API src

Found 255 results.

Related terms

AGEE-Stat aktuell - Nr.: 2/2025

Liebe Leser*innen, das erste Quartal 2025 war gekennzeichnet durch eine wind- und niederschlagsarme sowie kühlere Witterung. Dieser Trend hat sich auch auf die Stromerzeugung erneuerbarer Energien sowie auf den Endenergieverbrauch für Wärme und Kälte ausgewirkt – dies zeigen die aktuellen Daten des kürzlich erschienen „ Monatsbericht Plus “ der Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat), der die Entwicklung der erneuerbaren Energien in den Sektoren Strom, Wärme und Verkehr thematisiert. In diesem Newsletter geben wir Ihnen eine Kurzzusammenfassung der Ergebnisse und den Link zu den aktuellen Daten. Darüber hinaus werfen wir einen Blick auf die EU-Ebene und informieren über die Entwicklung des Bruttoendenergieverbrauchs erneuerbarer Energien im EU-weiten Vergleich im Kontext der jährlichen Berichtspflichten nach der Erneuerbaren Energien Richtlinie (RED). Außerdem möchten wir herzlich zu unserer UBA-AGEE-Stat-Fachtagung einladen, die am 24. Juni 2025 zum Thema „ Erneuerbare Energien in Gebäuden – Herausforderungen für Statistik und Berichterstattung “ stattfinden wird. Eine interessante Lektüre wünscht das Team der Geschäftsstelle der AGEE-Stat am Umweltbundesamt Monatsbericht Plus: „Erneuerbare Energien in Deutschland – Daten zur Entwicklung im ersten Quartal 2025“ veröffentlicht Energiebereitstellung aus erneuerbaren Energieträgern im 1. Quartal der Jahre 2021 bis 2025 Quelle: AGEE-Stat / Umweltbundesamt Bei der Energiebereitstellung aus erneuerbaren Energien zeigt das erste Quartal 2025  unterschiedliche Entwicklungen in den Sektoren: Während die erneuerbare Stromerzeugung im Vergleich zum Vorjahresquartal um 17 Prozent zurückging, stieg die Wärmebereitstellung aus erneuerbaren Energien nach vorläufigem Kenntnisstand um etwa 10 Prozent und der Endenergieverbrauch aus erneuerbaren Energien im Verkehr um circa 8 Prozent an. Nach bisher vorliegenden Zahlen sank die erneuerbare Stromerzeugung im Vergleich zum ersten Quartal des Vorjahres um 17 Prozent. Insgesamt wurden in den ersten drei Monaten 2025 gut 64 Terawattstunden (TWh) Strom aus erneuerbaren Energieträgern erzeugt und damit etwa 13 TWh weniger als im Vorjahr. Grund für diesen Rückgang war insbesondere die sehr windarme und gleichzeitig trockene Witterung in allen drei Monaten. So wurde etwa 30 Prozent weniger Windstrom und 23 Prozent weniger Strom aus Wasserkraft erzeugt als noch im Vorjahr. Dagegen stieg die PV-Stromerzeugung aufgrund der sonnigen Witterung um etwa ein Viertel an. Die Stromerzeugung aus Biomasse ging leicht zurück und lag erstmals in einem Winterquartal niedriger als die Photovoltaik (PV). Kältere Witterung und mehr Wärmepumpen lassen Wärmebereitstellung aus erneuerbaren Energien steigen . Hingegen stieg die Wärmebereitstellung aus erneuerbaren Energien nach vorläufigem Kenntnisstand um etwa 10 Prozent gegenüber dem Vorjahreszeitraum an. Insgesamt wurden über 78 Terawattstunden (TWh) Wärme und Kälte aus erneuerbaren Energien bereitgestellt. Eine Ursache für das Wachstum war die im Vergleich zum Vorjahr kältere Witterung und der damit verbundene höhere Heizwärmebedarf. In Folge wurde etwa 9 Prozent mehr Biomasse in Haushalten und im Sektor „Gewerbe, Handel und Dienstleistungen“ zu Heizzwecken eingesetzt. Gleichzeitig stieg auch die Nutzung von Wärme aus Solarthermieanlagen aufgrund der sonnigen Witterung um 20 Prozent. Die nutzbar gemachte Wärme aus tiefer Geothermie sowie aus oberflächennaher Geothermie und Umweltwärme (Wärmepumpen) nahm darüber hinaus um rund 12 Prozent zu. Maßgeblicher Treiber waren weitere Neuinstallationen von Wärmepumpen in Deutschland. Steigender Einsatz von Biokraftstoffen sowie zunehmende E-Mobilität sorgen für Wachstum des Endenergieverbrauchs erneuerbarer Energien im Verkehrsbereich. Im Verkehrsbereich gibt eine erste Schätzung auf Basis der Daten des Bundesamts für Wirtschaft und Ausfuhrkontrolle (BAFA) für das erste Quartal Hinweise auf einen höheren Einsatz von Biodiesel, Bioethanol und insbesondere auch von Biomethan. In Summe stieg der Einsatz von Biokraftstoffen im Verkehr gegenüber dem Vorjahreszeitraum um knapp 10 Prozent an. Beim Einsatz von erneuerbarem Strom im Verkehr ergibt sich ein gemischtes Bild: Zwar wuchs der Bestand an E-Autos und damit der Stromverbrauch im Verkehr weiter deutlich (+17 Prozent). Weil gleichzeitig jedoch der Anteil an „grünem Strom“ im Strommix im bisherigen Jahresverlauf niedriger lag als 2024, stieg die rechnerisch ermittelte im Verkehr eingesetzte erneuerbare Strommenge nur um etwa 2 Prozent auf gut 2,2 Terawattstunden (TWh). Ausführliche Informationen, Grafiken und Tabellen zur Entwicklung der erneuerbaren Energien in Deutschland für das erste Quartal des Jahres 2024 sowie monatsweise Daten für die Monate Januar bis April finden Sie in unserem kürzlich veröffentlichten „Monatsbericht-PLUS+“. Anteil erneuerbarer Energien am Bruttoendenergieverbrauch in Deutschland und in der europäischen Union Anteil erneuerbarer Energien am Bruttoendenergieverbrauch Quelle: AGEE-Stat / Umweltbundesamt Das Umweltbundesamt berichtet im Rahmen der Erneuerbaren Energien Richtlinie (RED) der EU jährlich über zentrale Indikatoren wie den Anteil der erneuerbaren Energien am Bruttoendenergieverbrauch. Die Berechnung der Indikatoren unterliegt vorgegebenen Berechnungsvorschriften, die durch Eurostat im Rahmen eines Excel-Tools umgesetzt wurden ( SHARES-Tool ). Mit Umsetzung der RED III ab dem Berichtsjahr 2025 werden zukünftig zusätzliche sektorale Anteile und entsprechende Zielwerte berichtet werden. Für Deutschland beträgt der Anteil erneuerbarer Energien am Bruttoendenergieverbrauch nach EU-Richtlinie für das Jahr 2024 nach erster Schätzung 22,4 Prozent gegenüber 21,6 Prozent im Jahr 2023. Das im Rahmen der nationalen Energie- und Klimaschutzpläne formulierte 2030-Ziel für Deutschland liegt bei 41 Prozent. Im europäischen Vergleich lag Deutschland damit im Jahr 2023 unter dem EU-27-Durchschnitt, welcher 24,6 Prozent betrug. Weitere Grafiken zur Entwicklung der RED-Indikatoren in Europa finden sich auf der Website von Eurostat . Einladung: UBA-AGEE-Stat-Fachtagung „Erneuerbare Energien in Gebäuden – Herausforderungen für Statistik und Berichterstattung“ am 24. Juni 2025 Die AGEE-Stat und das Umweltbundesamt laden ein zur Fachtagung „ Erneuerbare Energien in Gebäuden – Herausforderungen für Statistik und Berichterstattung “. In Zusammenarbeit mit Forschungseinrichtungen und energiestatistischen Akteuren stellen wir unsere Arbeitsergebnisse vor und diskutieren mit Stakeholdern und Nutzer*innen dieser Daten zu aktuellen Herausforderungen in Statistik und Berichterstattung. Die Fachtagung bietet sowohl Vorträge im Plenum als auch die Möglichkeit zur vertieften Diskussion und zum Networking. Den thematischen Schwerpunkt bilden diesmal erneuerbare Energien in Gebäuden. Ausgangspunkt sind dabei die von Seiten der Europäischen Union (Renewable Energy Directive) zunehmenden Berichtspflichten für dezentral erzeugte und verbrauchte erneuerbare Energien im Gebäudebereich, die sowohl Strom als auch Wärme umfassen. Vorträge werden von Fachexpert*innen des Bundesministeriums für Wirtschaft und Energie (BMWE), des Umweltbundesamtes (UBA), des Thünen-Instituts (TI), des Bundesverbandes der Energie- und Wasserwirtschaft (bdew), des Deutschen Biomasseforschungszentrums (dbfz) und des Zentrums für Sonnenenergie und Wasserstoffforschung Baden-Württemberg (ZSW) gehalten. Das vorläufige, ausführliche Programm ist auf dieser Seite zu finden. Die Fachtagung findet am Dienstag, den 24. Juni 2025, von 09:30 bis 16:00 Uhr im Umweltbundesamt, Wörlitzer Platz 1 in 06844 Dessau-Roßlau, statt. Sie richtet sich an ein Fachpublikum und ist auf 70 Teilnehmende begrenzt. Die Möglichkeit zur Anmeldung und weitere Informationen finden Sie auf dieser Seite . Wir freuen uns auf Ihr Kommen.

Oberflächennahe Geothermie von Bremen

Über Auswertemethoden werden aus geologischen Daten der Bohrprofilbeschreibungen die Wärmeleitfähigkeit und die potentielle Wärmeentzugsleistung abgeleitet. Dieser Datensatz wird nicht zum download bereitgestellt, bitte kontaktieren Sie uns.

Luft- und Geothermie-Wärmepumpe Einzelbetrachtung

Die Karte zeigt in aggregierter Darstellung die für die Wärmeerzeugung mit Luft- und Geothermie-Wärmepumpen geeigneten Gebiete auf Basis der Flurstücke. Für die Nutzung oberflächennaher Geothermie auf Flurstückebene sind in Norderstedt nur wenige Gebiete gut geeignet. Ausschlussbereiche auf Grund der Trinkwassergewinnung und häufig kleine Flurstücke schränken auch die mitteltiefe Geothermie ein (siehe Wärmeplan Norderstedt S. 43 ff.) Herausgeberin: Stadt Norderstedt Stand: September 2024

Geothermie-Wärmepumpe Einzelbetrachtung

Die Karte zeigt in aggregierter Darstellung die für die Wärmeerzeugung mit Geothermie-Wärmepumpen geeigneten Gebiete auf Basis der Flurstücke. Für die Nutzung oberflächennaher Geothermie auf Flurstückebene sind in Norderstedt nur wenige Gebiete gut geeignet. Ausschlussbereiche auf Grund der Trinkwassergewinnung und häufig kleine Flurstücke schränken auch die mitteltiefe Geothermie ein (siehe Wärmeplan Norderstedt S. 43 ff.) Herausgeberin: Stadt Norderstedt Stand: September 2024

INSPIRE Soil / Geothermisches Potential BB

Der interoperable INSPIRE-Datensatz beinhaltet Daten vom LBGR über den Flächenbedarf von Erdkollektoren zur Nutzung von oberflächennaher Geothermie in Brandenburg, transformiert in das INSPIRE-Zielschema Boden. Der Datensatz wird über je einen interoperablen Darstellungs- und Downloaddienst bereitgestellt. --- The compliant INSPIRE data set contains data about the area demand of geothermal collectors for the use of near-surface geothermal energy in the State of Brandenburg from the LBGR, transformed into the INSPIRE target schema Soil. The data set is provided via compliant view and download services.

Coole Wärme - Realexperiment für eine klimaneutrale Wärmeversorgung im Wohngebäudebereich

Zielsetzung: Die Dekarbonisierung unserer Wärmeversorgung ist eine zentrale Herausforderung der Energiewende. Insbesondere einfache Luft-Wärmepumpen kommen hierfür zum Einsatz: sie sind gut planbar, sehr flexibel und fast überall einsetzbar. Die Kombination der Wärmepumpen mit alternativen Wärmequellen, wie solarthermische oder photovoltaisch-thermische (PVT) Kollektoren, kann die Effizienz von Wärmepumpen deutlich steigern. Dadurch kann die effiziente Nutzung solcher Anlagen z.B. in urbanen Räumen und Orten, wo die Nutzung von oberflächennaher Geothermie nicht möglich ist, gefördert werden. Allerdings bietet die Planung solcher Anlagen vielfältige Kombinationen und weist eine entsprechend hohe Komplexität auf. Bisher gibt es einige komplexe Demonstrationsanlagen, welche die höchste erreichbare Energieeffizienz solcher Anlagen unter besonderen Randbedingungen zeigen. Die daraus resultierende Komplexität dieser optimalen Anlagenkonzepte erschwert dessen Übertragung auf andere Gebäude mit unterschiedlichen Anforderungen: bspw. ist in urbanen Kontexten mit einer verdichteten Bauweise häufig kein Zugang zur Geothermie-Nutzung vorhanden; in urbanen Gebäuden im Bestand ist Platzmangel eher die Regel, wodurch die Installation zusätzliche Speichersysteme nahezu unmöglich wird. Zudem sind die Investitionskosten solcher Anlagen häufig deutlich größer als für herkömmliche Luft-Wärmepumpen Anlagen. Dies stellt auch ein wesentliches Hindernis für die Installation solcher Anlagen in Kontexten kollektiver Nutzung und begrenzter finanzieller Mittel dar. Hauptziel unseres Projekts ist es, das technische und wirtschaftliche Potenzial dieser Anlagen zu untersuchen und durch den gezielten Austausch über Grenzen und Potenziale mit Praxispartner:innen die Umsetzung dieser effizienteren und innovativen Systeme zu fördern. Im vorliegenden Projekt sollen erste allgemeine Auslegungsleitlinien für effiziente leicht übertragbare Systeme von Luft-Wasser und Sole-Wasser-Wärmepumpen in Kombination mit PVT oder Solarthermie-Kollektoren zur Nutzung in Kontexten von begrenzten räumlichen oder finanziellen Ressourcen.

Flankierung des Erdwärmepumpen-Rollouts für die Wärmewende durch eine bundesweite, einheitliche Bereitstellung von Geoinformationen zur oberflächennahen Geothermie in Deutschland

Der Ausbau der oberflächennahen Geothermie soll als Beitrag zur Loslösung von fossilen Brennstoffen im Wärmesektor gezielt gesteuert und unterstützt werden, indem hierzu die geologische Datenlage auf bundesweit einheitlichem Niveau verbessert und über das etablierte geothermische Informationssystem GeotIS öffentlich zugänglich zur Verfügung gestellt wird. Unter Einbindung der Staatlichen Geologischen Dienste sollen Ampelkarten erstellt werden, die das Nutzungspotenzial der oberflächennahen Geothermie deutschlandweit darstellen. Die Verschneidung von Erdwärmepotenzial mit Wärmebedarfsdichte soll eine ökologisch verträgliche Effizienzsteigerung und ökonomisch solide Ausbaupfade des Erdwärmepotenzials in Deutschland ermöglichen. Eine jährliche Abfrage zu neu installierten Erdwärmepumpen soll ergänzt werden. Neben der Ertüchtigung von GeotIS für die oberflächennahe Geothermie sollen weitere Datenmodelle, Konzepte und Empfehlungen entwickelt werden, um den Ausbau der oberflächennahen Geothermie voranzutreiben und zu stärken. Das LIAG ist federführender Projektpartner übernimmt die Gesamtorganisation, Kommunikation mit den SGDs und stellt das Projektbüro. Entsprechend seiner Kompetenz erfüllt das LIAG Aufgaben aus den Bereichen IT-seitige Umsetzung, Programmierung, Fortschreibung des GeotIS, Geothermik und Geologie.

Entwicklung und Validierung von geothermischen Modellen und Anlagenkonzepten mit innovativen oberflächennahen Elementen für dynamisch geregelte Wärmepumpensysteme, Teilvorhaben: Vertikalabsorber und Materialoptimierung

Im Projekt lnnoFlaG sollen neuartige oberflächennahe Wärmetauscherelemente in Kombination mit Latentwärmespeichern, Energiespeichern und Hydraulikmodulen als funktionsfähige Einheit vom Firmenkonsortium entwickelt, getestet und in Wechselwirkung mit dem oberflächennahen Erdreich (inkl. Feuchtetransport und Gefrierprozessen) sowie multimodaler Regenerierung modelliert werden. Hierbei geht es um erhöhte Planungssicherheit bezüglich der Erträge, aber auch um Schadensvermeidung, denn gerade bei flachen Geo-Kollektoren sind in der Vergangenheit durch Gefrieren des Bodens Schäden entstanden. In diesem Teilvorhaben wird von der GeoCollect GmbH untersucht, wie der Einsatz von 100 % Recyclingmaterialien für die kunststoffbasierten Absorber und verbindenden Rohrleitungen ermöglicht werden kann. Neben einer Materialoptimierung von gängigem Polypropylen in Richtung Polyethylen wird die GeoCollect GmbH insbesondere die Eignung und Zertifizierbarkeit von Recycling-Granulaten und daraus hergestellten Komponenten für die Anwendung im Rahmen der oberflächennahen Geothermie untersuchen. Desweiteren werden von der GeoCollect GmbH die Absorberform und die Gesamtgeometrie bezüglich der thermischen Performance und der Langzeitbeständigkeit optimiert. Dabei wird ein besonderes Augenmerk auf die Gesamt-Ökobilanz des Systems gelegt. Entsprechende Optimierungsrechnungen werden in Zusammenarbeit mit dem SIJ der FH Aachen durchgeführt, wobei die C02- Emissionen als Leitparameter der Ökobilanzierung gewählt werden. Zudem führt die GeoCollect GmbH in enger Zusammenarbeit mit dem SIJ und der WKG Energietechnik GmbH die Neuentwicklung eines zwangsdurchströmten Trennwärmetauschers zur Wärmerückgewinnung aus Oberflächen-, Ab- und Grundwasser bis zu einem Funktionsmuster durch. Basis der Neuentwicklung ist der Plattenabsorber der GeoCollect GmbH. Die für die Versuche an der FH Aachen benötigten Kollektor-Elemente und Anschlussmaterialien werden von der GeoCollect GmbH bereitgestellt.

Differenz der Wärmeleitfähigkeit BB bei Feldkapazität (FK) - Permanentem Welkepunkt (PWP)

Der Datensatz beinhaltet Daten vom LBGR über die Differenz der Wärmeleitfähigkeit Brandenburgs bei Feldkapazität (FK) - Permanentem Welkepunkt (PWP) und wird über je einen Darstellungs- und Downloaddienst bereitgestellt. Es werden die mittlere Wärmeleitfähigkeit mit Wassergehalten als Differenz aus Feldkapazität (FK) und Permanentem Welkepunkt (pF 4,2) dargestellt. Sie veranschaulicht die wassergehaltsabhängigen Unterschiede zwischen saisonal höchster und niedrigster Wärmeleitfähigkeit und vermittelt einen Eindruck der zu erwartenden jahreszeitlichen Dynamik der Wärmeleitfähigkeit an einem Standort. Die Differenzen werden in folgende Klassen unterteilt: Differenz λFK - λPWP [W/m*K] sehr gering ≤ 0,2 gering 0,21 - 0,40 mittel 0,41 - 0,65 hoch 0,66 - 0,91 sehr hoch 0,92 - 1,20 Die Wärmeleitfähigkeit (λ) bestimmt die Eigenschaft des Bodens, thermische Energie durch Konduktion zu transportieren. Sie ist die entscheidende Kenngröße für die Nutzung des Bodens als Wärmequelle und -speicher und muss u.a. bei der Anwendung oberflächennaher Geothermie (Erdwärmekollektoren) oder beim Bau erdverlegter Stromkabel berücksichtigt werden.

Geothermie für die Wärmewende: Flankierung des Rollouts der Mitteltiefen Geothermie in Deutschland, Teilvorhaben: Verifizierung von Bewertungskriterien nach dem PlayType Konzept, Explorationsseismik und Wissenstransfer über das GeotIS

Das hier skizzierte Projekt WarmUP zielt auf den Roll-Out der mitteltiefen, hydrothermalen Geothermie (Fördertemperaturen von ca. 40 bis 70 Grad C in Tiefen von 500 bis etwa 2.000 m) im Bereich der Wärmenutzung. Mittelfristiges Ziel ist der Ausbau von heute 1,4 TWh/a auf 10 TWh/a in 2030. Zusammen mit dem Projekt WärmeGut, mit dem das Potenzial der oberflächennahen Geothermie gehoben werden soll, wurde von BGR und LIAG im Austausch mit den Plänen des BMWK die 'Nationale Erdwärmestrategie' skizziert. Die Strategie zeigt auf, wie und in welchem Umfang Geothermie für eine nachhaltige, preisstabile, versorgungssichere Abdeckung des Wärmebedarfs in Deutschland umgesetzt werden kann. Für den Bereich der mitteltiefen Geothermie ist eine deutschlandweite Anschubhilfe für Explorationstätigkeiten zur Umsetzung von hydrothermalen Projekten mit hohen Erfolgsaussichten vorgesehen. Eine bundesweite durch Fördermittel unterstützte Explorationskampagne hilft, einerseits die deutsche Wirtschaft im Technologiesektor Energierohstoffe zu unterstützen und gleichzeitig Klimaschutzziele zu erreichen, indem die Geothermie gezielt als Erneuerbare Energie für den Wärmesektor unterstützt wird. Diese bundesweite Explorationskampagne sollte daher nach wissenschaftlich validen Kriterien erfolgen. Geförderte Explorationsstandorte sollten möglichst günstige Voraussetzungen bieten, und zwar geologisch als auch infrastrukturell aussichtsreiche Voraussetzungen. Derzeit fehlt ein Kriterienkatalog, nach dem Explorationsstandorte ausgewählt und bewertet werden können. Dieser Kriterienkatalog sollte praxistauglich sein und sowohl den Untertage- wie Übertage-Bereich abdecken, damit Geologie und Infrastruktur eines Standorts bewertet werden können.

1 2 3 4 524 25 26