Emissionskataster Kraftfahrzeugverkehr Das Emissionskataster Kfz-Verkehr ist auf der Basis der Verkehrszählungen für das Jahr 2014 neu erhoben worden, weil diese Verursachergruppe nach den bisherigen Erfahrungen erheblich zu den Feinstaub- und Stickoxid-Belastungen beiträgt. Seit dem Jahr 2001 sind in den Hauptverkehrsstraßen Berlins an vielen Stellen Detektoren errichtet worden, die die dort fahrenden Kraftfahrzeuge zählen. Diese Daten dienen primär dazu, die aktuelle Verkehrssituation in Berlin zu kennen und sie in die Verkehrssteuerung mit einzubeziehen. Diese Informationen werden in der Verkehrsregelungszentrale (VKRZ) ausgewertet, um die Bevölkerung und insbesondere die Autofahrer über Rundfunk, Internet und Anzeigetafeln an zentralen Punkten über die aktuelle Verkehrssituation zu informieren und gegebenenfalls Routenempfehlungen zur Umfahrung von Staus zu geben. Mit dem Ausbau der VKRZ soll das Ziel einer dynamischen Verkehrssteuerung nach aktueller Verkehrslage und -belastung ermöglicht werden. Erhebung der Verkehrsbelastung Seit 2002 stehen die Daten von ca. 400 Detektoren an etwa 300 Standorten innerhalb des Berliner Hauptstraßennetzes bei der Verkehrslenkung zur Verfügung. Viele dieser Detektoren unterscheiden zwischen Pkw und Lkw und können für jährliche überschlägige Verkehrsmengenerhebungen genutzt werden. Für das Jahr 2014 standen zusätzlich die Verkehrszahlen für Pkw, Lkw, Busse und Motorräder durch eine alle 5 Jahre durch die Senatsverwaltung für Umwelt, Verkehr und Klimaschutz in Auftrag gegebene amtliche Zählung durch geschulte Personen an vielen Verkehrsknotenpunkten zur Verfügung. Diese amtliche Verkehrszählung hat gegenüber der Zählung durch die Detektoren den Vorteil, dass die Lkw unter und über 3,5 t besser von den sonstigen Kfz getrennt werden können. Daher wurde für 2014 diese Verkehrszählung als Grundlage für eine “ Emissionserhebung Kfz-Verkehr 2015 im Rahmen der Fortschreibung des Luftreinhalteplans 2011-2017 ” gewählt, so wie bei den bisherigen Emissionskatastern Kfz-Verkehr der Jahre 1994, 1999, 2005 und 2009 auch. Die Auspuffemissionen wurden dann wie folgt bestimmt: die Hochrechnung der punktbezogenen Knotenzählungen auf das gesamte Berliner Hauptstraßennetz mit einem Verkehrsfluss-Rechenmodell (VISUM) durch die Senatsverwaltung für Umwelt, Verkehr und Klimaschutz lieferte als Resultat die mittleren täglichen Verkehrszahlen (DTV) und die Lkw-Anteile für alle Hauptstraßen; die Ermittlung der abschnittsbezogenen Belastung des Hauptverkehrsstraßennetzes mit Linienbusverkehr der Berliner Verkehrsbetriebe (BVG) wurde aus den Fahrplandaten 2014 errechnet; die Berechnung der Emissionen mit den Emissionsfaktoren aus dem UBA-Handbuch für Emissionsfaktoren (Version 3.3) unter Berücksichtigung der Straßenart und -funktion wird mit Hilfe des Programms IMMIS em/luft ermittelt. Erhebung der Emissionen Zu den Schadstoffemissionen des Kfz-Verkehrs zählen die Auspuff- und Abriebemissionen des fließenden Verkehrs, die Verdunstungsemissionen des ruhenden Verkehrs und Verdunstungsemissionen an Tankstellen. Abbildung 2 gibt eine Übersicht über die Erhebungssystematik. Die Emissionen an Tankstellen werden dem Kleingewerbe zugeordnet. Mit Hilfe von Emissionsmodellen werden die Schadstoff- und CO 2 -Emissionen für Linienquellen (Hauptverkehrsstraßen) und Flächenquellen (Nebenstraßennetz und Verdunstungsemissionen) berechnet. Die Auspuff- und Abriebemissionen treten als Linienquellen auf Hauptverkehrs- und Nebenstraßen auf. Sie werden jedoch nur für das Hauptverkehrsstraßennetz als Linienquellen berechnet, weil nur für diese Straßen DTV-Werte und Angaben zur stündlichen Kapazität aus Zählungen vorliegen. Die Emissionen der Linienquellen werden anschließend dem Rasternetz als Flächenwerte zugeordnet. Die Emissionen im Nebenstraßennetz werden dagegen aus Annahmen zum Verkehrsaufkommen und zum Lkw-Anteil direkt für die einzelnen Raster abgeleitet. Emissionsmodelle Hauptverkehrsstraßen (Linienquellen) und Nebenstraßennetz (Flächenquellen) Die Auspuffemissionen durch den Kraftfahrzeugverkehr hängen von Faktoren ab, die sich in verkehrsspezifische und kraftfahrzeugspezifische Kenngrößen zusammenfassen lassen. Die verkehrsspezifischen Kenngrößen werden durch die Verkehrsdichte, d.h. die Anzahl der auf dem betrachteten Straßenabschnitt (Quelle) bewegten Fahrzeuge und deren Fahrverhalten (Fahrmodus) beschrieben. Das Fahrverhalten wird den verschiedenen Straßentypen (Stadtkernstraße, Nebenstraße, Hauptverkehrsstraße mit oder ohne Lichtsignalanlage, Autobahn) und Funktionen (Geschäftsstraße, Wohngebietsstraße oder Einfallstraße) zugeordnet. Die kraftfahrzeugspezifischen Kenngrößen , im Allgemeinen ausgedrückt durch die Abgasemissionsfaktoren, werden bestimmt durch: die Art des motorischen Antriebsverfahrens (Viertakt-, Zweitakt- oder Dieselmotor), die Art der Gemischaufbereitung (durch Vergaser oder Einspritzung beim Otto-Motor), die Art des Kraftstoffes (Zweitaktgemisch, Benzin, Diesel), die Art eventuell vorhandener Reinigungssysteme (geregelter und ungeregelter Katalysator, Abgasrückführung, Partikelfilter, Entstickungssysteme) sowie sonstige, den technischen Zustand des Motors charakterisierende Größen. Die Emissionsfaktoren hängen auch vom Fahrverhalten (Fahrmodus) ab und werden daher für unterschiedliches Fahrverhalten angegeben. Als wesentliche kraftfahrzeugspezifische Größe werden auch der Kaltstarteinfluss, der zu erhöhten Schadstoffemissionen während der Warmlaufphase des Motors führt, und die Verdunstungsemissionen berücksichtigt. Die Emissionsfaktoren werden im UBA-Handbuch für Emissionsfaktoren (Version 3.3) für jedes Jahr seit 1990 bis zum Jahr 2030 zur Verfügung gestellt. Hier finden sich für jede Fahrzeuggruppe (Pkw, leichte Nutzfahrzeuge, motorisierte Zweiräder, Busse und schwere Nutzfahrzeuge), für zurzeit mindestens sechs Minderungsstufen (80er Jahre ECE-Zyklus, Euro I/1, Euro II/2, Euro III/3, Euro IV/4, EURO V/5und EURO VI/6) und für jeden Straßentyp die Emissionsfaktoren aller relevanten emittierten Stoffe. Die strengere Norm Euro VI für schwere Nutzfahrzeuge ist seit Januar 2013 gültig, der Euro 6 – Standard für Pkw ist seit September 2014 bzw. in Stufen verschärft seit September 2017 und ab Januar 2020 vorgeschrieben. Diese Abgasnormen können mit der jetzigen Version des UBA-Handbuchs berücksichtigt werden, so dass realistische Prognosen der Kfz-Emissionen möglich sind. Ermittlung der Emission durch Abrieb und Aufwirbelung des Straßenverkehrs Nach heutiger Erkenntnis geht man davon aus, dass ein großer Anteil der verkehrsbedingten PM10-Emissionen nicht aus dem Auspuff der Fahrzeuge stammt, sondern über Aufwirbelung von auf der Straßenoberfläche liegenden Partikeln und vom Reifen- und Bremsabrieb herrührt. Grundlage der Berechnung dieser Emissionen mit IMMIS em/luft bildet die modifizierte EPA-Formel aus entsprechenden Untersuchungen. Diese Formel wurde in Berlin durch Messungen an der Schildhornstraße und an der Frankfurter Allee entwickelt und basiert auf der Erkenntnis, dass bezogen auf das Jahr 2001 ca. 50 % der in Straßenschluchten gemessenen Zusatzbelastung von Feinstaub nicht der Auspuffemission der Kraftfahrzeuge zugeordnet werden kann, sondern durch die fahrzeugbedingten Abriebe (Brems-, Straßen- und Reifenabrieb) und Aufwirbelungen verursacht werden. Da die Auspuffemissionen durch die verbesserte Motortechnik seitdem weiter vermindert wurden, ist der Anteil der nicht Auspuff bedingten Emissionen an der Zusatzbelastung heute deutlich höher als 50 %. Abbildung 3 stellt die einzelnen Ausgangsgrößen zur Berechnung der Auspuff- und Abriebemissionen des Verkehrs, wie Fahrleistungsfaktoren, Stop-and-Go-Zuschläge, Kaltstartfaktoren etc. sowie die Ergebnisse vor. Für Gebiete mit ausgeprägter Orographie sind die Straßenabschnitte in Längsneigungsklassen einzuordnen. In Berlin wurde dies für das Emissionskataster „Verkehr 2015“ erstmalig angewandt. Emissionsmodell Nebenstraßennetz (Flächenquellen) Die Verkehrsbelastung der Nebenstraßen für das Jahr 2015 wurde mit Hilfe des Verkehrsumlegungsprogramms VISUM aus den zugrunde gelegten Quell-Ziel-Relationen berechnet. Die daraus ermittelten Gesamtfahrleistungen und Anteile an schweren Nutzfahrzeugen wurden den Verkehrszellen in der Stadt zugeordnet. Die aus dem Auspuff und durch Aufwirbelung und Abrieb bedingten Emissionen im Nebennetz wurden mit dem Emissionsmodul von IMMIS em/luft bestimmt. Im Nebenstraßennetz werden die Emissionen nicht für einzelne konkrete Straßenabschnitte berechnet, sondern für Rasterflächen von jeweils einem Quadratkilometer. Die Fahrleistung in den Rasterflächen wird auf der Grundlage folgender Angaben ermittelt: überwiegende Nutzung des Gebietes, unterteilt in Wohnen in Außenbereichen, Gewerbe- und Industrie, Innenstadt und Subzentren, Anzahl der Einwohner und der Arbeitsplätze, differenziert nach Handel und Dienstleistungen, produzierendem Gewerbe, daraus abgeleitete Quelle-Ziel-Matrizen des Kfz-Verkehrs. Die weiteren Eingangsgrößen zur Ermittlung der Gesamtemissionen je Schadstoffkomponente für jede Rasterfläche entsprechen denen für die Berechnung im Hauptverkehrsstraßennetz. Auspuff- und Abriebemissionen im Stadtgebiet Tabelle 2 gliedert die auf Hauptverkehrsstraßen Berlins vom Kraftfahrzeugverkehr erbrachten Fahrleistungen (Mio. Fahrzeug-km/Jahr), den Kraftstoffverbrauch (t) und die Auspuff- und Abriebemissionen des Kraftfahrzeugverkehrs (t/Jahr) nach Fahrzeugarten für das Bezugsjahr 2015. Hier dazugezählt werden müssen noch die Emissionen aus dem Nebenstraßennetz, die ca. 18 % der Gesamtemissionen aus dem Straßenverkehr ausmachen. Eine Übersicht über die Emissionen aus Industrie, Gebäudeheizung und Verkehr bietet die Tabelle 2 der Umweltatlaskarte „Langjährige Entwicklung der Luftqualität (03.12)“ . Die für dieses Kataster entwickelte neuartige Emissionsberechnungsmethode ist auch als Grundlage für Ausbreitungsrechnungen zur Ermittlung der Schadstoffbelastungen an Straßen geeignet. Die weitreichende Neugestaltung der Berechnungsmethodik lässt Vergleiche mit vorhergehenden Emissionserhebungen auf der Grundlage einer wesentlich einfacheren Methode nur sehr eingeschränkt zu. Immissionen – Ergebnisse der stationären Messungen Zur Erfassung der durch den Kfz-Verkehr verursachten Schadstoffbelastung werden im Rahmen des automatischen Luftgüte-Messnetzes BLUME Straßen-Messstationen betrieben; um den EU-Richtlinien und der daraus hervorgegangenen Novellierung des BImSchG und der 39. BImSchV von 2010 Rechnung zu tragen, werden kontinuierlich Anpassungen im Berliner Luftgüte-Messnetz vorgenommen. Da die Konzentration von Schwefeldioxid und Kohlenmonoxid nur noch einen Bruchteil der Grenzwerte beträgt, konnten die Messungen dieser Komponenten entsprechend reduziert werden. Gleichzeitig wird aufgrund der Problemlage besonderes Augenmerk auf die Bestimmung von Feinstaub (PM 10 ) und Stickstoffdioxid (NO 2 ) vor allem in Verkehrsnähe gelegt. Für die detaillierte und lückenlose Online-Darstellung der langfristigen Entwicklung der Luftbelastung in Berlin wurde ein Archiv aufgebaut, welches über die Umweltatlaskarte “Langjährige Entwicklung der Luftqualität (03.12)” abgerufen werden kann. Messungen der Immissionsbelastung im Stadtgebiet Im Jahr 2016 wurden an insgesamt 16 Messcontainern (5 am Stadtrand, 5 im innerstädtischen Hintergrund und 6 an Straßenstandorten) und an 23 RUBIS-Messstellen Luftschadstoffmessungen durchgeführt. Mit diesen miniaturisierten Geräten wurden Benzol und Ruß als Wochenproben gesammelt. Zusätzlich wurden Passivsammler an diesen Orten zur Bestimmung von Stickoxiden angebracht. Die Geräte sammeln Proben über eine Probenahmezeit von 14 Tagen, die dann im Labor analysiert werden. Die Lage der einzelnen Messstellen ist schematisiert Abbildung 5 zu entnehmen. Die genauen Adressen sind in den Monatsberichten zur Luftreinhaltung der Senatsverwaltung für Umwelt, Verkehr und Klimaschutz zu finden. Die Lage der automatischen Container-Messstellen des Berliner Luftgüte-Messnetzes (BLUME) sowie der RUBIS-Kleinmessstellen werden einschließlich der dazugehörigen z.T. langjährigen Jahreskennwerte im Geoportal mit der Karte und den Sachdaten zur „Langjährigen Entwicklung der Luftqualität – Immissionen“ angeboten. Bei der kleinräumigen Ortsbestimmung der Probenahmestellen und der Durchführung der Messungen sind folgende Vorgaben der 39. BImSchV soweit wie möglich zu beachten: Der Luftstrom um den Messeinlass darf in einem Umkreis von mindestens 270 Grad nicht beeinträchtigt werden und es dürfen keine Hindernisse vorhanden sein, die den Luftstrom in der Nähe der Probenahmeeinrichtung beeinflussen, das heißt Gebäude, Balkone, Bäume und andere Hindernisse sollen einige Meter entfernt sein und die Probenahmestellen für die Luftqualität an der Baufluchtlinie müssen mindestens 0,5 Meter vom nächsten Gebäude entfernt sein. Im Allgemeinen muss sich der Messeinlass in einer Höhe zwischen 1,5 Meter (Atemzone) und 4 Meter über dem Boden befinden. Eine höhere Lage des Einlasses (bis zu 8 Meter) kann unter Umständen angezeigt sein, z.B. wenn die Messstation für eine größere Fläche repräsentativ sein soll. Der Messeinlass darf nicht in nächster Nähe von Emissionsquellen angebracht werden, um die unmittelbare Einleitung von Emissionen, die nicht mit der Umgebungsluft vermischt sind, zu vermeiden. Die Abluftleitung der Probenahmestelle ist so zu legen, dass ein Wiedereintritt der Abluft in den Messeinlass vermieden wird. Bei allen Schadstoffen sollten verkehrsbezogene Probenahmestellen mindestens 25 Meter vom Rand verkehrsreicher Kreuzungen und höchstens 10 Meter vom Fahrbahnrand entfernt sein. Die Höhe der gemessenen Konzentration ist nicht alleine von der Anzahl der Fahrzeuge und der dadurch bedingten Emissionen abhängig, sondern auch von den Bedingungen für den Luftaustausch, die einerseits durch meteorologische Parameter (z.B. den Wind), andererseits durch Art und Umfang der Bebauung gegeben sind. So werden hohe Immissionsbelastungen an beidseitig bebauten Straßen (Straßenschluchten) wie in der Silbersteinstraße in Neukölln oder der Schildhornstraße in Steglitz registriert, während an der Stadtautobahn, die ein wesentlich höheres Verkehrsaufkommen aufweist, geringere Schadstoffkonzentrationen zu verzeichnen sind. Die Abbildung 5 zeigt eine typische Schadstoffverteilung in einer Straßenschlucht. Eine solche Verteilung entsteht, wenn die Windrichtung (über Dach) vom Messpunkt zur Straßenmitte zeigt und sich in der Straßenschlucht eine Wirbelströmung ausbildet. Diese treibt die Kfz-Emissionen auf die Straßenseite mit der Messstation. Langjähriger Trend der Stickstoffdioxidkonzentration im Stadtgebiet Die Ergebnisse der bis 2016 im Stadtgebiet durchgeführten Messungen zeigen im langjährigen Trend (vgl. Abbildung 6): Bis etwa 1995 wurde durch die Ausrüstung der Berliner Kraftwerke mit Entstickungsanlagen und die Einführung des geregelten Katalysators für Otto-Fahrzeuge ein deutlicher Rückgang der Stickstoffdioxidkonzentrationen erreicht. Die Belastung mit NO 2 hat sich an allen drei dargestellten Stationskategorien während der letzten zehn Jahre kaum verändert. Die Werte an verkehrsreichen Straßen (rote Kurve) liegen immer noch deutlich über dem EU-Grenzwert von 40 µg/m³ im Jahresmittel. Die durch die Verbesserung der Abgastechnik der Fahrzeuge zu erwartende Abnahme der Stickoxidemissionen hat nicht zu einem Rückgang der Stickstoffdioxidbelastung geführt. (weitere Informationen werden unter Langfristige Entwicklung der Luftqualität angeboten) Langjähriger Trend der PM 10 -Konzentration im Stadtgebiet Die Abbildung 7 zeigt die Entwicklung der PM 10 - und Gesamtstaubkonzentration in Berlin und Umgebung über die letzten etwa 30 Jahre (1997 fand die Umstellung der Messungen von Gesamtstaub auf Feinstaub (PM10) statt). Die rote Kurve zeigt die Belastung an drei verkehrsnahen Messstellen, während die blaue und die grüne Linie die gemittelten Konzentrationen an drei Messstellen in innerstädtischen Wohngebieten bzw. an fünf Messpunkten am Stadtrand wiedergeben. (weitere Informationen werden unter Langfristige Entwicklung der Luftqualität angeboten) Beim Vergleich der Kurven fällt folgendes auf: Die PM 10 -Konzentration am Stadtrand und in ländlicher Umgebung in Brandenburg beträgt bis zum Jahr 2003 bereits mehr als die Hälfte der PM 10 -Belastung in Berliner Hauptverkehrsstraßen der Innenstadt; durch die im jährlichen Mittel weiter zurückgehende Konzentration im Verkehrsbereich nähert sich das Verhältnis danach bis 2016 auf etwa 2:3 Stadtrand zu Hauptverkehrsstraße an. Der bis Ende der 90er Jahre anhaltende Rückgang der Staubwerte hat sich in den letzten Jahren nicht fortgesetzt. Im Gegensatz dazu ging die Rußbelastung an Hauptverkehrsstraßen von 1998 bis 2008 kontinuierlich um über 60 % zurück (vgl. Verlauf der absoluten Jahresmittelwerte in µg/m³ für Ruß am BLUME-Messcontainer 174) ; ein Resultat u.a. der abgastechnischen Verbesserung der Fahrzeuge, so zum Beispiel auch der Busflotte der Berliner Verkehrsbetriebe BVG. Die über das Jahr gemittelte Feinstaubbelastung in Verkehrsnähe liegt seit 2004 unter dem EU-Grenzwert von 40 µg/m³. Allerdings traten bis 2006 und ab 2009 noch Überschreitungen des strengeren 24h-Grenzwerts auf. Der 24h-Grenzwert von 50 µg/m³ darf 35 Mal pro Kalenderjahr überschritten werden. Die Abnahme des Jahresmittelwertes und der Anzahl an Überschreitungstage an Hauptverkehrsstraßen ist auch auf günstige meteorologische Bedingungen und auf die Einführung der Umweltzone zurückzuführen. Im Jahr 2010 wäre ohne die Umweltzone die Anzahl der Überschreitungstage mit Tagesmittelwerten von über 50 µg/m 3 um etwa 10 Tage höher gewesen. Die jährliche Variation der PM 10 -Werte ist an allen Stationen ähnlich. Insbesondere der deutliche Wiederanstieg der PM 10 -Werte in den Jahren 2002, 2003, 2005 und 2006 sowie 2010 und 2014 ist ein Phänomen, das gleichzeitig überall im Stadtgebiet, einschließlich der Stadtrandstationen und der Umlandstationen auftrat. Die Ursache ist deshalb nicht in erster Linie bei den Berliner PM10-Emissionen zu suchen, sondern auf ungünstige Witterungsbedingungen (große Anzahl winterlicher austauscharmer Süd- und Südost-Wetterlagen) und die großräumige Verfrachtung der Feinstaubpartikel zurückzuführen.
Das Projekt "Lärmarme Oberflächen bei Gussasphaltdeckschichten auf Brücken" wird vom Umweltbundesamt gefördert und von Institut für Materialprüfung Schellenberg Rottweil GmbH durchgeführt. In der Schweiz werden erhebliche Anstrengungen unternommen, um den Verkehrslärm zu reduzieren. Dazu werden auf der freien Strecke bevorzugt offenporige Asphalt-Deckschichten (PA) eingebaut oder MR-Asphalte mit geringerer Porosität. Beide Belagsarten haben den Nachteil, dass sie ungehindert Wasser durchlassen, welches auf Brücken unerwünscht ist wegen möglichen Schädigungen der Abdichtung und des Brückenbauwerks. Um letzteres zu vermeiden, werden auf Brücken meist wasserdichte Gussasphaltbeläge eingebaut, die wegen der nicht vorhandenen Porosität, keinen Beitrag zur Lärmreduzierung leisten können. Ziel des Forschungsvorhabens ist es daher, eine Gussasphalt-Deckschicht zu entwickeln, deren Oberfläche so konstruiert ist (Splitteinstreuung, Bearbeitung mit speziellen Walzen usw.), dass eine möglichst deutliche Reduzierung des Verkehrslärms erreicht wird. Neben eines Laborprogramms zur Entwicklung einer speziellen Gussasphalt-Rezeptur für lärmarme Brückenbeläge wird erstmalig versucht, im Labor d. h. an Musterplatten, eine Lärmprognose zu treffen mit Hilfe eines dreidimensionalen optischen Messsystems (T3D) der deutschen Bundesanstalt für das Straßenwesen. Dasselbe T3D-System wird zum Einsatz kommen, zur Überprüfung der unterschiedlichen Versuchsabschnitte im Rahmen einer Versuchsstrecke mit dem Ziel, Korrelationen zu finden zwischen den 3D-Messungen einerseits und den akustischen Belagseigenschaften die wie in der Schweiz für Beläge üblich mit SPB- und CPX-Messungen erfolgen. a.) Laborversuche mit variablen Zusammensetzungen der Gussasphalt-Deckschicht mit dem Ziel, einen Bindemittel / Mörtelüberschuss zu erreichen, der eine dauerhafte Einbindung des Abstreusplitts ermöglicht, ohne Verluste am Verformungswiderstand der Gussasphalt-Deckschicht zu riskieren. Das hauptsächliche Projektziel ist eine Oberfläche einer Gussasphalt-Deckschicht für Brücken im Labor zu entwickeln und in der Praxis zu erproben, die zu einer Verminderung des Verkehrslärms führt. Dazu werden im Einzelnen durchgeführt: a.) Laborversuche mit variablen Zusammensetzungen der Gussasphalt-Deckschicht mit dem Ziel, einen Bindemittel / Mörtelüberschuss zu erreichen, der eine dauerhafte Einbindung des Abstreusplitts ermöglicht, ohne Verluste am Verformungswiderstand der Gussasphalt-Deckschicht zu riskieren. b.) Herstellen von Musterplatten mit verschiedenen Oberflächenstrukturen ausgehend von der optimierten Gussasphaltrezeptur gemäß Buchst. a. c.) Dreidimensionale Messungen der Oberflächenstrukturen mit dem T3D Messsystem der Bundesanstalt für das Straßenwesen in D-Bensberg an ausgewählten Mustern der im Labor hergestellten Platten mit dem Ziel einer Prognose für das Lärmverhalten in der Praxis. d.) Bau von Versuchsabschnitten mit ausgewählten Oberflächenstrukturen gemäss Buchst. c. e.) Dreidimensionale Messungen der Oberflächenstrukturen in situ, analog Buchst. c. f.) Messung der akustischen Belagseigenschaften SPB-Messungen und CPX-Messungen in situ auf den Abschnitten gemäß Buchst. d.
Das Projekt "Entwicklung von leiseren Fahrbahndeckschichten aus Splittmastixasphalt (SMA) und offenporigem Asphalt (OPA) - Teilprojekt STRABAG AG" wird vom Umweltbundesamt gefördert und von STRABAG AG durchgeführt. Die dringend notwendige, nachhaltig wirksame und zudem wirtschaftliche Reduzierung des Strassenverkehrslaerms und der damit einhergehenden Belastung der Menschen erfordert es, Reifen und Fahrbahnen unter Beruecksichtigung der Zielkonflikte bzgl. Sicherheit, Rollwiderstand und Lebensdauer als Ganzes zu optimieren. In diesem Verbund soll dazu in einem erstmaligen ganzheitlichen Forschungsansatz unter Beteiligung von Partnern aus allen relevanten Bereichen das Gesamtsystem Reifen-Fahrbahn so entscheidend weiterentwickelt werden, dass mittelfristig eine Geraeuschminderung um mindestens 5 dB(A) moeglich wird. Hierzu werden 9 Teilverbuende zur Entwicklung und Erprobung von Simulations- und Messverfahren sowie von optimierten fahrzeug- und fahrbahnseitigen Teilsystemen gebildet. In diesem Teilprojekt soll zum einen die Wechselwirkung ausgewaehlter Faktoren beim Einbau von Splitte-Mastix-Asphalt (SMA) auf die Megatextur und die Geraeuschentwicklung in verschiedenen Baumassnahmen untersucht werden. Weiterhin sollen offenporige Asphalte (OPA) im Labor optimiert und in der Praxis speziell hinsichtlich der Geraeuschentwicklung von LKW-Reifen untersucht werden. Beide Arbeitspakete dienen der Validierung der Messsysteme und der gezielten Laermoptimierung.
Das Projekt "Optimierung der schallabsorbierenden Eigenschaften von Drainasphalt" wird vom Umweltbundesamt gefördert und von FIGE Forschungsinstitut Geräusche und Erschütterungen durchgeführt. Drainasphalt, der ausschliesslich unter dem Gesichtspunkt der Wasserableitung zur Aquaplaningverhinderung entwickelt wurde, besitzt deutlich akustische Vorteile. Versuchsstrecken existieren vor allem im westeuropaeischen Ausland. Es werden zT enorme Pegelabsenkungen (bis 9 dB) angegeben. Zur Beurteilung der Laermminderung muessen sowohl die Messbedingungen als auch die Beschaffenheit der Vergleichsstrecken genau angegeben sein, was in der Regel nicht geschehen ist. Um aussagefaehige und vergleichbare Pegel der unterschiedlichen Drainasphaltstrassendecken zu erhalten, werden mehrere Strecken mit gleichen Fahrzeugen vermessen. Die Ergebnisse werden bei dem jetzt von der BAST und dem BMV veranlassten Bau von Versuchsstrecken mit Drainasphalt in der Bundesrepublik beruecksichtigt. Die hierbei errichteten Stadtstrassen sind in das Messprogramm einbezogen.
Das Projekt "O3,NO2,CH2O,O4,BrO,OCIO,IO and OIO profile measurements in the upper troposphere and lower stratosphere aboard balloon (MIPAS-B and LPMA) and aircraft (Geophysica) platforms" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Institut für Umweltphysik durchgeführt.
Das Projekt "Signalverarbeitung fuer optische Partikelzaehler" wird vom Umweltbundesamt gefördert und von Universität Duisburg, Fachbereich 9 Elektrotechnik, Fachgebiet Prozess- und Aerosolmesstechnik durchgeführt. Optical particle counters (OPC) allow the determination of the particle number concentration and the size distribution. Instruments of different design are commercially available. One of the most important application areas of OPCs is clean technology. The development in clean technology is characterized by a drastic reduction in the allowed number concentration and the critical particle size which determines the lower size detection limit. With decreasing number concentration and decreasing lower detection limit the problem of false signals becomes more and more important. In the past a lot of effort has been put in redesigning the sensor of OPCs resulting in improved instrument behavior. Less effort has been put in improving the signal processing leading to a better SNR. Depending on the trigger level at a low SNR the particles might not be detected or the noise might cause false counts. The detection limit as well as the number of false pulses can be lowered by increasing the SNR. A higher amplification of the signal, thought as a possible solution, reduces the band width of the amplifier, which limits the flow rate. An additional effect caused by higher amplification may be that the noise level increases. If a flow false count rate is very important, the trigger level for detection has to be increased causing the instrument to become less sensitive. In this case the smallest detectable particle size increases. In this project a solution is worked out for optimizing the SNR for given OPCs. With the help of signal theory a correlation receiver was developed, which supplies a maximum SNR at the output. This receiver was realized in digital technology. It permits the on-line filtration of the particle signals for any commercial OPC. The results show a clear improvement in the SNR, which however, depends on the individual OPC. For a clean room monitor a gain of g gleich 2.06 gleich 6.28 dB was achieved, which means a reduction of the lower detection limit from 500 nm to a theoretical 421 nm with a constant false count rate. But the experiments have shown that it is possible to measure even 380 nm latex particles with security. With an unchanged lower detection limit false countings can be excluded with a security of more than plus minus 6 minus. On the whole it has been shown that in the field of optical particle measurement technology it is still absolutely possible to achieve considerable improvements and more research in the future is needed.
Das Projekt "Dreidimensionale numerische Modellierung von kohaesivem Sedimenttransport in Aestuaren" wird vom Umweltbundesamt gefördert und von Universität Hannover, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen durchgeführt. Die komplexe dynamische Struktur von Aestuaren erfordert bei der Modellierung kleine Raum- und Zeitskalen, die dementsprechend mit hohem Rechenaufwand verbunden sind. Obwohl 2D-Vertikalmodelle bei der Modellierung von Aestuaren sehr erfolgreich sind, koennen sie nicht die horizontalen Strukturen aufloesen, wie sie etwa in Salzkeilen beobachtet wurden. Sollen zusaetzlich noch die verschiedenen Transportprozesse wie von Waerme, Salz und Schwebstoff modelliert werden, so sind schnelle Algorithmen erforderlich, die die Moeglichkeiten von Supercomputern nutzen. Im Foerderungszeitraum MAST I wurde fuer das Programmsystem TELEMAC-3D ein Modul fuer den nichtkohaesiven Sedimenttransport entwickelt, welches neben dem Transport auch Prozesse der Sedimentation, Resuspension und Konsolidierung beruecksichtig. Fuer die Turbulenzmodellierung wurde ein Mischungswegansatz gewaehlt, der auch die Daempfungseigenschaften von Schichtstroemungen beruecksichtigt. Das Modell wurde auf das Weseraestuar angewendet und liefert fuer die Hydrodynamik und den Salztransport sehr gute Ergebnisse. Im Foerderungszeitraum MAST II werden die kohaesiven Eigenschaften der Sedimente durch die Erstellung von Modulen fuer die Flokkulation sowie fuer die Bewegung von Fluid Mud (EDF) beruecksichtigt. Zur empirischen Erfassung der Sedimenteigenschaften als auch zur Verifikation des Modells werden bei Delft Hydraulics Experimente an einem Tidal Flume gemacht. Schliesslich wird das Modell auf die Aestuare Weser, Trave, Loire (EDF) und Po (Ente Nationale per I'Energia Elettrica-ENEL) angewendet.
Das Projekt "Monitoring the Alpine Region's Sustainability" wird vom Umweltbundesamt gefördert und von Wuppertal Institut für Klima, Umwelt, Energie gGmbH durchgeführt. Das Projekt MARS 'Monitoring the Alpine Region's Sustainability' arbeitet an der Erstellung eines integrierten Indikatorensets für die Messung und Evaluierung Nachhaltiger Entwicklung im Alpenraum. MARS gehört zum Forschungsprogramm INTERREG IIIB der Europäischen Kommission, in dem ein internationales Projektkonsortium unter der Leitung von BAK Basel Economics forscht. MARS basiert auf einer erweiterten geographischen Fassung des Alpenraumes und umfasst wichtige regionale Zentren wie Wien, Mailand, München, Lyon und Bern. In Deutschland bilden die Regierungsbezirke Oberbayern, Schwaben, Freiburg im Breisgau und Tübingen den alpinen Raum. Für diese Regionen (NUTS 2 Regionen) sowie für die Gesamtregion soll ein Datensatz zur Generierung von Umweltindikatoren erstellt werden. Dies umfasst die Bereiche: inländische Rohstoffentnahme, inländisch verarbeitete Stoffabgabe (DPO Domestic Processed Output = Emissionen, Abfälle und dissipativer Produkteinsatz), Wasserverbrauch, Energieverbrauch, Flächennutzung, sowie eine Machbarkeitsstudie für den Direkten Materialinput (DMI = inländische Rohstoffentnahme plus Importe). Zudem werden die regionalen Projektpartner aus öffentlicher Verwaltung und Politik einbezogen, um deren Bedarf an Daten und Indikatoren für eine nachhaltige Entwicklung ihrer Regionen zu berücksichtigen. Die Ergebnisse von MARS sollen in dieser Hinsicht die lokalen Akteure bei der Evaluation und Planung regionaler Politik unterstützen.
Das Projekt "DIHOLAS Diodengepumpter gepulster Hochleistungslaser" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre Oberpfaffenhofen durchgeführt. Im Rahmen des DIHOLAS-Projektes soll eine neuartige, kompakte und effiziente pulsfoermige Strahlquelle variabler Wellenlaenge auf der Basis eines optischen parametrischen Oszillators (OPOs) und Titan Saphir-Lasers fuer Lidaranwendungen entwickelt werden. Nach Fertigstellung wird die Strahlquelle am Institut fuer Physik der Atmosphaere in Oberpfaffenhofen fuer die aktive Fernerkundung des atmosphaerischen Wasserdampfes vom Flugzeug aus operationell eingesetzt. Es ist somit eine Auslegung der Strahlquelle fuer Flugzeuganwendungen vorgesehen. Damit eine hinreichende Schmalbandigkeit und Wellenlaengenstabilitaet gewaehrleistet sind, soll die Strahlquelle als Master-Slave Konfiguration aufgebaut werden. Bei dieser Anordnung ist ein geeigneter Master-Oszillator fuer die hohe benoetigte spektrale Reinheit verantwortlich, waehrend das Slave-System fuer genuegend mittlere Ausgangsleistung der Strahlquelle sorgt. Die Anregung des Slave-Oszillators geschieht mit dem gepulsten, diodengepumpten Neodym-YAG-Laser, welcher im Rahmen des Projekts von ROFIN SINAR entwickelt wird. Das grosse Einsatzpotential dieser neuen durchstimmbaren Strahlquelle im mittleren Leistungsbereich soll anhand erster Wasserdampfmessungen mit der DIAL-Methode im nahen Infrarot bei 935 nm demonstriert werden. Projektstatus: Es wurde eine Pumpeinheit fuer einen diodengepumpten Nd:YAG Laser und die fuer seinen Betrieb erforderlichen Versorgungseinheiten konzipiert und in Betrieb genommen. In den ersten Untersuchungen konnte eine Ausgangsleistung von 60 Watt mit einer Effizienz von 20 Prozent erzielt werden. Die hierbei gewonnenen Erfahrungen ermoeglichten die Weiterentwicklung der Diodenpumpmodule. Es konnte ein kompakter optisch parametrischer Oszillator auf Basis eines nichtlinearen BBO Kristalls realisiert und getestet werden. Anhand verschiedener H2O Testmessungen in der Atmosphaere in unterschiedlichen Spektralbereichen konnte mittels der DIAL Methode erstmals gezeigt werden, dass diese schmalbandige und abstimmbare Strahlquelle fuer die Messung meteorologischer Parameter und atmosphaerischer Schadstoffe sehr gut geeignet ist. Weiter wurde zunaechst ein Master-Laser fuer den Wellenlaengenbereich der Wasserdampf Absorptionen um 935 nm aufgebaut. In einer weiteren Entwicklungsstufe wurde ein gepulster Titan Saphir Laser in einer Ringkonfiguration als Slave-Laser entwickelt.
Das Projekt "Laermmindernde offenporige Asphalte, Weiterbeobachtung bestehender Erprobungsstrecken" wird vom Umweltbundesamt gefördert und von Bundesanstalt für Straßenwesen (BASt) durchgeführt. Mit zunehmender Liegedauer zeigte sich, dass einige Erprobungsstrecken im Rahmen des Untersuchungsprogrammes 'Laermmindernde Strassendecken' die bautechnische Nutzungsdauer erreicht oder ueberschritten haben und nur noch wenige Erprobungsstrecken den bautechnischen Anforderungen genuegen, bei denen gleichzeitig noch ein gewisses Laermminderungspotential gegenueber den Vergleichsstrecken erhalten blieb. Die noch vorhandenen 8 Strecken des Projektes 86304/S5 'Laermmindernde Strassendecken, Teil: offenporige Asphalte' sollen weiterhin beobachtet werden, um Aussagen zu treffen, wie sich die bautechnische Nutzungsdauer und laermmindernd wirksame Nutzungsdauer im Verlauf der Liegedauer entwickeln.