API src

Found 3 results.

D4: Catchment scale hydro-biogeochemical fluxes and aquatic diversity under global change

Das Projekt "D4: Catchment scale hydro-biogeochemical fluxes and aquatic diversity under global change" wird vom Umweltbundesamt gefördert und von Universität Gießen, Institut für Landschaftsökologie und Ressourcenmanagement, Professur für Landschafts-, Wasser- und Stoffhaushalt durchgeführt. The proposed research contributes to the following overarching goals: (i) better understanding of the complex hydro-biogeochemical and biological interactions in tropical montane forest systems under natural and altered conditions; (ii) the integration of this knowledge in an integrated modeling system that will be tested to long-term and spatially dense datasets; and (iii) prognosis of the likely impact of climate change scenarios on the hydro-biogeochemical and biological processes considering for each process the uncertainty range on the prediction. A main deliverable of the project will be the expanded CMF modeling tool enabling the simulation of the combined impact of land use and climate change on hydro-biogeochemical processes and biological interaction. The project follows the general philosophy of cooperative researchers between experimentalists and modelers, thereby facilitating the implementation of state-of-the-art system understanding into simulation tools. The integrated modelframework developed in D4 will therefore allow to assess the likely impacts of global change on tropical montane rainforest ecosystems of Ecuador.

Quantification of functional hydro-biogeochemical indicators in Ecuadorian ecosystems and their reaction on global change

Das Projekt "Quantification of functional hydro-biogeochemical indicators in Ecuadorian ecosystems and their reaction on global change" wird vom Umweltbundesamt gefördert und von Universität Gießen, Institut für Landschaftsökologie und Ressourcenmanagement, Professur für Landschafts-, Wasser- und Stoffhaushalt durchgeführt. Water is an intrinsic component of ecosystems acting as a key agent of lateral transport for particulate and dissolved nutrients, forcing energy transfers, triggering erosion, and driving biodiversity patterns. Given the drastic impact of land use and climate change on any of these components and the vulnerability of Ecuadorian ecosystems with regard to this global change, indicators are required that not merely describe the structural condition of ecosystems, but rather capture the functional relations and processes. This project aims at investigating a set of such functional indicators from the fields of hydrology and biogeochemistry. In particular we will investigate (1) flow regime and timing, (2) nutrient cycling and flux rates, and (3) sediment fluxes as likely indicators. For assessing flow regime and timing we will concentrate on studying stable water isotopes to estimate mean transit time distributions that are likely to be impacted by changes in rainfall patterns and land use. Hysteresis loops of nitrate concentrations and calculated flux rates will be used as functional indicators for nutrient fluxes, most likely to be altered by changes in temperature as well as by land use and management. Finally, sediment fluxes will be measured to indicate surface runoff contribution to total discharge, mainly influenced by intensity of rainfall as well as land use. Monitoring of (1) will be based on intensive sampling campaigns of stable water isotopes in stream water and precipitation, while for (2) and (3) we plan to install automatic, high temporal-resolution field analytical instruments. Based on the data obtained by this intensive, bust cost effective monitoring, we will develop the functional indicators. This also provides a solid database for process-based model development. Models that are able to simulate these indicators are needed to enable projections into the future and to investigate the resilience of Ecuadorian landscape to global change. For the intended model set up we will couple the Catchment Modeling Framework, the biogeochemical LandscapeDNDC model and semi-empirical models for aquatic diversity. Global change scenarios will then be analyzed to capture the likely reaction of functional indicators. Finally, we will contribute to the written guidelines for developing a comprehensive monitoring program for biodiversity and ecosystem functions. Right from the beginning we will cooperate with four SENESCYT companion projects and three local non-university partners to ensure that the developed monitoring program will be appreciated by locals and stakeholders. Monitoring and modelling will focus on all three research areas in the Páramo (Cajas National Park), the dry forest (Reserva Laipuna) and the tropical montane cloud forest (Reserva Biologica San Francisco).

Panam - Projekt integraler Landentwicklung (PIRDP), Tibet - Waldwirtschaftlicher Teil

Das Projekt "Panam - Projekt integraler Landentwicklung (PIRDP), Tibet - Waldwirtschaftlicher Teil" wird vom Umweltbundesamt gefördert und von Universität für Bodenkultur Wien, Institut für Waldbau durchgeführt. Im Rahmen einer integrativ abgestimmten Maßnahmenplanung im Tibetischen Bezirk Panam soll neben Aktivitäten der Gesundheits- und Bildungsverbesserung sowie der Verwirklichung einer modernen Bewässerungslandwirtschaft auch das Prinzip der nachhaltig-multifunktionalen Waldwirtschaft eingeführt werden. Bei extremem Mangel an Wald gilt es Waldgrenzen und potenzielle Waldformen zu definieren sowie die Anforderungen an die möglichen Wälder den natürlichen Leistungspotenzialen gegenüberzustellen. Darauf abgestimmt ist es das Hauptziel der forstlichen Komponente, zur Abdeckung der gesellschaftlichen Bedürfnisse entsprechend standortsangepasste Aufforstungsmodelle abzuleiten und umzusetzen.

1