API src

Found 22 results.

Optimierte Eisen-Biokohle-Komposite zum Abbau von halogenierten Verbindungen in Umweltmedien: Synthese-Strategien und Reaktionsmechanismen

Das Projekt "Optimierte Eisen-Biokohle-Komposite zum Abbau von halogenierten Verbindungen in Umweltmedien: Synthese-Strategien und Reaktionsmechanismen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Technische Umweltchemie.Die rasante Urbanisierung und Industrialisierung in den vergangenen Jahrzehnten hat zu einer Vielzahl von Umweltkontaminationen mit halogenierten organischen Verbindungen (HOCs) sowohl in China als auch Europa geführt. Ziel des vorgeschlagenen Projektes ist es, neue Erkenntnisse und ein vertieftes Prozessverständnis für die Synthese von biobasierten nFe(0)/Pd/C-Kompositen und deren Reaktionen mit HOCs in der Grundwasserreinigung zu gewinnen. Dies beinhaltet die Identifizierung von Synthese-optionen für Partikel mit maßgeschneiderten und verbesserten Eigenschaften mithilfe der Hydrothermalen Karbonisierung (HTC). Ein tiefgreifendes mechanistisches Verständnis der beteiligten Prozesse, d.h. Sorption, Reaktion und Transport reaktiver Spezies so-wie Katalyse sowie deren Synergien dient einer zielgerichteten Optimierung der Partikel und der Erkundung ihrer Anwendungsgebiete. Die nFe(0)/Pd/C-Komposite sollen speziell für die in-situ Grundwasserreinigung geeignet sein und verbesserte Eigenschaften insbesondere für solche Anwendungsfälle besitzen, bei denen bekannte Konzepte der in-situ-Sanierung mit Nanopartikeln (Nanoremediation) nicht greifen. Die synergistische Kombination verschiedener Wirkprinzipien erlaubt Multikatalyse-Prozesse sowie die sequentielle Behandlung von verschiedenen Kontaminanten. Zunächst werden verschiedene Optionen für die Einbettung von Metallen in oder auf die Kohlepartikel untersucht, die erhaltenen Produkte detailliert durch physikalisch-chemische Methoden charakterisiert und auf ihre Reaktivität getestet. Danach werden Reaktionen in Batch-Ansätzen für die Aufklärung der zugrundeliegenden Mechanismen, wie das Zusammenspiel von Pd, Kohleoberfläche und Fe-Spezies, der beteiligten Reaktionswege und reaktiven Spezies, durchgeführt. Weiterhin werden Optionen für Multikatalyse und sequentielle Reduktions-/Oxidationsprozesse untersucht. Abschließend werden die entwickelten Materialien und Prozesse im Labor für die Behandlung von Wasser von kontaminierten Standorten in Deutschland und China erprobt. Dieses kooperative Forschungsvorhaben von chinesischen und deutschen Partnern wird zu einem signifikanten Fortschritt in der Sanierungsforschung für industriell kontaminierte Standorte, insbesondere auch in China, führen.

Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Koordinationsfonds

Das Projekt "Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Koordinationsfonds" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Fachrichtung Chemie und Lebensmittelchemie, Professur für Anorganische Chemie 2.Das Schwerpunktprogramm 1708 bündelt und koordiniert die Forschungsaktivitäten zur wissenschaftlichen und technologischen Entwicklung von Niedertemperatursynthesen anorganischer Materialien in Ionischen Flüssigkeiten (ILs). Das Schwerpunktprogramm hat drei Hauptziele: (A) Etablierung IL-basierter ressourceneffizienter Synthesen für bekannte Funktionsmaterialien. (B) Entdeckung neuer, möglicherweise unorthodoxer Materialien, die erst durch die besonderen, milden Synthesebedingungen in ILs zugänglich werden. (C) Verstehen der Prinzipien der Auflösung, Reaktion und Kristallisation von anorganischen Feststoffen in ILs. Das Koordinatorprojekt stellt die zentrale Plattform für Zusammenarbeit im SPP bereit. Dies umfasst die Organisation und Durchführung von Workshops und Arbeitstreffen, die Förderung von Nachwuchswissenschaftlern, die Betreuung von Mercator Fellows, Öffentlichkeitsarbeit und Gleichstellungsmaßnahmen.

Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Elektrochemische Synthese von III-V (GaN, InN, GaSb, InSb, AlSb) und Metallsulfid (ZnS, GaS) Verbindungshalbleitern und deren Nanostrukturen aus ionischen Flüssigkeiten

Das Projekt "Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Elektrochemische Synthese von III-V (GaN, InN, GaSb, InSb, AlSb) und Metallsulfid (ZnS, GaS) Verbindungshalbleitern und deren Nanostrukturen aus ionischen Flüssigkeiten" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Clausthal, Institut für Elektrochemie.Das Projekt beabsichtigt die Entwicklung von III-V-Verbindungshalbleitern (GaN, InN, GaSb, InSb und AlSb) und Metallsulfid-Verbindungshalbleitern (ZnS- und GaS) Dünnfilmen und Nanostrukturen (Nanoröhrchen, Nanodrähte und makroporöse Strukturen) bei elektrochemischer Abscheidung/stromloser Abscheidung in verschiedenen ionischen Flüssigkeiten nahe Raumtemperatur. Der Hauptfokus wird auf das Verständnis des Reaktionsmechanismus der Bildung der Verbindungshalbleiter gesetzt. Die Reaktionsmechanismen werden anhand von IL-Salz-Mischungen, Elektrode/Elektrolyt-Grenzfläche und der hergestellten Strukturen und Schichten analysiert. Der Einfluss der IL-Zusammensetzung auf die Morphologie und die optischen Eigenschaften der erhaltenen Halbleiter wird untersucht. Zusätzlich werden die Halbleiternanostrukturen Templat-basiert und Templat-frei elektrochemisch hergestellt, was eine neue Methode zur Synthese von Halbleiternanostrukturen nahe Raumtemperatur eröffnet.

Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Nanostrukturen unedler Metalle durch Synthese in Ionischen Flüssigkeiten (BaseMet-IL)

Das Projekt "Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Nanostrukturen unedler Metalle durch Synthese in Ionischen Flüssigkeiten (BaseMet-IL)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Sondervermögen Großforschung, Institut für Katalyseforschung und -technologie.Im Hinblick auf intermetallische Cluster und Nanopartikel konnten wir hochreaktive Carbonylcluster (z. B. (BMIm)2((PbMn(CO)5))6I8), (GeI3Fe(CO)3)2FeI4, (GeI3)2Fe(CO)4, Ge12(Fe(CO)3)8I4, (EMIm)(Sn2I7Fe(CO)3), (Co(1,4-C6H4(CN)2)2(NTf2)2)(SnI(Co(CO)4)3)2) und intermetallische Nanopartikel (z. B. Systeme Fe-Sn, Co-Sn, Ni-Ir, Ni-Os, Pd-Sn, Pt-Sn) durch IF-basierte Synthese erhalten. Weiterhin konnten wir die Bildung bimetallischer Nanopartikel über direkte IF-basierte Synthese oder durch Zersetzung von in IF hergestellten Carbonylclustern zeigen. Neben der detaillierten Charakterisierung von Zusammensetzung und Struktur haben wir schließlich die katalytischen Eigenschaften der genannten bimetallischen Nanopartikel verifiziert. Die spezifischen Eigenschaften der IF (d. h. Redoxstabilität, thermische Stabilität, schwach koordinierende Eigenschaften) stellten sich für den Zugang zu reaktiven Carbonylclustern und bimetallischen Nanopartikeln als essentiell heraus.Basierend auf unseren Resultaten der ersten Förderperiode werden wir die IF-basierte Synthese hochreaktiver, stark oxophiler unedler Metallnanostrukturen adressieren. Konkret fokussieren wir dabei auf metalloide Cluster und Nanopartikel von Ti, Nb, Si und Ge. Neben der explorativen Synthese und der fundamentalen strukturellen Charakterisierung werden wir die Materialeigenschaften untersuchen, wobei insbesondere Größenquantisierungseffekte und Fluoreszenz (z. B. für Si, Ge, Si-Ge) sowie die katalytischen Eigenschaften (z. B. für bimetallische Ti-Pd, Ti-Pt, Nb-Pd, Nb-Pt Systeme) am Beispiel von Hydrierungen als Testreaktion von Interesse sind. Im Hinblick auf oxophile und hochreaktive, unedle Metalle wie Ti, Nb, Si und Ge sind IF-basierte Synthesen grundsätzlich ideal, wurden bislang jedoch wenig untersucht. IF-basierte Synthesestrategien können hier somit einen neuen und verlässlichen Zugang zu hoch reaktiven, unedlen Metallnanostrukturen eröffnen.

Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Chalkogenid-basierte Ionische Flüssigkeiten in der Synthese von Metallchalkogenid- und Interchalcogenid-Materialien nahe Raumtemperatur

Das Projekt "Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Chalkogenid-basierte Ionische Flüssigkeiten in der Synthese von Metallchalkogenid- und Interchalcogenid-Materialien nahe Raumtemperatur" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Marburg, Fachbereich Chemie, Fachgebiet Anorganische Chemie, Arbeitsgruppe Sundermeyer.Das Projekt untersucht die Anwendung Ionischer Flüssigkeiten (IL) Chalcogen-basierter Anionen vom Typ Hydrochalcogenid (EH), Trimethylsilylchalcogenid (E-TMS) oder Polychalcogenid (Ex) (E = S, Se, Te) in der Synthese ausgewählter 2D- und 3D-Metal-Chalcogenid- oder Poly- bzw. Interchalcogenid-Materialien. Das Vorhaben wird klare Vorteile der Nutzung derart hochreaktiver Synthone für den Chalkogen-Transfer herausarbeiten, die einen einfachen Zugang, höchste Reinheit, perfekte Löslichkeit in organischen Cosolventien, niedrige Schmelzpunkte (in einigen Fällen) und eine äußerst hohe Reaktivität gegenüber Elektrophilen und Lewis-Säuren aufweisen. Eine Strategie verfolgt Protolysereaktionen ausgewählter Metallorganyle und Amide in Ionischen Flüssigkeiten Cat (EH) (E = S, Se), eine weitere komplementäre Strategie die Anionmetathese von Metallhalogeniden, die in Cat (E-TMS) and Cat (EH) ILs gelöst werden. In dieser Hinsicht werden Reaktivitätsmuster ausgewählter Metall-Vorläuferverbindungen des p-Blocks, Ga(III), In(III), In(II) and Sn(II), in ihren Reaktivitätsmustern mit ausgewählten Startverbindungen der f-Block Elemente, Ln(II) and Ln(III), verglichen. Neue Klassen thermolabiler Chalcogenido-Organometallate ((RxM)yEz)n- (M = Ga, In, La und Ln; E = S, Se) und Trimethylsilylchalcogenido-Metallate (M(E-TMS)4)- (M = Ga, In, La) werden erschlossen. Sie stellen labile Intermediate in der Gewinnung von Halbleitermaterialien ME, M2S3 und ME2 nahe Raumtemperatur oder knapp darüber dar. Reaktionen mit oben genannten ILs bei Raumtemperatur erlauben die Isolierung neuer Zinn(II)- und Zinn(IV)-Vorläuferverbindungen, Cat(SnE2) und Sn(E-TMS)4 (E = S, Se), deren Kondensation zu SnE und SnE2 Halbleitermaterialien untersucht wird. Die Reaktion von (NH4)2(MoS4) mit Methylcarbonat-ILs Cat(MeCO3) bietet einen Zugang zu Zwischenprodukten Cat2(MoS4), die über zwei Strategien in MoS2 überführt werden sollen: 1) Thermolye im IL-Flux und 2) Reaktionen mit Elektrophilen, gefolgt von reduktiver Eliminierung von Disulfiden. Eine dritte Strategie untersucht die Thiolyse von (MoX4) Komplexen in Cat(SH) oder Cat(S-TMS) ILs. Schließlich ist geplant, die Vorteile Chalcogenid-basierter ILs in der Synthese von Chalcogen-reichen Polychalcogenid-, Interchalcogenid- und Interchalcogen-Materialien zu erforschen.

Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Synthese neuartiger poröser Koordinationspolymere aus strukturgebenden und funktionalisierten Ionischen Flüssigkeiten

Das Projekt "Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Synthese neuartiger poröser Koordinationspolymere aus strukturgebenden und funktionalisierten Ionischen Flüssigkeiten" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Erlangen-Nürnberg, ECRC - Erlangen Catalysis Resource Center.Ziel des Vorhabens ist die Synthese neuartiger, poröser Koordinationspolymere (metallorganische Gerüstverbindungen, MOF) durch Verwendung von Ionischen Flüssigkeiten (IL) als Basiskomponente. Die IL dient hierbei sowohl als Präkursor für das Koordinationspolymer als auch als strukturgebendes Element und Lösungsmittel. In der zweiten Förderperiode soll verstärkt der Einfluss der Struktur der IL auf die Struktur des MOFs untersucht werden. Hierbei stehen die Synthese und Syntheseentwicklung flüssig kristalliner und chiraler Ionischer Flüssigkeiten im Fokus. Neben der Synthese und Charakterisierung der sich daraus ergebenden neuartigen MOF-Strukturen wird insbesondere auch der Syntheseweg zu den MOFs eingehend untersucht. Die Entwicklung der Synthesestrategie zielt insbesondere auf nachhaltigere Prozesse ab, mit dem Ziel einen geringeren Energieeintrag (niedrige Reaktionstemperatur) und eine Reduktion bzw. Substitution nicht-nachhaltiger Lösungsmittel zu erreichen. Für ersteres soll die Synthese mit Ultraschall durchgeführt werden. Dieser Einsatz erwirkt zusätzlich eine kinetische Kontrolle der Synthese, was neue Phasen und Strukturen der so hergestellten MOFs erwarten lässt.

Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, ILPIN: Ionische Flüssigkeiten als Vorläufer für anorganische Nanomaterialien

Das Projekt "Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, ILPIN: Ionische Flüssigkeiten als Vorläufer für anorganische Nanomaterialien" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Potsdam, Institut für Chemie, Lehrstuhl für Theoretische Chemie.Das Projekt befasst sich mit der Untersuchung ionischer Flüssigkeiten (ionic liquids, ILs) und ionischer Flüssigkristalle als Vorläufer anorganischer Materialien. Die in der Literatur als ionic liquid precursors (ILPs, ionisch-flüssige (Material)präkursoren) bekannten Verbindungen weisen ein großes Anwendungspotential auf, aber die Bildung anorganischer Materialien aus ILPs ist nicht ausreichend verstanden und es ist daher schwierig, a priori eine Voraussage zu Materialeigenschaften oder Materialstrukturen (und damit zu spezifischen Anwendungen) zu machen. Hier setzt das Projekt an: es wird vorgeschlagen, ausgehend von einer Reihe von ILPs, die Bildung einiger anorganischer Nanomaterialien exemplarisch zu untersuchen. Dazu werden ILPs hergestellt, ihre Struktur und Eigenschaften untersucht und die Umsetzung zu anorganischen Stoffen, speziell der anorganischen Sulfide, im Detail untersucht. Weitere Fragen befassen sich mit der Aufarbeitung, der Struktur-Eigenschaftskorrelation und der Korrelation der photophysikalischen Eigenschaften mit der atomaren und Mesostruktur der erhaltenen anorganischen Nanopartikel. Ein besonderer Fokus liegt auf der Untersuchung der Bildungskinetik und der (Kristall)phasenselektion im Lauf der Mineralisationsreaktionen - diese Untersuchungen werden komplettiert durch eine detaillierte Untersuchung der photophysikalischen Eigenschaften und der Korrelation dieser Eigenschaften mit den strukturellen Besonderheiten der erzeugten Nanomaterialien. Das Team ist interdisziplinär zusammengesetzt und bringt Expertise in den Bereichen Materialsythese und IL-basierte Mineralisation, Photochemie und Photophysik sowie theoretische Chemie in das Projekt ein; die oben kurz dargelegten Fragen können daher mit komplementären Methoden wissenschaftlich bearbeitet werden.

Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Niedertemperatur-Zugang zu Solvens-freien Chalkogenidometallat-Materialien

Das Projekt "Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Niedertemperatur-Zugang zu Solvens-freien Chalkogenidometallat-Materialien" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Marburg, Fachgebiet Anorganische Chemie, Arbeitsgruppe Dehnen.Mit diesem Projekt streben wir die Optimierung und Entwicklung nachhaltiger Niedertemperatur-Zugänge zu kristallinen Chalkogenidometallaten über Ionothermalsynthesen und ein tieferes Verständnis der zugrundeliegenden Reaktionsprozesse an. Unsere Zielverbindungen und die entsprechenden Synthesestrategien sind: 1) Ternäre nanostrukturierte, kristalline Chalkogenidometallat-Materialien, die über ungewöhnliche Präkursor-Kombinationen synthetisiert werden, und 2) komplexe und Schwermetall-basierte Chalkogenidometallat-Materialien, die über die Verwendung von nicht-unschuldigen ionischen Flüssigkeiten als Reaktionsmedien erhalten werden. Die Zielverbindungen wurden auf Grundlage unserer bisherigen Erfahrungen und neuer Kooperationen, die in der vergangenen Förderperiode aufgebaut wurden, sorgfältig ausgewählt. Ihre Zusammensetzung lässt sich anhand der folgenden Formel generalisieren: (Cat)q((Mt,c,a,hx)TyEz(R)j)(An)p (Cat = Alkalimetall, (element-)organisches oder komplexes Kation; Mt = Übergangsmetall; Mc = Pentelmetall in einem komplexen Kation: Sb, Bi; Ma = Trielmetall in einem komplexen Anion: Ga, In; Mh = Schwermetall: Cd, In, Sn, Sb, Hg, Pb, Bi; T = Ge, Sn; E = S, Se, Te; R = organische Gruppe; An = (pseudo-)Halogenid oder komplexes Anion). Über die Variation der Zusammensetzung werden spezifische opto-elektronische und thermoelektrische Eigenschaften der Produkte adressiert, die unter Verwendung einer Vielzahl experimenteller und theoretischer Methoden von uns selbst oder in Kooperationen im Rahmen des SPP 1708 analysiert werden.

Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Löslichkeit von molekularen und ionischen Präkursoren in ionischen Flüssigkeiten

Das Projekt "Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Löslichkeit von molekularen und ionischen Präkursoren in ionischen Flüssigkeiten" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Dortmund, Lehrstuhl für Thermodynamik.Der Erfolg der ionothermalen Synthese ist entscheidend von der Auswahl geeigneter Precursors abhängig. Das Hauptziel dieses Forschungsvorhabens ist die Entwicklung eines allgemeinen thermodynamischen Verfahrens basierend auf der prädiktiven Zustandsgleichung electrolyte PC-SAFT (ePC-SAFT). Es wird eine Modellstrategie entwickelt und angewendet, die es erlaubt, die Löslichkeit von flüssigen oder festen Präkursoren in ionischen Flüssigkeiten (ILs), die als geeignete Lösungsmittel für ionothermale Synthesen verwendet werden, vorauszusagen. Als feste Präkursoren betrachten wir anorganische Salze; dies ist an die Synthese von Metallnanopartikeln in ILs angelehnt. Als flüssige Präkursoren werden homologe Reihen organischer Verbindungen (Alkane, Alkene, Aromaten, Alkohole, Ether, Ester) untersucht Die Entwicklung und Parametrisierung von ePC-SAFT wird mit Hilfe von zuverlässigen experimentellen Daten aus Literatur, aber auch anhand neuer Daten durchgeführt. In diesem Zusammenhang experimentelle Studien zu thermodynamischen Eigenschaften reiner ILs und Präkursoren sowie der Eigenschaften ihrer binären Mischungen durchgeführt. Die daraus entstandenen Daten dienen als Inputdatensätze der Entwicklung und Validierung des zu entwickelnden Modellansatzes innerhalb ePC-SAFT. Dies ermöglicht Modellvorhersagen, um letztendlich ILs als Synthesemedium für feste und flüssige Präkursoren zu screenen. Um die Anwendung von thermodynamischen Parametern, die aus binären Mischungen Präkursor-IL zu Mehrkomponenten-Systemen erhalten werden, weiter voranzutreiben, wird eine zusätzliche Validierung des ePC-SAFT Modells durch experimentelle und theoretische Untersuchung von zwei reaktiven Systemen durchgeführt. Diese Systeme bestehen aus den Reaktionsteilnehmern sowie dem Lösungsmittel (auch ILs).Die Erstellung von thermodynamischen Ergebnissen in Systemen Präkursor-IL ermöglicht die Entwicklung einer allgemeinen Löslichkeits-Skala mit dem Ziel ILs hinsichtlich ihrer Leistungsfähigkeit für die ionothermale Synthese und deren Verwendung als Lösungsmittel in reaktiven Systemen prädiktiv auszuwählen. Die so entwickelte Skala hat ein enormes Potenzial, die Anwendung von Ils auf eine breite Palette von molekularen und ionischen Präkursoren zu verbreitern und zu verbessern.

Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Materialien aus reduzierbaren Oxiden: Wissensbasierte Entwicklung neuer Tieftemperatur-Synthesemethoden

Das Projekt "Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Materialien aus reduzierbaren Oxiden: Wissensbasierte Entwicklung neuer Tieftemperatur-Synthesemethoden" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Erlangen-Nürnberg, ECRC - Erlangen Catalysis Resource Center.Die Niedertemperatursynthese reduzibler oxidischer Nanomaterialien in ionischen Flüssigkeiten (ILs) verfügt über das Potential, neuartige Materialien mit maßgeschneiderten Eigenschaften zugänglich zu machen. Allerdings erfordert eine wissensbasierte Entwicklung komplexer Syntheseverfahren mit ILs ein detailliertes Verständnis der zugrunde liegenden Grenzflächenchemie, die die Nukleations- und Wachstumsprozesse bestimmt. Das Projekt zielt einerseits darauf ab, dieses Wissen über grundlegende grenzflächenwissenschaftliche Untersuchungen und In-situ-Spektroskopie bereitzustellen, und es andererseits unmittelbar für die gezielte Herstellung realer Nanomaterialien zu nutzen. Hierzu bringen die Arbeitsgruppen Wasserscheid und Libuda ihre komplementäre Expertise in den Bereichen Synthesechemie bzw. Grenzflächenspektroskopie mit IL-basierten Materialien ein. Zusätzlich profitiert das Projekt von einer Reihe von Kooperationen im SPP 1708.Ausgehend von den methodischen Entwicklungen in der ersten Förderperiode, zielt das Projekt auf die Synthese von reduzierbaren Oxiden ab, speziell von Kobaltoxid-Nanopartikeln. Kobaltoxid-basierten Materialien wird größtes Anwendungspotential im Bereich der Katalyse und Energietechnik zugeschrieben, wobei z. B. seltene Edelmetalle ersetzt werden können. Ein Ziel des Projektes besteht in der Herstellung von Nanostrukturen mit wohldefinierter Zusammensetzung, Form und Struktur, wobei wir von molekularen Precursoren und Imidazolium- bzw. Pyrrolidinium-basierten ILs ausgehen und diese mit ungewöhnlichen Oxidationsmitteln wie Ozon umsetzen. Über grundlegende Untersuchungen zur IL/Oxid-Grenzflächenchemie und In-situ-Spektroskopie bei der Synthese sollen die Wechselwirkungen von IL, Precursor und Ozon aufgeklärt, Reaktionsmechanismen und Intermediate identifiziert und kinetische Daten zu Partikelbildung gewonnen werden. Daneben sollen aber auch praktische Aspekte der Synthese wie das Löslichkeitsverhalten untersucht und optimiert werden. Über die Untersuchung von Strukturabhängigkeiten der IL/Oxid-Wechselwirkung sollen strukturdirigierende Mechanismen aufgeklärt und letztlich unter Ausnutzung der strukturellen Vielfalt von ILs (Variation von Anion, Kation, Substitution und Funktionalisierung) zu Modifikation der Synthese eingesetzt werden. Dabei stehen auch Verfahren zur Entfernung von Kontaminationen durch oxidative Überführung in flüchtige Produkte oder zur gezielten Dotierung im Zentrum des Interesses. Schließlich werden die mechanistischen, spektroskopischen und kinetischen Einblicke mit realen Materialeigenschaften korreliert, um so Faktoren zu identifizieren, die entscheidende Materialparameter wie Partikelform, Struktur, Größe und Zusammensetzung bestimmen. Auf diese Weise soll das Projekt dazu beitragen, das Potential der Niedertemperatursynthese oxidischer Nanomaterialien in ILs in bestmöglicher Weise zu nutzen.

1 2 3