur Verbesserung der Umwelteigenschaften von Rodentiziden aufzuzeigen, wurden zunächst in der Humanmedizin bereits eingesetzte blutgerinnungshemmende oder -fördernde Substanzen ermittelt, die bessere Umwelteigenschaften als die aktuell verwendeten Antikoagulanzien aufweisen und diese möglicherweise ersetzen könnten. Dabei erwiesen sich unter den Antikoagulanzien Dicoumarin und Dabigatranetexilat, bei den gerinnungsfördernden Medikamenten 4-(Aminomethyl)benzoesäure und Tranexamsäure als besonders vielversprechend. Des Weiteren könnten die Wirksamkeit und Umwelteigenschaften der derzeit als Biozide genehmigten Rodentizide kurzfristig verbessert werden, wenn reine Enantiomere anstelle der bisherigen Isomerengemische der Wirkstoffe hergestellt werden würden. Zusätzlich kann durch Mikroverkapselung der Wirkungseintritt von Rodentiziden verzögert werden. Wirkstoffe, wie 2-Fluoressigsäure oder Natriumhexafluorosilikat, die aufgrund ihrer akuten Wirkung und der damit verbundenen Köderscheu derzeit nicht (mehr) als Rodentizide eingesetzt werden, aber gute Umwelteigenschaften aufweisen, könnten so wieder in Betracht gezogen werden. Mittelfristig können bekannte Wirkstoffe durch Modifikation verbessert werden, z.B. durch die Einführung funktioneller Gruppen, die die Abbaubarkeit erhöhen und/oder das Bioakkumulationsrisiko senken. Das größte Optimierungspotential birgt letztlich die komplette Neuentwicklung eines Wirkstoffs, bei der die oben genannten Kriterien bereits beim Design beachtet werden, allerdings ist diese langfristige Strategie mit dem höchsten Entwicklungsaufwand verbunden. Quelle: Forschungsbericht
Pharmaceuticals such as antidepressants are designed to be bioactive at low concentrations. According to their mode of action, they can also influence non-target organisms due to the phylogenetic conservation of molecular targets. In addition to the pollution by environmental chemicals, the topic of microplastics (MP) in the aquatic environment came into the focus of scientific and public interest. The aim of the present study was to investigate the influence of the antidepressant amitriptyline in the presence and absence of irregularly shaped polystyrene MP as well as the effects of MP alone on juvenile brown trout (Salmo trutta f. fario). Fish were exposed to different concentrations of amitriptyline (nominal concentrations between 1 and 1000 (micro)g/L) and two concentrations of MP (104 and 105 particles/L; <50 (micro)m) for three weeks. Tissue cortisol concentration, oxidative stress, and the activity of two carboxylesterases and of acetylcholinesterase were assessed. Furthermore, the swimming behavior was analyzed in situations with different stress levels. Exposure to amitriptyline altered the behavior and increased the activity of acetylcholinesterase. Moreover, nominal amitriptyline concentrations above 300 (micro)g/L caused severe acute adverse effects in fish. MP alone did not affect any of the investigated endpoints. Co-exposure caused largely similar effects such as the exposure to solely amitriptyline. However, the effect of amitriptyline on the swimming behavior during the experiment was alleviated by the higher MP concentration. © 2022 by the authors
The field of chemical rodent control has seen no major developments in the last decades, even though anticoagulant rodenticides (AR), the mainly used substances to manage mice and rats, are known environmental pollutants and candidates for substitution under the European Biocidal Products Regulation 528/2012. Moreover, recent political developments in Europe and the USA demand more safety and sustainability in the management of chemicals, reinforcing the need for environmentally friendly substances. In this concept study, we present a step-by-step approach to improve the environmental properties of rodenticides. Repurposing of existing pharmaceuticals, the use of enantiomerically pure rodenticides, or the improvement of the formulation by microencapsulation can help to alleviate environmental problems caused by AR in the short term. Modification of the chemical structures or the development of prodrugs as medium-term strategies can further improve environmental properties of existing compounds. Ultimately, the development of new substances from scratch enables the utilisation of so far ignored modes of actions and the application of modern safe and sustainable-by-design principles to improve target specificity and reduce the negative impact on non-target organisms and the environment. Overall, our concept study illustrates the great potential for improvement in the field of chemical rodent control when applying available techniques of green and sustainable chemistry to known or potential rodenticides. Most promising in the medium term is microencapsulation that would allow for the use of acutely acting substances as it could circumvent bait shyness. On a longer timescale the de novo design of new rodenticides, which is the only method that can combine a high target specificity with good environmental properties, is the most promising approach. © 2022 The Authors
Origin | Count |
---|---|
Bund | 112 |
Land | 6 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 76 |
Text | 18 |
unbekannt | 23 |
License | Count |
---|---|
geschlossen | 40 |
offen | 77 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 94 |
Englisch | 40 |
Resource type | Count |
---|---|
Datei | 1 |
Dokument | 13 |
Keine | 82 |
Webseite | 25 |
Topic | Count |
---|---|
Boden | 75 |
Lebewesen & Lebensräume | 118 |
Luft | 72 |
Mensch & Umwelt | 118 |
Wasser | 72 |
Weitere | 109 |