Das Projekt "Die Bildung und Entwicklung des Erdmantels im Archaikum; Subkalzische Granate und Eklogite als älteste Zeitzeugen" wird vom Umweltbundesamt gefördert und von Universität Frankfurt am Main, Institut für Geowissenschaften, Facheinheit Mineralogie, Abteilung Petrologie und Geochemie durchgeführt. Die Entstehung und das Wachstum der Archaischen Kerne von Kontinenten und die zeitliche und örtliche Entwicklung von Prozessen im subkratonischen Erdmantel und der darüber liegenden Kruste sind wichtige Eckpfeiler zum Verständnis der Stabilisierung von langlebigen kontinentalen Blöcken durch einen auftriebsfähigen Erdmantel. In einem vorherrschenden Modell wird der subkratonische Erdmantel als Restit von partiellem Schmelzen bei niedrigem Druck betrachtet, der durch Subduktion in Granatperidotit umgewandelt wurde. Eklogite und Granatperidotite des subkontinantalen lithosphärischen Mantels sind dementsprechend die subduzierten Schmelzprodukte. Um die Zeitlichkeit der partiellen Schmelzprozesse und von Wiederanreicherungsprozessen des Erdmantels unterhalb des Kaapvaalkratons einzugrenzen, haben wir bereits früher einzelne Körner von harzburgitischen, subkalzischen Granaten analysiert. Damit erhielten wir das Alter von definierten Ereignissen, die mit krustalen Ereignissen übereinstimmen und kein Kontinuum, wie es von Re Os Modellaltern angezeigt wird. Eklogite und Granatpyroxenite werden wie Peridotitxenolithe ebenfalls von Kimberliten durch die Archaische Kruste an die Erdoberfläche gefördert. Sie sind wegen ihrer möglichen sehr unterschiedlichen Entstehung und möglicher späteren Überprägungen sehr heterogen. Quälende Fragen sind die Art der Protolithe, deren Alter und das Alter der Eklogitisierung und der Bezug zu den Peridotiten. Wir fanden durch unsere Untersuchungen von Eklogiten und Granatpyroxeniten von Bellsbank (Kaapvaalkraton), dass eine Anzahl davon chemisch fast nicht modifizierte Teile subduzierter ozeanischer Kruste darstellen (= fast unveränderte Schmelz-zusammensetzungen, Plagioklas- und Klinopyroxenreiche Kumulate). Deren rekonstruierte Gesamtgesteinszusammensetzungen bilden eine Aufreihung in einem Lu Hf Isochronendiagramm. Drei Proben ergeben ein Alter von 4.12 +- 0.06 Ga mit eHfi = 3 (+-7), d.h. dem Verhältnis des Erdmantels zu dieser Zeit. Ein so hohes Alter findet man bisher nicht in der Kruste oder als Re Modellverarmungs-alter im Erdmantel. Lu Hf Modellalter von Granaten sind Minimumalter. Sie ergeben aber bereits Alter bis zu 3,5 Mrd. Jahre, was die hohen Alter bestätigt. Wir wollen unsere Arbeiten an subkalzischen Granaten auf weitere Lokalitäten des Kaapvaalkratons ausdehnen, um die detaillierte Geschichte des subkratonischen Erdmantels weiter zu erforschen, d.h. die Unterscheidung verschiedener Schmelz-regime, deren Zeitlichkeit und die Zeit der Modifikation des Erdmantels durch Metasomatose. Ein zweites Ziel ist die Verifizierung der 4.1 Mrd. Jahre Eklogitisochrone mit weiteren Proben aus Bellsbank. Wenn sie sich als richtig erweist, würde sie das höchste Alter darstellen, das jemals von einer Eklogitserie erhalten wurde. Dies hätte großen Einfluss auf Modelle zur Entstehung hadäischer Kruste und ihrer Erhaltung im lithosphärischen Erdmantel.
Das Projekt "Experimental investigations into the influence of organic complexing agents and inorganic anions (Cl-, NO3-, SO42- und PO43-) on the transformation behaviour and the mobility of metallic palladium (Pd) and PdO" wird vom Umweltbundesamt gefördert und von Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt durchgeführt. The projects goal is to examine the Mobility and transformation behaviour of emitted palladium from automobile exhaust catalysts into the environment. To achieve this, I will examine the influence of commonly present organic complexing agents like citric acid, amino acid (L-Methionin) and ethylenediamine tetra acetic acid (EDTA), as well as inorganic anion species (Cl-, NO3-, SO42- und PO43-), on the chemical behaviour and transformation of metallic palladium (Pd-Mohr) and PdO into more soluble species. The analytical experiments will be conducted over different time periods (1, 10, 20, 30, 40, 50 and 60 days), involving different concentrations of the various complexing agents under examination (0.001, 0.01 and 0.1 M). The results will help clarify the extent to which Pd Mobility is influenced by time and the presence of various complexing agents at different concentrations. In addition, surface analyses of isolated particles using X-ray photoelectron spectroscopy (XPS) will be used to examine the influence of organic compounds and inorganic anion species, on the transformation of metallic palladium and PdO. The proposed study will significantly help to shed light on questions related to the environmental transformation of Pd into more toxic species following emission in car exhausts, a poorly understood process to date.
Das Projekt "The impact of precipitation intensity and vegetation in the catchment area on autochthonous and allochthonous carbon transfer in stream biofilm food webs" wird vom Umweltbundesamt gefördert und von Universität Gießen, Institut für Tierökologie und Spezielle Zoologie - Tierökologie durchgeführt. In rivers and streams, biofilms are major sites of carbon cycling. They retain large amounts of dissolved organic carbon (DOC) and consequently are most important for the development of aquatic organisms on higher trophic levels. Besides autochthonous primary production, which supports heterotrophic production in biofilms, large amounts of organic carbon (OC) are derived from the surrounding catchment areas. More precipitation and more frequent and severe floods due to climate change will increase the transport of material into streams. Moreover, catchment characteristics including vegetation affect the transport and nature of DOC into aquatic ecosystems. Thus, carbon dynamics depend on how a stream is embedded within and interacts with its surrounding terrestrial environment. Despite its importance for carbon cycling it is not understood to which extent autochthonous or allochthonous carbon is used in biofilms and how increased addition of allochthonous carbon determines the relative use of both carbon sources. The combined application of 13C and 14C analysis on differently labeled DOC sources intend to answer to which extent DOC from different sources is used by bacteria in biofilms and finally transported to higher trophic levels. The use of 13C and 14C signals on carbon compounds and biomarkers is an excellent method to determine carbon sources for microorganisms and the transport of labeled material within the food web.
Das Projekt "Biota, Brüche und Schwellenwerte: Emergente Selbstorganisation in der Entwicklung von Landschaften?" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Dieser Antrag stellt ein Fortsetzung unser laufenden Arbeiten aus der ersten Phase des EarthShape SPP dar, in denen wir den biotischen Einfluss auf Sedimentransport und die Einschneidung von Flüssen untersuchen. Unsere Untersuchungen zielen auf den kombinierten Einfluss von Abflussvariabilität und Erosions-Schwellenwerte bei der Flusseinschneidung ab. Während der ersten Phase haben wir den EarthShape Klima- und Vegetationsgradienten ausgenutzt um eine biotische Signatur in der Abflussvariabilität und Erosionseffiezienz zu ermitteln. Unsere Ergebnisse und Geländebeobachtungen haben gezeigt, dass es sowohl entlang als auch quer zum EarthShape Gradienten enorme räumliche Variabilität in der Größe des Flusssediments (Erosions-Schwellenwerte) sowie in der Regolithmächtigkeit gibt. Innerhalb einzelner EarthShape Studienorte, scheinen die beobachteten räumliche Gradienten in der Regolithmächtigkeit, Gradienten in der Bruchdichte im Anstehenden zu folgen. Wir stellen daher die Hypothese auf, dass Biota, durch ihren Einfluss auf die chemische Verwitterung, auch die Sedimentgröße beeinflusst, doch dass dieser Einfluss durch die Bruchdichte begrenzt wird. Unsere Daten zeigen darüber hinaus, dass die Denudationsraten in den EarthShape Studienorten sehr gering sind (ca. 10 m/Myr). Das bedeutet, dass die Landschaften die wir studieren über Zeiträume von mehreren Millionen Jahren entstanden sind, während derer die Umweltbedingungen höchstwahrscheinlich andere waren als die heutigen. Um die biotischen Einflüsse auf chemische Verwitterung, Sedimentgröße und damit Erosions-Schwellenwerte zu entschlüsseln und gleichzeitig Scheinkorrelationen zu vermeiden, erkennen wir den potenziell wichtigen Einfluss der Bruchdichte sowie die zeit-abhängige Natur der Landschaftsentwicklung an. In diesem Projekt wollen wir daher (1) den Zusammenhang zwischen Bruchdichte, Regolithmächtigkeit, und Sedimentgröße quantifizieren, (2) räumliche und zeitliche Variabilität von Hangerosionsraten unterhalb der Einzugsgebiet-Skala erfassen, sowie (3) diese Beobachtungen in Landschafts-entwicklungsmodellen kombinieren, um den Einfluss der Biota auf die Flusseinschneidung zu quantifizieren. Dabei werden wir die Daten und Beobachtungen aller Projekte der ersten Phase mit neuen Geländemessungen in einem neuen Modellierungsansatz kombinieren, in dem wir explizit auf hydrologische und topographische Einflüsse auf die chemische Verwitterung und Sedimentgröße eingehen. Unsere Ergebnisse werden ein Schlüssel für die Bewertung der Vergleichbarkeit der EarthShape Studienorte sein und unser Modellierungsansatz wir eine neue Schnittstelle bereitstellen um die unterschiedlichen wissenschaftlichen Ansätze des EarthShape Programms zu integrieren.
Das Projekt "Formation of mega-glendonites in the aftermath of the Paleocene-Eocene thermal maximum" wird vom Umweltbundesamt gefördert und von Universität Münster, Institut für Geologie und Paläontologie durchgeführt. Glendonites are pseudomorphs after the mineral ikaite (CaCO3 x 6H2O) and composed of calcite (CaCO3). In the past, they have been used as a paleo-thermometer because the primary mineral ikaite, according to observations and experiments, seems to be formed at temperatures near freezing, high alkalinity and high phosphate concentrations in marine sediments. An enigmatic occurrence of the largest glendonites known world-wide, in the Early Eocene Fur Formation of northwestern Denmark offers the unique possibility to shed more light on the actual mechanism and controlling parameters of ikaite formation. Right in the aftermath of the Paleocene-Eocene thermal maximum, a time known for its global pertubation in the global carbon cycle, the formation of authigenic calcium carbonate concretions start in the Fur Formation. In a specific stratigraphic interval inbetween these concretions, the glendonites can be found. We will investigate if termperature changes or changes in geochemical parameters of the Danish Basin caused the sudden formation of ikaite during a time interval that was based on known paleoclimatic reconstructions (semi tropic) not favorable for ikaite formation.
Das Projekt "DeepEarthshape - Reaktionsfronten in tiefem Regolith und deren Bildungsmechanismen" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Die meisten Ökosysteme der Erde kommen in der 'tiefen Biosphäre' in permanenter Dunkelheit vor. Die Verwitterungszone - der unterirdische Teil der 'Critical Zone' - bildet einen aktiven Teil dieses Lebensraums. Wir werden die Formung dieser Zone mittels innovativer Isotopen- und geochemischer Methoden erforschen. Dieses Vorhaben ist Teil der 'DeepEarthshape' Projektgruppe, die Geochemie, Mikrobiologie, Geophysik, Geologie und Biogeochemie verbindet. 'DeepEarthshape' beruht auf den Erkenntnissen der ersten EarthShape Phase. An allen vier untersuchten Standorten ist die Verwitterungszone so tief, dass deren Basis in keinem der Bodenprofile angetroffen wurde. Jedoch wurden im gesamten Saprolith beträchtliche Mengen an mikrobieller Biomasse gefunden.Die Frage ist nun: wie trägt Niederschlag und Pflanzenbedeckung entlang des Earthshape-Transekts zur Formung der tiefen Verwitterungszone bei? Folgende Hypothesen werden geprüft: 1) die Verwitterungsfronten an den EarthShape-Standorten sind heute aktiv; 2) die Massenverluste durch Erosion und chemische Verwitterung werden durch die Abtiefung der Verwitterungsfront ausgeglichen; und 3) die Verwitterungszone umfasst eine Reihe von unterscheidbaren, komplexen Fronten, die unterschiedliche biogeochemische Prozesse widerspiegeln (z. B. Wasserinfiltration, Eisenoxidation, mikrobielle Aktivität und organischem Kohlenstoffkreislauf).Im Mittelpunkt aller DeepEarthshape Projekte steht eine Bohrkampagne, die durch geophysikalische Bildgebung der tiefen 'Critical Zone' ergänzt wird. An allen vier Standorten werden wir Bohrkerne entnehmen, die durch Boden und Saprolith hindurch bis in das unverwitterte Ausgangsgestein führen. Durch die innovative Kombination von Methoden der Uran-Zerfallsreihen (Bestimmung der Abtiefunggeschwindigkeit der Verwitterungsfront) mit in situ kosmogenem Beryllium-10 (Bestimmung der Abtragungsrate) werden wir das Gleichgewicht zwischen der Produktion von verwittertem Material in der Tiefe und dessen Verlust an der Oberfläche ermitteln. Zusätzlich werden wir die Tiefenverteilung von meteorischem kosmogenen 10Be als Proxy für die Wasserinfiltration und die des stabilen 9Be als Proxy für die silikatische Verwitterung in der Tiefe verwenden. Wir werden die mineralogische und chemische Zusammensetzung der Kerne beschreiben und Elementabreicherung, Dichte, Porosität, Öberfläche und den Redoxzustand von Eisen messen, um die Verwitterungsfronten zu lokalisieren. Mit den Ergebnissen können wir den Einfluss von Klima und Vegetation auf die Bildungsmechanismen der einzelnen Verwitterungsfronten bestimmen. Der relative Einfluss dieser zwei Faktoren wird anhand eines Massenbilanzmodells ermittelt, welches Verwitterungskinetik und Nährstoffbedarf der nachwachsenden Pflanzenmasse verknüpft. Dieses Vorhaben leitet somit einen Beitrag, mit dem der Einfluss der tiefen Biosphäre und der tiefen 'Critical Zone' auf den CO2-Entzug aus der Atmosphäre und damit das Klima der Erde bilanziert werden kann.
Das Projekt "DeepEarthShape - Geophysikalische Sondierung: Abbildung der Verwitterungsfront im tiefen Regolith mit seismischen und elektromagnetischen Methoden (GIDES)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Dieses Projekt ist Teil des interdisziplinären DeepEarthshape Verbunds zur Untersuchung der Verwitterungs- bzw. kritischen Zone (CZ) mit Bohrungen und geophysikalischen, geochemischen und mikrobiologischen Untersuchungen. Die CZ ist der oberste Teil der Erdkruste, wo Gesteine durch den Einfluss von Luft, Wasser oder biologischen Organismen mechanisch bzw. chemisch zersetzt werden. Die Mächtigkeit hängt vom Gleichgewicht zwischen Erosion und tiefen Verwitterungsprozessen ab. Die geochemische Charakterisierung der CZ hat gezeigt, dass sie viel tiefer ist als erwartet (ca. 30m). Obwohl in geringen Tiefen (1-2m) beachtliche Mengen an mikrobieller Biomasse und DNA gefunden wurden, die mit der Verwitterung zusammenhängen könnten, ist unser Verständnis der CZ und ihrer Prozesse immer noch begrenzt. Unklar sind die Tiefe der Verwitterung, die Prozesse und ihre jeweiligen Verursacher. Da die Eigenschaften der CZ mit dem Klima in Verbindung zu stehen scheinen, werden im Rahmen der DFG SPP 1803 vier Untersuchungsgebiete vorgeschlagen, die verschiedenen Klimazonen mit unterschiedlicher Vegetation, Niederschlagsmengen und Erosion angehören. Die langgestreckte Küste Chiles ist ein idealer Ort, um klimatische Abhängigkeiten im gleichen geologischen Komplex, der Küstenkordillere, zu untersuchen. Durch den Vergleich der Ergebnisse aus diesen vier Untersuchungsgebieten sollen schließlich Hypothesen für die CZ getestet werden, wie z.B. eine mögliche Verknüpfung der Verwitterungsfront mit rezenten klimagetriebenen Prozessen und der Erosion an der Oberfläche durch eine biogeochemische Rückkopplung oder mikrobielle Aktivität im tiefen Regolith durch organische Substanzen, die die Verwitterung vorantreiben. Die oberflächennahe Geophysik entwickelt sich zu einem wesentlichen Bestandteil der CZ-Untersuchungen, um hydro-geomorphologische und Verwitterungsfront-Modelle zu testen. Hier schlagen wir kombinierte geophysikalische Experimente mit P- und S-Wellen Seismik und flachen elektromagnetischen (Radiomagnetotellurischen) Messungen entlang von ca. 500m langen Profilen an allen vier Standorten vor. Die Hauptziele dieser geophysikalischen Experiment, sind a) die Abbildung der Tiefe der CZ und ihrer räumlichen Variation; b) der Zusammenhang von physikalischen Parametern mit denen, die in den Bohrkernen gefunden wurden; c) die Beurteilung, ob Bohrlochergebnisse für einen größeren Raum repräsentativ sind; d) der Vergleich von geophysikalischen Abbildern der CZ mit denen der hydro-geomorphologischen Modelle; e) das Bestimmen der Tiefe des Grundwasserspiegels und der Einfluss von Störungssystemen, die Wegsamkeiten für meteorische Wässer darstellen; f) die Kopplung seismischer Geschwindigkeiten mit elektrischen Leitfähigkeiten, um zuverlässige Schätzungen der Porosität zu erhalten und g) eine konsistente geologische Interpretation verschiedener geophysikalischer, geochemischer und mikrobiologischer Beobachtungen abzuleiten.
Das Projekt "Korrelation zwischen der Zusammensetzung mikrobieller Biofilme und der Verwitterung exponierter Felsoberflächen (Biodeterioration) entlang eines klimatischen und zeitlichen Gradienten in Chile" wird vom Umweltbundesamt gefördert und von Georg-August-Universität Göttingen, Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Experimentelle Phykologie und Sammlung von Algenkulturen durchgeführt. Mögliche Korrelationen zwischen der taxonomischen Zusammensetzung mikrobieller Biofilmen, die offene Felsen aus hartem magmatischen Gestein besiedeln, und einer Verwitterung bzw. Erosion der Felsoberflächen zu untersuchen sind wichtige Ziele dieses Projektes. Die Diversität sowohl phototrophe (Cyanobakterien, eukaryotische Algen) als auch heterotrophe (andere Prokaryoten und Mikropilze) Biofilm-Komponenten werden mit New Generation Sequencing (NGS) möglichst umfassend bestimmt. Zusätzlich werden auch Kulturen der phototrophen Biofilmorganismen untersucht. Veränderungen der mikrobiellen Lebensgemeinschaften auf und im Gestein werden entlang eines klimatischen Gradienten in Bezug auf Feuchtigkeit und Temperatur untersucht. Dazu dienen Proben von Biofilmen und Bohrkernen aus drei klimatisch unterschiedlichen Zonen in der Küsten-nahen Cordillera Region in Chile, d.h. den ausgewiesenen primären Schwerpunktuntersuchungsarealen des SPP 1803. Verschiedene Sukzessionsstadien der Biofilme ergeben zusammen mit Altersbestimmung anhand von 14C Beschleunigungs-Massenspektrometrie eine biologische Zeitskala. Für einen breiteren Einblick in die Funktionalität von Diversitätsveränderungen in den Biofilmen dienen sowohl hoch auflösende Flächenanalytik von Hartteilschnitten als auch biochemische Analysen zum Nachweis Signaturen mikrobiellen Stoffwechsels an der Schnittstelle Biofilm/Fels. Die räumliche Verteilung und relative Abundanzen der verschiedenen Organismengruppen innerhalb der Biofilme werden mithilfe der in situ Hybridisierung und Fluoreszenzmikroskopie untersucht. Parallel dazu werden exponierte künstliche Hartsteinsubstrate auf eine Entwicklung der Besiedelung und Verwitterung untersucht. Ebenfalls für das Erstellen einer biologischen Zeitskala der Verwitterung dienen Analysen von Detritus in nächster Nähe der untersuchten Felsen, d.h. Gesteinspartikel mit Biofilmen dar, die aufgrund der Verwitterung bereits vom Felskörper abgefallen sind. Die Zusammensetzung mikrobieller Gemeinschaften des Detritus gibt möglicherweise Hinweise auf den Beginn dessen Besiedlung und in einem späteren Stadium auch des Bodens, der sich aus dem Detritus bildet. Somit ergibt sich hier eine Schnittstelle von der biogenen Gesteinsverwitterung zur Besiedlung von Böden. Um Effekte der Erosion durch Biofilme untersuchen zu können und zur Etablierung einer geologischen Zeitskala dienen Analysen kosmogener Nuklide (CNA). Damit wird analysiert 1) ob und wenn ja welche Beziehungen zwischen der artlichen (OTU) Zusammensetzung der Biofilme und Erosion der Felsoberflächen bestehen und 2) eine graduelle Erosion der Oberfläche, d.h. Biodeterioration, stattfindet. In dem ariden nördlichen Untersuchungsgebiet (Atacama Wüste) sind auch Felsen ohne nachweisbaren Biofilm zu erwarten. Vergleiche der Konzentrationen kosmogener Nuklide von Proben mit und ohne Biofilm werden dann zeigen, ob und in wie fern Biofilme die Oberflächenverwitterung über lange Zeiträume hinweg beeinflussen.
Das Projekt "Mehrskalige Untersuchungen der Verwitterungsfront mit geophysikalischen und geochemischen Methoden" wird vom Umweltbundesamt gefördert und von Forschungszentrum Jülich GmbH, Institut für Bio-und Geowissenschaften (IBG), IBG-3 Agrosphäre durchgeführt. Boden, ein wichtiger Träger des Lebens, wird durch chemische Verwitterung und physikalische Erosion von Gestein produziert. Die Mächtigkeit eines Bodens ist durch Tektonik, Klima und Vegetation bestimmt. Bisher ist wenig bekannt über die Mächtigkeit von Verwitterungsfronten und ihrer Abhängigkeit von verschiedenen klimatischen und biotischen Bedingungen. In diesem interdisziplinären Antrag wird die Verwitterungsfront an drei verschiedenen Hanglokalitäten mit unterschiedlichen Klimabedingungen und Vegetationstypen entlang der chilenischen Küste untersucht. Für die Analysen werden geophysikalische und geochemische Methoden miteinander kombiniert. Auf diese Weise wird die arbeitsintensive und räumlich beschränkte geochemische Identifizierung der Verwitterungsfront durch die geophysikalische Anwendung unterstützt, um die strukturelle Organisation des Bodens und der Bodentiefe im größeren Maßstab nichtinvasiv zu kartieren. Eine Top-down-Methode über verschiedene Maßstäbe wird angewendet, um mittels der EMI-Kartierung die dominanten großmaßstäblichen Bodenschichten der elektrischen Leitfähigkeit werden mit darzustellen. Auf Basis dieser Bilder werden mehrere Abschnitte ausgewählt, an denen detailliertere geophysikalische Aufnahmen (EMI und GPR) durchgeführt werden. Zwei gewöhnliche multi-konfigurierte EMI-Geräte werden verwendet um einen Bereich von 0.20 m bis zu 6 m Tiefe abzudecken. Zusätzlich werden mehrere GPS-Antennen mit 100 bis 1000 MHz eingesetzt. Basierend auf diesen geophysikalischen Bildern werden anschließend Bodenproben an ausgesuchten Lokalitäten mittels einer Bohrung entnommen. An den Bodenproben werden Textur, pH, Gehalt an organischem Kohlenstoff, Elektrokonduktivität sowie Bodenwasser untersucht. Gegrabene Bodenprofile entlang von Hangabschnitten werden verwendet um Haupt- und Spurenelemente zu untersuchen. Diese Daten werden zur Sichtbarmachung der Verwitterungsfront verwendet. In den Bodenprofilen mit Schlüsselfunktion werden auch in situ-produzierte kosmogene Nuklide gemessen, um Bodenerosionsraten und Bodenmischungstiefen sichtbar zu machen. Alle gewonnen Daten werden mit den invertierten elektronischen EMI- und GPR-Parametern verarbeitet. Es wird betrachtet,, ob eine Übereinstimmung der EMI und/oder GPR-Daten mit den Verwitterungseinheiten vorliegt und eine Korrelation zwischen den Änderungen der elektrischen Konduktivität für tiefe (EMI) und hohe (GPR) Frequenzen und der Leitfähigkeit der bestimmten Parameter besteht. Wir werden weitere vorhandene Informationen von ebenfalls an Bodenprofil arbeitenden Projektgruppen bei unseren Auswertungen berücksichtigen. Somit werden wir das flächenhaft beschränkte Wissen über Verwitterungsfronten von mehreren Bodenprofilen durch geophysikalische Methoden erweitern. Wir versuchen die Verwitterungsfronten in größerem Maßstab in Lokalitäten mit unterschiedlichen klimatischen und vegetativen Bedingungen aufzuzeichnen.
Das Projekt "DeepEarthshape: Geomikrobiologie 'eisenmetabolisierende Bakterien als treibende Kraft für die Verwitterung von Silikat-Mineralen'" wird vom Umweltbundesamt gefördert und von Universität Tübingen, Zentrum für Angewandte Geowissenschaften (ZAG), Arbeitsgruppe Geomikrobiologie durchgeführt. Jahrzehntelange Forschung hat die zentrale Rolle von Mikroorganismen für Verwitterungsprozesse in geologischen Systemen gezeigt. Dieser wichtige mikrobielle Beitrag liegt u.a. darin begründet, dass Mikroorganismen Redox-Umwandlungsprozesse von in Mineralien eingeschlossenen Metallen katalysieren können. Im Rahmen dieser bisherigen Untersuchungen wurden v.a. verschiedene Mikroorganismen untersucht, die Eisen(II)-Minerale oxidieren oder Eisenoxid-Minerale reduzieren können, oder es wurde der Effekt von Fe(III)-reduzierenden Mikroorganismen auf Eisen(III)-haltige Tonminerale analysiert. Diese Prozesse mögen wichtige Reaktionen in Verwitterungungsprozessen sein, allerdings sind die erwähnten Minerale selbst Verwitterungsprodukte. Eisen-metabolisierende Bakterien könnten allerdings auch in größerem Maße zur vorherigen Entstehung von verwittertem Bodenmaterial beitragen, allerdings ist die Bedeutung solcher Prozesse bisher nicht bestimmt. Die Ökologie dieser Bakterien in Relation zum Alterungsprozesses des Bodens ist so gut wie unbekannt. Dieses fehlende Wissen der ökologischen Bedeutung ist unter anderem darin begründet, dass Eisen-metabolisierende Bakterien trotz ihrem signifikanten Einfluss auf die Biogeochemie oft in etwas geringerer Zahl, relativ zur gesamten mikrobiellen Population, vorkommen, und dadurch schwieriger zu untersuchen sind. Um den zu erwartenden bedeutenden Effekt von Eisen-metabolisierenden Bakterien auf die Entwicklung des Bodens zu untersuchen, ist eine ausgewählte Kombination aus hochsensiblen molekularen- und wachstums-basierten Experimenten nötig, welche für diese speziellen Mikroorganismen angepasst und entwickelt werden müssen oder bereits entwickelt worden sind. Die Hypothese dieses Projekts ist deshalb, dass sich die Gemeinschaft der Eisen-metabolisierenden Bakterien mit der geologischen Umgebung während der Ausbildung des Bodens gemeinsam mit- und weiterentwickeln wird, und deren Aktivität wiederum die Rate der Bodenausbildung beschleunigen wird. Im Rahmen des hier beantragten Projekts schlagen wir vor, diese Prozesse anhand der drastischen klimatischen Gradienten der chilenischen Küstenkordillere zu untersuchen. Hier kann die Korrelation zwischen Abundanz, Verteilung und Identität der Eisen-metabolisierenden Bakterien und der Art der vorkommenden Eisenquelle entlang des vertikalen Bodenprofiles unter Einwirkung von vier verschiedenen Klimaregimen untersucht werden. Wir werden unter anderem Mikrokosmos-Experimente durchführen, um den Einfluss dieser Bakterien auf die Verwitterungsrate von Eisensilikaten und Raten von Mineraltransformationen zu quantifizieren. Letzten Endes wollen wir damit zeigen, wie diese Mikroorganismen zur Ausgestaltung der Erdoberfläche beitragen.
Origin | Count |
---|---|
Bund | 11 |
Type | Count |
---|---|
Förderprogramm | 11 |
License | Count |
---|---|
open | 11 |
Language | Count |
---|---|
Deutsch | 11 |
Englisch | 9 |
Resource type | Count |
---|---|
Keine | 4 |
Webseite | 7 |
Topic | Count |
---|---|
Boden | 11 |
Lebewesen & Lebensräume | 11 |
Luft | 9 |
Mensch & Umwelt | 11 |
Wasser | 8 |
Weitere | 11 |