Das Projekt "Forschergruppe (FOR) 496: Poplar - a model to address tree-specific questions, Environment-dependent regulation of nitrogen import system in poplar" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Tübingen, Botanisches Institut, Lehrstuhl Physiologische Ökologie der Pflanzen.Poplar could succeed in nutrient rich areas as well as in nutrient poor forests soils where plants live in symbiosis with certain soil fungi to enable sufficient nutrition. Due to its huge demand, nitrogen, as major nutrient, is of special interest for poplar nutrition. In this project we want to characterize nitrate, ammonium and amino acid transporters from poplar roots that are differentially regulated as result of nitrogen nutrition (shortage or nitrogen excess), or by plant/fungus interaction. The kinetic parameters of selected transporters will be determined by heterologous expression. Tissue and organ specific expression of certain transporter genes will be investigated by Northern blot and RT-PCR and by the utilization of poplar transformants containing promoter-GFP fusions. GFP fusions with truncated promoters will also be used for the identification of cis-elements responsible for the nitrogen-dependent expression of selected transporter genes. In addition, the global impact of nitrogen nutrition on poplar gene expression will be investigated using macro and micro arrays hybridization and probes of poplar roots grown at different nitrogen sources and concentrations as well as mycorrhizas.
Das Projekt "Mathematische Guetemodelle zur Prognose des Stoffhaushalts von Fliessgewaessern" wird/wurde gefördert durch: Bundesministerium für Verkehr. Es wird/wurde ausgeführt durch: Bundesanstalt für Gewässerkunde.Zweck und Ziel: Simulation und Prognose des Stoffhaushaltes abwasserbelasteter Fliessgewaesser zur Beurteilung der Auswirkungen wasserwirtschaftlicher und wasserbaulicher Massnahmen, einschliesslich Eutrophierungserscheinungen und Auswirkungen von Verklappungsmassnahmen. Ausfuehrung: Weiterentwicklung des von Dr. G. Huthmann in der BfG aufgebauten Modells, welches weitgehend empirische Zusammenhaenge verwendet, zu einem fuer verschiedene Anwendungen aussagekraeftigen Modell. Dabei werden die biologischen Vorgaenge - soweit erforderlich - mit Hilfe deterministischer Ansaetze formuliert. Die Modellentwicklung enstsprechend den Ergebnissen von Gewaesseruntersuchungen, Laborexperimenten und Literaturstudien. Ergebnisse: Das Modell besteht jetzt aus einem hydrologischen Modell, einem Temperaturmodell und dem eigentlichen Guetemodell. Folgende Stoffkonzentrationen werden berechnet: C-BSB5 (Biochemischer Sauerstoffbedarf der organischen Kohlenstoffverbindungen), CSB (Chemischer Sauerstoffbedarf, Bichromatoxidation), organischer Stickstoff, Ammoniumstickstoff, Nitratstickstoff, geloester Phosphor, ungeloester Phosphor, geloester Sauerstoff, Truebung. Ferner werden die Biomassen derjenigen langsam wachsenden Organismen berechnet, welchen einen wesentlichen Einfluss auf den Stoffhaushalt ausueben (Nitrifikanten, Algen, Zooplankter). Neuere Guetemodellrechnungen zum Sauerstoffhaushalt der Saar nach Ausbau zeigen, dass besonders in den Sommermonaten in den mittleren Stauhaltungen Lisdorf, Rehlingen und Mettlach mit Sauerstoffmangelsituationen zu rechnen ist. Um Fischsterben zu vermeiden, muss deshalb - beim jetzigen Sanierungszustand der Einleiter - kuenstlich
Das Projekt "Erforschung des atmosphärischen Ursprungs von Aminen innerhalb der marinen Grenzschicht: Ein kombinierter Feld-Modellierungsansatz (ORIGAMY)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Amine sind wichtige, aber wenig untersuchte organische Bestandteile in der marinen Atmosphäre. Es gibt deutliche Hinweise, dass innerhalb der marinen Grenzschicht die Bildung neuer Aerosolpartikel und die Zunahme der Partikelmasse durch Amine beeinflusst wird. Allerdings existieren noch sehr hohe Unsicherheiten in Bezug auf die Quellen, die weiteren chemischen Reaktionen innerhalb des chemischen Mehrphasensystems der marinen Atmosphäre und der Beitrag zur marinen Aerosolmasse. Ein tieferes Verständnis der durch die Amine initialisierten Bildung des organischen Stickstoffes in marinen Aerosolpartikeln, sowie der potentiell oxidationsgesteuerten Emission von Aminen aus den Ozeanen in die Atmosphäre, erfordert grundlegende mechanistische Modellierungsstudien der Mehrphasenoxidation von Aminen in Kombination mit speziellen Feldmessungen. Solche Ansätze sind derzeit nicht vorhanden, da noch keine detaillierten Mechanismen- oder Modellierungsstudien zur Mehrphasenoxidation der Amine durchgeführt wurden.Das Ziel von ORIGAMY ist es, die Faktoren zu ermitteln, die die Emission von Aminen aus dem Ozean in die Atmosphäre beeinflussen und deren Auswirkungen auf die organische Aerosolmasse, den Aerosolsäuregehalt und die Bildung neuer Aerosolpartikel. Wir wollen die großen Wissenslücken bezüglich Quellen, Phasenverteilung und Oxidationsprozessen von Aminen in der marinen Grenzschicht schließen, indem wir spezielle neue Feldmessungen in Kombination mit neuartigen Modellierungsansätzen der Mehrphasenchemie anwenden. Die Kombination aus Feldmessungen, Emissionsmodellierung und Modellierung der chemischen Alterung der Amine zum Verständnis der Feldergebnisse ist dabei eine neue große innovative Leistung, die aus dieser Studie resultieren wird.Die Ergebnisse von ORIGAMY werden eine wichtige Grundlage schaffen, um die Bedeutung der Amine und deren weiteren chemischen Reaktionen in der marinen Grenzschicht zu erfassen. Weiterhin tragen diese Ergebnisse dazu bei, relevante atmosphärischen Prozesse der Amine zu identifizieren, die in höher-skalige Modellen implementiert werden müssen.
Das Projekt "Optimierung der Einsatzfähigkeit der Infrarot-Reflexionsspektroskopie in der Bodenökologie: Bestimmung der Zusammensetzung und Stabilität der organischen Bodensubstanz und Vorhersagen in offenen Populationen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Kassel, Lehr- und Forschungsgebiet Umwelt- und Lebensmittelwissenschaften, Fachgebiet Umweltchemie.Reflexions-Infrarotspektroskopie im nahen (NIRS) und mittleren Infrarotbereich (MIRS) weist ein hohes Potential zur Bestimmung bodenchemischer und -biologischer Charakteristika auf, aber hinsichtlich der Vorhersagegenauigkeit und des Verständnisses der zugrundeliegenden Beziehungen herrscht noch Forschungsbedarf. Projektziele sind: (i) Die Genauigkeit von NIRS und MIRS, den Gehalt an organischem C und N und die Zusammensetzung der organischen Bodensubstanz vorherzusagen, soll optimiert werden. Hierbei wird die Population nach Bodentyp, Textur und mineralogischer Zusammensetzung klassifiziert. Teilproben werden chemisch oder thermisch oxidiert und ein modifiziertes PLS-Verfahren, ein genetischer Algorithmus, wird getestet. (ii) Allgemeine Beziehungen zwischen den Mengen an labilem, intermediärem und passivem C und N (zu erhalten aus Inkubationsexperimenten und Na2S2O8-Behandlungen) und den bedeutsamen Wellenlängen der NIRS- und MIRS-Kreuzvalidierungen sollen aus Spektren, die vor und nach den Inkubationen aufgenommen wurden, abgeleitet werden. (iii) Es soll die Vorhersagegüte von Bodenkonstituenten mittels NIRS und MIRS für offene Populationen ermittelt werden.
Das Projekt "Bildung spezifischer Proteine unter Bedingungen von Stickstofflimitierung oder Aufnahme von gelöstem organischem Stickstoff: eine Methode, um alternative Strategie der Stickstoffaufnahme bei Prymnesiophytae zu untersuchen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Kiel, Institut für Meereskunde.Die vorgeschlagene Arbeit soll die Rolle der unterschiedlichen Quellen von gelöstem Stickstoff in der Nahrung der Algenarten, von denen bekannt ist, dass sie große Blüten formen, untersuchen. Vier Arten der Gattung Prymnesiophyta werden unter Stickstofflimitierung kultiviert, mit verschiedenen Quellen des gelösten organischen Stickstoffes (DON), um die Auswirkungen der Stickstofflimitierung auf die Stockstoffaufnahme und -nutzung zu untersuchen. Es wird die Hypothese aufgestellt, dass Stickstofflimitierung unterschiedliche Wege der N-Aufnahme und -Nutzung induziert, die Wachstum mit DON erlauben. Phytoplanktonkulturen werden mit einfachen (Amino Säuren, Purin und Pyrimidine) und komplexen Quellen von DON ernährt um Wachstumsraten mit DON als alleiniger Quelle des Stickstoffes festzustellen. Enzymaktivität für Urease- und Aminosäureoxydasen werden gemessen, da es wahrscheinlich ist, dass diese beiden Enzyme in Zellen, die Stickstofflimitierung ausgesetzt sind, gebildet werden. Eine Reihe von Ansätzen werden verwendet, um spezifische Proteine zu identifizieren, die mit Stickstofflimitierung und/oder der Nutzung von DON in Verbindung zu bringen sind. Diese Ansätze umfassen die Markierung der Zelloberfläche mit biotinylhaltigen Reagenzien und zellulare Fraktionierung in cytoplamische- und Membranbereiche. Proteine, die nur bei Stickstofflimitierung und Anwendung von DON vorkommen, werden gereinigt und beschrieben. Antikörper dieser Proteine werden synthetisiert und als Sonden zur Identifizierung von Nutzung von DON, durch diese wichtige Gruppe von den Algen verwendet. Perspektivisch sollen diese Sonden auf natürliche Phytoplanktonpopulationen angewendet werden.
Das Projekt "Internationaler organischer Stickstoff-Dauerversuch" wird/wurde ausgeführt durch: Bundesamt und Forschungszentrum für Landwirtschaft, Institut für Agrarökologie.
Das Projekt "BonaRes (Modul A, Phase 3): Erhöhung der landwirtschaftlichen Nährstoffnutzungseffizienz durch Optimierung von Pflanze-Boden-Mikroorganismen-Wechselwirkungen, Teilprojekt A" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: Forschungszentrum Jülich GmbH, Institut für Bio-und Geowissenschaften (IBG), IBG-3 Agrosphäre.
The main aim of the BaltVib sampling campaign was to analyse the microbial community composition in pelagic and benthic habitats with special focus on Vibrio spp. bacteria inside and outside of eelgrass meadows (Zostera marina), and selected macroalgae populations (Fucus spp.) in the salinity gradient of shallow coastal waters of the Baltic Sea. The temporal extent of the dataset is 25.07.2021 to 02.09.2021. The geographic extent of the dataset is spanning from 9°52,655 E to 25°00,698 W and 60°06,547 N to 54°00,8666 S. The measurement depth ranges from 0.2 meters to 7 meters. Salinity ranges from 4 to 14. Environmental parameters measured are: conductivity, temperature, pH, Secchi depth, chlorophyll a, dissolved oxygen, ammonium, nitrate, nitrite, phosphate, silicate, grain size, dissolved organic carbon, dissolved nitrogen, particulate organic nitrogen, particulate organic carbon. Vibrio spp. colony forming units were counted using TCBS agar plates. Abundance of Vibrio vulnificus was determined by ddPCR in water and sediment samples as well as in Zostera marina surface biofilm. Cell counts by flow cytometry contain: Synechococcus, Picoeukaryota, Nanoeukaryota, high-nucleic acid bacteria, low-nucleic acid bacteria. Macrophyte abundance was measured for Zostera marina and Fucus spp..
Umweltatlas-Methode Die nach der ”Umweltatlas-Methode” berücksichtigten Parameter sollen die lokale und regionale Wasserqualität der Oberflächengewässer charakterisieren. Anders als bei der Gewässercharakterisierung nach der ”LAWA-Methode” (Länderarbeitsgemeinschaft Wasser 1991), bei der eine Vielzahl von Parametern zugrundegelegt und zu einer Gesamtbewertung zusammengefaßt wird, werden hier fünf der für die Eutrophierungs-Problematik der Berliner Gewässer maßgeblichen Parameter berücksichtigt und getrennt voneinander bewertet und dargestellt. Dies sind Orthophosphat-Phosphor, Ammonium-Stickstoff, Sauerstoff-Sättigungsindex, Sauerstoff-Minimum und Titer für Escherichia coli. Hiermit läßt sich das relativ kleine Untersuchungsgebiet Berlin differenziert und übersichtlich darstellen. Die Klassifizierung erfolgt in Anlehnung an die Gewässergütekarte der Bundesrepublik Deutschland in vier Güteklassen mit drei Zwischenstufen. Die Klassengrenzen für die beiden Sauerstoff-Parameter wurden in Anlehnung an die in der Gewässergütekartierung der LAWA gewählten Klassen gesetzt. Die Konzentration der Nährstoffe Orthophosphat-Phosphor und Ammonium-Stickstoff wird den entsprechenden Güteklassen so zugeordnet, daß die Belastungsstufen der verschiedenen Parameter miteinander vergleichbar sind. Für das Algenwachstum ist der Phosphatgehalt im Gewässer der begrenzende Faktor. Die Schwelle zur Eutrophierung wird für rückgestaute Fließgewässer allgemein mit 0,01 – 0,03 mg/l angegeben. Der Wert 0,01 mg/l bildet daher die Obergrenze der Güteklasse 2 ”mäßig belastet”. Die Klassifikation für Ammonium-Stickstoff wurde aus dem Rheinbericht von 1978 übernommen, in dem Ammonium-Stickstoff bereits 7-stufig klassifiziert vorlag (IWAR 1978). Da viele Gewässerabschnitte in Berlin als Badegewässer genutzt werden, findet der bakteriologische Parameter Escherichia coli hier Berücksichtigung bei der Darstellung der Gewässergüte. In die vorliegende Karte wurden nur die wichtigsten Fließgewässer in Berlin sowie einige Brandenburger Fließstreckenabschnitte im direkten Umland von Berlin einbezogen. Die Gewässer wurden in 99 Abschnitte unterteilt, mit in der Regel jeweils einer Meßstelle in der Mitte des Streckenabschnittes. Die Untersuchungsergebnisse dieser Meßstellen wurden als repräsentativ für den gesamten Abschnitt angesehen. Um den für belastete Gewässer besonders kritischen Zeitraum mit der größten biologischen Aktivität zu erfassen, wurden für die Darstellung die Werte des Sommerhalbjahres (1. 5. bis 31. 10.) berücksichtigt, und zwar für die Parameter Orthophosphat-Phosphor, Ammonium-Stickstoff und Sauerstoff-Sättigungsindex das Mittel des Sommerhalbjahres sowie für Sauerstoffgehalt und Titer für E. coli der jeweils ungünstigste Einzelwert in diesem Zeitraum. Analog zu den früheren Darstellungen anderer Abflußjahre im Umweltatlas wurden die Meßergebnisse nach einer 7-stufigen Skala von ”praktisch unbelastet” bis ”übermäßig verschmutzt” bewertet und entsprechend farblich dargestellt. Orthophosphat-Phosphor (PO 4 -P) Phosphat kann im Wasser in verschiedenen Formen vorhanden sein; von den Pflanzen kann der Phosphor jedoch nur in Form des gelösten Orthophosphat-Ions aufgenommen und zum Aufbau körpereigener Biomasse genutzt werden. Der überwiegende Teil der Phosphate in den Berliner Gewässern stammt aus den häuslichen Abwässern und hier vor allem aus dem Fäkalbereich. Die Verwendung von phosphathaltigen Reinigungsmitteln trägt ebenfalls zur Phosphatbelastung bei. Ein großer Teil des in Berlin anfallenden Abwassers wird bereits heute in den Klärwerken durch biologische Phosphat-Elimination bzw. durch chemische Phosphatfällung weitgehend entphosphatet. Ammonium-Stickstoff (NH 4 -N) Neben den Phosphaten sind es vor allem die Stickstoffverbindungen, die den Nährstoffgehalt des Wassers bestimmen. Im Wasser ist Stickstoff sowohl in elementarer als auch in Form von anorganischen und organischen Verbindungen enthalten. Der organisch gebundene Stickstoff liegt in den Gewässern in Form von Eiweißen vor, die aus abgestorbenen Organismen stammen. Pflanzen können den zum Aufbau ihrer körpereigenen Proteine erforderlichen Stickstoff normalerweise aber nur in Form von Nitrat- und Ammoniumionen aufnehmen. Die im Wasser vorhandenen Stickstoffverbindungen müssen deshalb zunächst entsprechend umgewandelt werden. Diese Aufgabe übernehmen Mikroorganismen, die dafür sorgen, daß die im Wasser vorhandenen Eiweißstoffe abgebaut werden. Andere Mikroorganismen wandeln das dabei entstehende Ammonium unter aeroben Bedingungen (bei Anwesenheit von Sauerstoff) über Nitrit schließlich zu Nitrat um. In der Zeit mit einer hohen biogenen Aktivität (Frühjahr bis Herbst) verlaufen die Stoffumwandlungsprozesse im Gewässer schneller, so daß analog zum geringeren Ammoniumgehalt ein höherer Nitratgehalt im Gewässer vorliegt. Da Nitrit nur ein Zwischenprodukt bei dieser Umwandlung ist, bleibt der Nitritgehalt im Gewässer meist niedrig. Abbildung 1 zeigt die Gehalte von Ammonium, Nitrit und Nitrat an der Meßstelle Teltow-Werft Schönow. Die geschilderten Stoffumwandlungsprozesse im Gewässer werden an dieser Meßstelle jedoch durch die Einleitungen der Klärwerke maßgeblich beeinflußt. Die geringe Ammoniumbelastung im Sommer ist an dieser Probenahmestelle (hinter Klärwerkszulauf Ruhleben) vor allem auf die im Sommer bessere Reinigungsleistung der Klärwerke zurückzuführen. Die Tatsache, daß der Ammoniumgehalt im Sommer darüberhinaus stärker sinkt als der Nitratgehalt steigt, ist mit der Bindung von Nitrat durch die Algen erklärbar. In den Berliner Gewässern stammt der überwiegende Teil der Stickstoffverbindungen aus den häuslichen Abwässern. Besonders belastend für den Sauerstoffhaushalt der Gewässer sind Klärwerke, über die ein hoher Anteil Ammonium-Stickstoff eingeleitet wird, da der Abbauprozeß bis zum Nitrat dann im Gewässer selbst stattfindet. Für die Umwandlung von 1 mg/l Ammonium-Stickstoff zu Nitrat-Stickstoff werden ca. 4,4 mg/l Sauerstoff benötigt. Sauerstoff-Sättigungsindex Der Gehalt an gelöstem Sauerstoff im Gewässer wird vor allem von der Wassertemperatur beeinflußt; mit zunehmender Wassertemperatur nimmt die Aufnahmefähigkeit des Wassers für Sauerstoff ab. Neben hohen Temperaturen im Sommer führt die Aufwärmung der Gewässer durch Kühlwassereinleitungen zu einer weiteren Belastung des Sauerstoffhaushaltes: Alle chemischen und biologischen Prozesse werden beschleunigt; der Sauerstoffbedarf steigt, während die Aufnahmefähigkeit von Sauerstoff sinkt. Gerade langsam fließende und eine große Oberfläche bildende, seenartig erweiterte Fließgewässer weisen dann zunehmend kritische Sauerstoffgehalte auf. Der Sauerstoff-Sättigungsindex gibt an, wieviel Prozent der physikalisch möglichen Sauerstoffsättigung zum Zeitpunkt der Probenahme erreicht wird. In unbelasteten Gewässern treten normalerweise keine größeren Schwankungen beim Sauerstoff-Sättigungsindex auf und der Sauerstoffgehalt entspricht etwa dem theoretisch möglichen (Sauerstoff-Sättigungsindex ca. 100 %). Da bei den meisten Abbauvorgängen im Gewässer Sauerstoff verbraucht, bei starkem Algenwachstum über die Photosynthese aber Sauerstoff produziert wird, können in nährsalzreichen Gewässern beträchtliche Schwankungen auftreten. So sind nicht nur geringe Sauerstoff-Sättigungsindizes, sondern auch ein starker biogener Sauerstoff-Eintrag und damit eine Sauerstoff-Übersättigung ein Indiz für eine Gewässerbelastung. Abbildung 2 zeigt für das Abflußjahr 1991 den Verlauf von Wassertemperatur und gemessenem Sauerstoffgehalt beispielhaft für die Meßstelle Sophienwerder (Spree). Daneben wurde der aufgrund der Temperatur mögliche Sauerstoffgehalt bei 100 % Sättigung abgebildet, um Über- und Untersättigung sichtbar zu machen. Während im Winter und Frühjahr der gemessene Sauerstoffgehalt im wesentlichen dem aufgrund der Temperatur zu erwartenden entspricht, ist das Wasser im Sommer nicht gesättigt, was auf das Überwiegen von Sauerstoff verbrauchenden Abbauvorgängen im Sommer zurückgeführt werden kann. Sauerstoff-Minimum Der für die Atmung aller Organismen notwendige Sauerstoff wird dem Wasser über die Luft bzw. durch die Photosynthese der Wasserpflanzen zugeführt. Der Sauerstoffgehalt belasteter, langsam fließender Gewässer unterliegt damit nicht nur klimatischen (Windgeschwindigkeit, Temperatur, Lichteinstrahlung usw.), sondern auch jahres- und tageszeitlichen Schwankungen, die auf übermäßiges Algenwachstum zurückzuführen sind. Zusätzlicher Sauerstoff durch die Assimilationstätigkeit der Algen kann aber nur in den oberen Wasserschichten erzeugt werden. Maßgebend ist die Eindringtiefe des Sonnenlichts in ein Gewässer. Die einzelnen Fischarten benötigen für ihre Lebensfähigkeit jeweils bestimmte Umweltbedingungen. Hierzu gehört auch ein Mindestgehalt an gelöstem Sauerstoff, der im Gewässer nicht unterschritten werden darf. Besonders kritische Sauerstoffverhältnisse können sich stets bei Gewässern mit großen Regenwasser- oder Mischwassereinleitungen nach Starkregenfällen einstellen. Die mit dem Einleitungswasser eingebrachten organischen Stoffe werden im Gewässer mit Hilfe von Bakterien unter erheblichem Sauerstoffbedarf abgebaut. Hierbei kann mehr Sauerstoff im Gewässer verbraucht werden als über die Luft und durch biogene Produktion wieder ergänzt werden kann. Sinkt der Sauerstoffgehalt unter eine bestimmte Grenze (ca. 4 mg/l für Karpfenfische) ist ein für Fische kritischer Zustand erreicht. Bei einer weiteren Abnahme des Sauerstoffgehalts kommt es zum Fischsterben. Die komplexen und rasch ablaufenden Wechsel im Sauerstoffhaushalt in Gewässern mit hohen Nährstofffrachten und intensiver Phytoplanktonentwicklung lassen sich durch monatliche bzw. 14-tägige Messungen nur unvollständig erfassen. Die an den kontinuierlichen Untersuchungsstellen gemessenen, teilweise erheblichen tageszeitlichen Schwankungen im Sauerstoffgehalt spiegeln die angespannten Sauerstoffverhältnisse der Berliner Gewässer wider. Titer für Escherichia coli Zur Kontrolle der bakteriologischen Beschaffenheit eines Gewässers – insbesondere um die Eignung als Badegewässer zu prüfen – werden Untersuchungen auf Escherichia coli (E. coli) durchgeführt. E. coli selbst ist in der Regel kein Krankheitserreger; sein Vorkommen gibt jedoch einen Anhalt über die Belastung eines Gewässers mit tierischen und menschlichen Fäkalien. Sind viele Coli-Bakterien enthalten, so liegt eine starke Belastung mit Fäkalwasssern vor; d.h. die Wahrscheinlichkeit, daß auch Krankheitskeime vorhanden sind, steigt mit der Zunahme von E. coli. Angegeben wird bei der Bestimmung diejenige Menge Wasser, in der gerade noch das Bakterium E. coli nachgewiesen werden kann (Coli-Titer). Für Oberflächengewässer, die zum Baden geeignet sind, gilt nach der EG-Badewasserrichtlinie ein E. coli-Titer von 10 -1 ml als gerade noch tolerabel. Chlorophyll a Ergänzend zur Darstellung der Gütebeschaffenheit der Berliner Gewässer nach dem Umweltatlas-Verfahren ist im Hinblick auf das Hauptproblem in den Berliner Gewässern – die hohe Nährstoffbelastung – gesondert der Chlorophyll a-Gehalt der Gewässer dargestellt. Chlorophyll a ist der blaugrüne Anteil des Chlorophyll (Blattgrün). Die Bestimmung des Chlorophyll a-Gehaltes im Gewässer gibt Hinweise auf die Algendichte. Als absolutes Maß für die Phytoplanktonbiomasse kann der Chlorophyll a-Gehalt nicht gelten; jedoch gibt dieser Pigmentgehalt gemeinsam mit anderen Biomasse- und Bioaktivitätsparametern Auskunft über das mengenmäßige Vorkommen und die potentielle Stoffwechselleistung des Phytoplanktons in Gewässern. Die Pigmentausbeute der im Frühjahr und Spätherbst auftretenden Kieselalgen liegt bei gleicher Wellenlänge im Meßverfahren etwas höher, als bei den sich vorwiegend im Sommer bildenden Blaualgen. An speziellen Meßpunkten ist daher der Vergleich der Chlorophyll a-Werte mit den über Zählung ermittelten Algenbiomassen geboten. Die Entwicklung der Phytoplankton-Zusammensetzung ist jahreszeitlich unterschiedlich und hängt von verschiedenen Faktoren ab, u.a. Temperatur, Lichteinstrahlung, Zooplankton-Entwicklung und Nährstoffangebot/-zusammensetzung. Während sich im Frühjahr vorwiegend die Kieselalgen (Bacillariophyceae) entwickeln, bestimmen im Hochsommer überwiegend die Blaualgen (Cyanophyceae) die Zusammensetzung des Phytoplanktons (vgl. Abb. 3). Gerade die hohen Temperaturen und die intensive Lichteinstrahlung im Hochsommer begünstigen das Algenwachstum. Bei gleichzeitigem Überangebot an Nährstoffen im Gewässer kann es dann zur Massenentwicklung der Algen kommen. Das vornehmlich in den Monaten Mai/Juni auftretende Phytoplanktonminimum hängt von vielen Faktoren ab, wie Witterung, Algenarten-Zusammensetzung und insbesondere von der Zooplankton-Struktur. Wird die Frühjahrsalgengemeinschaft von freßbaren Arten (v.a. Kieselalgen) dominiert, kann es zu einer Massenentwicklung des Zooplanktons kommen, das in der Lage ist, große Mengen an Algenbiomasse zu filtrieren. Somit wird eine hohe Sichttiefe erreicht (vgl. Abb. 4). Dieses ”Klarwasserstadium” wird verstärkt in den Gewässern der Spree, der Oberhavel und teilweise in der Unterhavel beobachtet, nicht aber in den Gewässern der Dahme, wo bereits im Frühjahr fädige, kaum freßbare Blaualgen auftreten. Für die Kartendarstellung wurden die Meßwerte der Monate April bis September 1991 berücksichtigt. Für die einzelnen Gewässerabschnitte sind neben dem Mittelwert das Maximum und Minimum dieses Zeitraumes dargestellt. Die Bänder für die Mittelwertdarstellung der Monate April bis Juni sowie Juli bis September sollen einerseits die Frühjahrs-, andererseits die Hochsommerentwicklung des Phytoplanktons widerspiegeln. Da die Algenentwicklung u.a. die Trübung des Wassers beeinflußt, ist im 6. Band die Sichttiefe (Mittelwert des Sommerhalbjahres, April bis September) dargestellt. Die Meßwerte wurden einer 7-stufigen Bewertungsskala zugeordnet. Der für die Berliner Gewässer als Sanierungsziel betrachtete Wert von max. 30 µg Chlorophyll a pro Liter wird als oberer Wert der Güteklasse 1 bis 2 angesehen. Für die Güteklassen 1 bis 3 erfolgt eine lineare Einteilung der Meßwerte; die Abkehr von der linearen Einteilung in der Güteklasse 3 bis 4 erfolgt aufgrund einer größeren Ungenauigkeit des Meßverfahrens bei hohen Meßwerten.
Die Firma ANGUS Chemie GmbH, Zeppelinstraße 30 in 49479 Ibbenbüren hat die Genehmigung zur wesentlichen Änderung und zum Betrieb einer Anlage zur Herstellung von organischen Stickstoffverbindungen auf dem Grundstück Zeppelinstraße 30 in 49479 Ibbenbüren (Gemarkung Ibbenbüren-Land, Flur 90, Flurstück 161) beantragt. Gegenstand des Antrages ist die Errichtung und der Betrieb einer neuen Abfüllanlage, die Anlieferung und Abfüllung von AMP 95 sowie die technische Aufrüstung von Lagertanks. Die vorhandene Abfüllanlage wird nach Inbetriebnahme der neuen Abfüllanlage zurückgebaut. Die zulässige, genehmigte Gesamtproduktionskapazität wird nicht erhöht.
Origin | Count |
---|---|
Bund | 141 |
Land | 24 |
Wissenschaft | 1 |
Type | Count |
---|---|
Förderprogramm | 122 |
Text | 1 |
Umweltprüfung | 1 |
unbekannt | 21 |
License | Count |
---|---|
geschlossen | 3 |
offen | 141 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 122 |
Englisch | 31 |
Resource type | Count |
---|---|
Datei | 18 |
Dokument | 16 |
Keine | 108 |
Webseite | 19 |
Topic | Count |
---|---|
Boden | 96 |
Lebewesen & Lebensräume | 110 |
Luft | 67 |
Mensch & Umwelt | 145 |
Wasser | 97 |
Weitere | 143 |