Das Projekt "Improvement of oil palm wood by bio resin application" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Fachrichtung Forstwissenschaften, Institut für Forstnutzung und Forsttechnik, Professur für Forstnutzung durchgeführt. Reinforcement of oil palm wood by using Bioresin to improve its physical, mechanical and machinery properties. Concerning the utilization of oil palm wood, which is available in large number throughout the year, especially when the mature plants has reached its economic life span (approx. 25 years). Normally, this mature plant should be replanting. According to the projection of oil palm plantation development in Indonesia, there are more than 16 million cubic meter of this bulky material starting 2010. This large amount of biomass, if no real effort, will become a serious problem. Unfortunately, the current replanting method (push-felled) sounds risky and in several companies follow by burning method, which is really not solve problem, but creating the other serious problem, such as air pollution. The oil palm wood characteristics as a monocotyledons species is naturally quite different compare to the common wood (dicotyledonous). Originally the oil palm tree has various densities along the trunk and its density decreased linearly with trunk height and towards the centre of the trunk. Green oil palm trunk is also very susceptible to fungal and insect attack due to the high sugar and starch content. Hence, the utilization of this material is not fully utilized yet and still poses a serious environmental problem. Yet, compared to the various intensive researches and the economically important of the oil palm, processing technology and diversification of palm oil based products mainly from CPO and PKO, the oil palm solid waste, particularly the oil palm wood, has received relatively little research attention. This might be due to lack or insufficient the scientific information and Know-How of this material and might be also due to the difficulties of using with the OPT. Although several investigations have already conducted in the field of OPT, but a sufficient knowledge shall be achieved in order to design and establish the new tailor-made wood products based on oil palm wood. Hence, this study was directed to focus the characteristics of OPT including anatomical, physical, mechanical and machinery properties, and in order to use the OPT for structural purposes, the wood properties of OPT were improved and reinforced with Bioresin through the development of wood modification techniques.
Das Projekt "Bio-Verbundmaterialien für neue, energieeffiziente Bauwerkskomponenten mit reduzierter Grauer Energie" wird vom Umweltbundesamt gefördert und von NetComposites Ltd. durchgeführt. The aim of BioBuild is to use biocomposites to reduce the embodied energy in building facade, supporting structure and internal partition systems by at least 50Prozent over current materials with no increase in cost. This will lead to a step change in the use of sustainable, low carbon construction materials, by replacing aluminium, steel, FRP, brick and concrete in buildings. Facades are widely used in construction, primarily to protect and insulate the internal structure. Internal partitions are used to divide space, carry utilities and provide thermal and acoustic insulation. The current materials used such as aluminium, steel, brick and concrete are energy intensive to produce and have high embodied energy. FRP is an alternative construction material, benefitting from low weight, formability and simple manufacturing, allowing low material content structures and innovative design. However, typical resin and glass fibre are non-renewable, energy intensive to synthesise. Biocomposites overcome these drawbacks, whilst maintaining the benefits, being based on natural fibres and bioresins which have low embodied energy and cost. Biocomposites are renewable and sustainable resin and reinforcement structures. The resins in this project are furan and cashew nut oil based with reinforcing fibres of flax and jute. Bast fibres have lower environmental impacts than glass, concerning climate change and energy but have similar properties. Biocomposites are used commercially in automotive interior parts, but for outdoor applications they can degrade due to moisture absorption and bio-degradation. BioBuild will develop biocomposites and construction products with a life span of 40 years, by protecting the fibres with novel treatments and coatings. The result of the project will be a low cost, lightweight, durable and sustainable biocomposite building system, with full technical and environmental validation, offering low embodied energy construction materials.