API src

Found 64 results.

Teilprojekt: Reaktion von Insekten auf Lücken im Wald - von der Gemeinschaft zu zellulären Prozessen

Das Projekt "Teilprojekt: Reaktion von Insekten auf Lücken im Wald - von der Gemeinschaft zu zellulären Prozessen" wird vom Umweltbundesamt gefördert und von Julius-Maximilians-Universität Würzburg, Lehrstuhl für Tierökologie und Tropenbiologie (Zoologie III), Ökologische Station Fabrikschleichach durchgeführt. Das Kronendach beeinflusst massive die mikroklimatischen Bedingungen eines Waldes und bestimmt damit die lokalen Habitat-Bedingungen für ektotherme Arten, die auf kleiner Skala agieren. In Mitteleuropa sind Waldarten mit Bindung an lichte Wälder aktuell stärker gefährdet als Arten der dichten Wälder. Dies spiegelt den Vorratsanstieg in den letzten hundert Jahren wider. Heutzutage wird das Kronendach durch natürliche Störungen aber auch durch Holznutzung beeinflusst. Die Differenzen im Mikroklima zwischen geschlossenen und offenen Waldbeständen können dabei größer sein als der aktuell beobachtete Anstieg der Temperatur durch die globale Erwärmung. Daher ist ein besseres Verständnis der Mechanismen hinter der Reaktion von Arten auf das Mikroklima sowohl für forstliches als auch naturschutzorientiertes Management von Bedeutung. In der Makroökologie hat die Reaktion von Arten auf Klimagradienten eine lange Tradition. Einige konsistente Muster haben zu ökogeographischen Regeln geführt. Diese sagen z.B. vorher wie die Antwort innerhalb und zwischen Arten auf sinkende Temperaturen, Feuchte oder generell auf harsche Umweltbedingungen aussieht. Wir beabsichtigen hier die Antwort dreier Insektengruppen, Totholzkäfer, Nachtschmetterlinge und Wanzen auf die Variation im Mikroklima unter Kontrolle der Ressourcenverfügbarkeit (Pflanzen, Totholz) zu untersuchen. Dazu werden wir zunächst einen bestehenden Datensatz aus 5 Waldgebieten (inklusive der Exploratorien) auswerten. Dabei werden wir auf drei Eigenschaften fokussieren, die sich in der Makroökologie als sensitiv erwiesen haben: Körpergröße, Flügel-Morphologie und Farbe. Im zweiten Schritt werden wir die Vorhersagen aus den Modellen in Schritt 1 mit neuen Daten aus dem Wald-Experiment der Exploratorien validieren. Im dritten Schritt werden wir anhand der Individuen im Experiment innerartliche Eigenschaft-Reaktionen ausgewählter Arten untersuchen. Im vierten Schritt werden wir Transkriptom-Sequenzierung an vier ausgewählten Arten durchführen, die experimentell in den Lücken und unter dem Kronendach exponiert werden. Damit versuchen wir transkriptionale Signaturen als Reaktion auf das Mikroklima zu identifizieren. Unsere Analysen zielen darauf ab die Mechanismen hinter den Reaktionen von Arten und Artengemeinschaften auf lichte und dichte Wälder besser zu verstehen.

Teilprojekt B 06: Verhalten und Transport von Mikroplastik in gestörten und ungestörten Böden

Das Projekt "Teilprojekt B 06: Verhalten und Transport von Mikroplastik in gestörten und ungestörten Böden" wird vom Umweltbundesamt gefördert und von Universität Köln, Geographisches Institut, Arbeitsgruppe Ökosystemforschung durchgeführt. Die Kontamination von Ökosystemen durch Mikroplastik (MP) wurde bislang vor allem für aquatische Systeme beschrieben. Inzwischen ist allerdings bekannt, dass auch Böden davon betroffen sind. Das Ziel dieses Teilprojekts ist es, ein grundlegendes mechanistisches Verständnis von Verhalten und Transport von MP-Partikeln in Böden in Abhängigkeit von den physikalischen und chemischen Eigenschaften der Kunststoffe zu erlangen. In dieser Phase des SFBs konzentrieren wir uns auf die Modellsysteme 'Durchflusszelle', 'Bodensäule' und 'Bodenkasten' und untersuchen die Teilaspekte (I) Transport von MP in porösen Medien und Böden, (II) Transport, Erosion und Deposition von MP an Bodenoberflächen und (III) Detektion, Quantifizierung und Visualisierung von MP in Böden. In (I) und (III) berücksichtigen wir zudem die Rolle von Bodenorganismen für Transport und Verteilung von MP-Partikeln in Böden. Das in diesem Teilprojekt gewonnene mechanistische Verständnis zum Verhalten und Transport von MP-Partikeln ist für eine wissenschaftlich fundierte Bewertung der Umweltrisiken von MP existierender Massenkunststoffe im Ökosystem Boden unerlässlich.

Pestizideffekte an den Rändern? Auswirkungen von agrochemischer Verschmutzung flussabwärts auf Organismen in Refugien

Das Projekt "Pestizideffekte an den Rändern? Auswirkungen von agrochemischer Verschmutzung flussabwärts auf Organismen in Refugien" wird vom Umweltbundesamt gefördert und von Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Institut für Umweltwissenschaften durchgeführt. Basierend auf mehreren Studien in den letzten zwei Jahrzehnten ist weitestgehend gesichert, dass Pestizide Wirbellosen-Gemeinschaften in Bächen beeinflussen, was sich in einer Zunahme der relativen Häufigkeit von toleranten Taxa äußert. Unser Verständnis der Reaktion und der Langzeitfolgen toxischer Effekte ist jedoch noch unzureichend in Bezug auf die räumliche Dynamik und Anpassungsprozesse. Modellierungsstudien zeigten, dass sich genetische Anpassungen an Pestizide, die zu einer erhöhten Toleranz führen, auch Organismen in unbelasteten Standorten beeinflussen können. Empirische Studien über das Potenzial von Pestizideffekten flussabwärts sich auf Organismen in unbelasteten Bachabschnitten fortzupflanzen sind jedoch selten. In diesem Projekt untersuchen wir für verschiedene Wirbellose, ob sich Pestizideffekte auf Organismen in Refugien ausbreiten können. Das Projekt profitiert von einem landesweiten Monitoringprogramm zu Pestiziden (Umsetzung des nationalen Monitorings kleiner Gewässer für Pestizide), das qualitativ hochwertige Pestiziddaten, hochauflösende physikochemische Daten sowie Gemeinschaftsdaten zu Wirbellosen und Kieselalgen ohne zusätzliche Kosten liefert. Wir werden drei wirbellose Arten, darunter einen Gammarid, eine Köcherfliege und eine Eintagsfliege, in landwirtschaftlichen Stellen mit hoher Pestizidtoxizität und in zwei Abständen innerhalb von Refugien (Rand von Refugien und weiter stromaufwärts) untersuchen. Mit Hilfe von Schnelltests werden wir die Toleranz der Wirbellosen bestimmen, um mögliche Anpassungen beurteilen zu können. Darüber hinaus werden wir die genetische Vielfalt und Energiereserven in Gammariden messen. Wir stellen die Hypothese auf, dass die Anpassung die genetische Vielfalt reduziert und dass diese Reduktion sich auf unbelastete Standorte am Rand des Refugiums ausbreitet. Darüber hinaus gehen wir nach dem Konzept der Ressourcenallokation davon aus, dass eine höhere Toleranz mit einer höheren Allokation von Energie in Abwehrmechanismen verbunden ist, was zu geringeren Energiereserven im Vergleich zu weniger toleranten Organismen führt. Insgesamt wird dieses Forschungsprojekt wesentlich zum Verständnis der Mechanismen beitragen, die der höheren Toleranz in belasteten Standorten, wie in einer früheren Studie beobachtet (Shahid et al. 2018), zugrunde liegen. Außerdem wird es unsere Abschätzung der Kosten der Verschmutzung für Organismen und Populationen in unbelasteten Standorten voranbringen.

Teilprojekt: Der Effekt von Landnutzung auf funktionelle Merkmale und Muster in Vogel- und Fledermausgemeinschaften

Das Projekt "Teilprojekt: Der Effekt von Landnutzung auf funktionelle Merkmale und Muster in Vogel- und Fledermausgemeinschaften" wird vom Umweltbundesamt gefördert und von Universität Ulm, Institut für Evolutionsökologie und Naturschutzgenomik durchgeführt. In meinem Projekt möchte ich verstehen, inwieweit die Zusammensetzung von Vogel- und Fledermausgemeinschaften entlang eines Landnutzungsgradienten variiert, und ob dies durch morphologische und ökologische Merkmale der Arten und ihrer Spezialisierung auf bestimmte Ressourcen, erklärt werden kann. Hierbei arbeite ich entlang eines Landnutzungsgradienten von bewirtschaftetem Grünland, über forstwirtschaftlich genutzte Waldbestände, bis hin zu urbanen Habitaten innerhalb der Bidiversitätsexploratorien.Vogel- und Fledermausarten werden auf allen Exploratorienflächen (N=300), in Dörfern (N=30) und auf den neu etablierten Waldexperimentierflächen (N=90) mit automatischen akustischen Aufnahmegeräten erfasst. Zudem werde ich eine umfangreiche Datenbank mit morphologischen und vokalen Merkmalen der Arten anlegen, die Mobilität und Wendigkeit im Flug sowie die akustische Perzeption der Habitat-Güte (Konkurrenz durch territoriale Gesänge von Artgenossen (Vögel) und Orientierung in unterschiedlich dichter Vegetation (Fledermäusen)) bestimmen. Unter Einbeziehung potentieller Ressourcenverfügbarkeit (Futter und Quartier) kann ich ableiten ob lokale Landnutzung das Vorkommen von Arten, basierend auf ihren funktionalen Merkmalen und /oder auf der Ressourcen Verfügbarkeit bedingt und dies zu funktionaler oder taxonomischer Verarmung der Artengemeinschaften führt. Ein Vergleich der Ergebnisse dieser Studie mit Daten früherer standardisierten Monitoringsaufnahmen von Vögeln und Fledermäusen 2008-2012 auf den gleichen Flächen, erlaubt es mir zudem, Rückschlüsse auf Veränderungen von Artvorkommen und der Artenzusammensetzungen über die letzten 10 Jahre zu ziehen. Auf Waldflächen werde ich außerdem die Veränderung in der Artenzusammensetzung nach Störung (Waldfällungsexperiment) erfassen und testen, ob das Vorkommen bestimmter Arten vorhersagbar ist. Mit einem funktionalen Habitat Model möchte zudem ich die Interaktion zwischen lokalen Habitatfaktoren und der umgebenden Landschaftsmatrix (Konnektivität/ Komplementarität) verstehen und bestimmen, inwieweit strukturelle Heterogenität der Landschaft die Erreichbarkeit von geeigneten Habitaten bedingt und ob die Komplementarität unterschiedlicher Habitattypen (z.B. ein naher Waldbestand an Grünland) negative Effekte lokaler Landnutzung puffern kann.Die Erkenntnisse meiner Studie sind essentiell um zugrundliegenden ökologischen Faktoren und Prozesse auf unterschiedlichen räumlichen Skalen, welche die Artengemeinschaften so mobiler Arten wie Vögel und Fledermäuse bedingen, zu verstehen. Dies ist eine grundlegende Voraussetzung Artverluste durch Landnutzungsveränderungen vorhersagen und eventuell abwenden zu können und damit nachhaltig die Funktion ökosystemarer Zusammenhänge in Agrikulturlandschaften zu gewährleisten.

Teilprojekt: Ökologische Mechanismen bei der Veränderung von Diversität entlang von Landnutzungsgradienten in temperaten Wäldern - vom Baum zur Waldlandschaft

Das Projekt "Teilprojekt: Ökologische Mechanismen bei der Veränderung von Diversität entlang von Landnutzungsgradienten in temperaten Wäldern - vom Baum zur Waldlandschaft" wird vom Umweltbundesamt gefördert und von Hochschule München, Fakultät 08 für Geoinformation durchgeführt. Bis heute ist die Wirkung von Waldstrukturen auf eine breite Biodiversität im Wald kaum verstanden. Seit MacArthur & MacArthur in den 1960er Jahren gezeigt haben, dass die Vogel-Diversität mit steigender vertikaler Heterogenität des Waldes ansteigt, wurden kaum konzeptionelle Fortschritte gemacht. Bis heute ist für viele Taxa noch nicht einmal geklärt, ob eher die Struktur eines Waldes oder die Artenzusammensetzung der Vegetation entscheidender ist. Da aber Waldmanagement fundamental die Struktur von Wäldern verändert, ist das Wissen um die Rolle der Waldstruktur als Treiber der Artenvielfalt essentiell, insbesondere wenn bei der Forstnutzung Biodiversität gefördert werden soll. Fortschritte in der Fernerkundung und die Entwicklung von Eigenschaftsdatenbanken und Stammbäumen auch für artenreiche Gruppen wie Insekten und Pilze in den letzten Jahren, eröffnen heute, bei geeignetem Design, neue Möglichkeiten. Die Biodiversitäts-Exploratorien stellen hier eine ideale und global einmalige Forschungsplattform dar, um die Rolle von Waldstruktur, geformt von der Landnutzung in temperaten Wäldern, zu erforschen. Unser Konsortium beabsichtigt die wichtigsten Treiber für Biodiversität in temperaten Wäldern zu identifizieren, die Mechanismen hinter der Veränderung in der Artenzusammensetzung zu verstehen, und ein generelles Framework für die Beziehung der 3-D Struktur und der Biodiversität zu erstellen. Unsere Ziele sind, i) existierende Daten zu 8 taxonomischen Gruppen in den Exploratorien zusammenzustellen; ii) funktionale und phylogenetische Distanzen für diese Taxa zu entwickeln bzw. bestehende zu erweitern; iii) eine Reihe von Waldstrukturen entlang der wichtigsten Achsen der Waldstruktur-Heterogenität auf Basis von LiDAR Daten zu berechnen; iv) mit Hilfe von RADAR Daten wichtige Heterogenitäts-Metriken auf die Regionale Landschaftsebene zu skalieren; v) den Einflusses von lokalen und regionalen Landschaftsstrukturen auf die Artenvielfalt zu ermitteln; und vi) diese Untersuchungen auf zwei weitere Waldgebiete mit einmaligen Landnutzungsgradienten in collinen Buchenwäldern und montanen bis hochmontanen Bergwäldern in Mitteleuropa auszudehnen.

Teilprojekt: Metabarcoding alter eukaryotischer DNA aus Chew Bahir, Ethiopia: Rekonstruktion der Folgen drastischer Umweltänderungen für die Biodiversität

Das Projekt "Teilprojekt: Metabarcoding alter eukaryotischer DNA aus Chew Bahir, Ethiopia: Rekonstruktion der Folgen drastischer Umweltänderungen für die Biodiversität" wird vom Umweltbundesamt gefördert und von Universität Potsdam, Institut für Biochemie und Biologie durchgeführt. Das Chew Bahir Drilling Projekt (CBDP) erbrachte tropische Sedimente aus den letzten 650000 Jahren. DNA-Metabarcoding an diesen Proben erschließt ein einzigartiges paläolimnologisches Archiv bezüglich Zeitspanne und zeitlicher Auflösung. In einer Pilotstudie konnten wir mittels Hybridization-Capture-basiertem Metabarcoding eukaryotische DNA aus den ca. 280 m langen Chew Bahir-Kernen in Sedimenten bis 70m Tiefe (ca. 150000 Jahren) analysieren. Dabei werden Sedimentproben einer Taxon- und Gen-spezifischen DNA-Anreicherung mit spezifischen Sonden ('baits') unterzogen und mittels Next-Generation-Sequencing analysiert. Wir wollen das Potenzial des DNA-Metabarcodings in den langen CBDP-Kernen weiter untersuchen. Unsere grundlegenden wissenschaftlichen Fragen sind: (1) Wie reagiert das Ökosystem auf kurze, aber signifikante Störungen, z.B. Dürren oder erhöhte Feuchtigkeit? Wir testen die Hypothese, dass einzelne Störungen das Ökosystem dauerhaft verändern, indem wichtige Komponenten des Ökosystems ausgetauscht werden. Da wir die Gesamtheit der Eukaryoten erfassen, können wir die Effekte für die Biodiversität quantifizieren und Folgen für Ökosystemfunktionen ableiten. (2) Was sind die Folgen globaler und lokaler Klimaveränderung, z.B. an Kipppunkten (tipping points)? Hier untersuchen wir, ob und wie ein Ökosystem infolge einer Störung von einem stabilen Zustand in einen anderen übergeht. Ein spezieller Fokus ist, ob ökologische Nischen nach einer Störung von den gleichen Taxa wiederbesiedelt werden oder ob sie durch andere Taxa ersetzt werden, wodurch sich Eigenschaften des Ökosystems verändern können. (3) Welche Langzeit-Trends finden sich in den Lebensgemeinschaften in Chew Bahir und anderen afrikanischen Sedimentkernen? Wir werden zeitliche Trends unserer Ziel-Eukaryotentaxa ermitteln, sowohl bezüglich der Artzugehörigkeit als auch bezüglich kryptischer genetischer Variation und (halbquantitativ) relativer Abundanz. Dies umfasst als Proxies etablierte Planktonorganismen (Ostracoda, Cladocera, Rotatoria, Diatomeen), aber auch wichtige terrestrische Arten (Insekten, Nagetiere, Huftiere, höhere Pflanzen). (4) Wie lange zurück in der Zeit können DNA-Reste im Chew Bahir und anderen HSPDP-Kernen extrahiert und analysiert werden? Hier werden wir Möglichkeiten DNA-basierter Detektion von Organismen in tieferen Schichten der Kerne (unter 70m) evaluieren. Weiterhin werden wir unsere Analyseprotokolle optimieren, um die DNA-Ausbeute unserer Zieltaxa zu maximieren und methodische Verzerrungen zu minimieren. Darüberhinaus werden wir Möglichkeiten und Grenzen halbquantitativer Abundanzschätzungen mittels NGS und qPCR zwischen Kernschichten und Taxa evaluieren. Wir analysieren gezielt Sedimente vor, während und nach drastischen Umweltveränderungen (vor allem Transitionen zwischen Dürren und Feuchtperioden), die in lithologischen Untersuchungen unserer Kooperationspartner identifiziert werden.

Teilprojekt: Einfluß von Landnutzung auf Bestäubergesundheit und Bestäubungsleistung

Das Projekt "Teilprojekt: Einfluß von Landnutzung auf Bestäubergesundheit und Bestäubungsleistung" wird vom Umweltbundesamt gefördert und von Universität Ulm, Institut für Evolutionsökologie und Naturschutzgenomik durchgeführt. Ungefähr 90% der landwirtschaftlichen Flächen Deutschlands werden intensiv bewirtschaftet mit dem Ziel den Ertrag pro Fläche zu steigern. Diese Intensivierung der Agrarflächen führt zu einer überwiegend monotonen und verarmten Landschaft in der Bestäuber durch ein geringes Angebot an Nahrung und Nistmöglichkeiten, Habitatfragmentierung und Pestizide negativ beeinflusst werden können. Diese Faktoren, alleine oder in Kombination, können bei Bestäubern Stress auslösen, was zu morphologischen Fehlentwicklungen (z.B. asymmetrische Flügel), physiologischen Veränderungen (z.B. veränderter Pheromonproduktion), oder erhöhter Krankheitsanfälligkeit führen kann. Diese Verschlechterung der Bestäubergesundheit kann die Lebensdauer von Individuen verkürzen, aber beeinflusst auch Bestäuberverhalten und -aktivität und somit letztendlich die erbrachte Bestäubungsleistung. Um den Erhalt von Bestäubung in Agrarlandschaften zu gewährleisten, ist es daher unumgänglich den Zusammenhang zwischen intensiver Landnutzung, Bestäubergesundheit und Bestäubungsleistung zu verstehen. In unserem Projekt kombinieren wir Freilandmessungen in Agrarlandschaften mit Labor- und Freilandexperimenten, um zu verstehen, wie Änderungen im Landmanagement Bestäubergesundheit und Bestäubungsleistung beeinflussen. Wir werden Asymmetrie in der Flügelentwicklung, Pheromonproduktion, Fettkörpergröße und Virenbefall als Indikatoren für Bestäubergesundheit und Bestäuberverhalten und -aktivität, wie z.B. Flugdistanzen und -verhalten oder gesammelter Pollen, als Indikator für Bestäubungsleistung messen und mit Daten über Landnutzungintensität auf den 150 Graslandfläche der Biodiversitätexploratorien kombinieren. Die Landnutzungsintensität der einzelnen Flächen setzt sich aus dem Landnutzungsindex (LUI), Pflanzendiversität, Pestizideinsatz und Umgebungsparametern zusammen. Mit Bombus lapidarius und Episyrphus balteatus - Vertreter zwei wichtiger Bestäubergruppen: Bienen und Schwebfliegen - als Fokusarten, werden wir testen, ob Änderungen in der Bestäubergesundheit durch unterschiedliches Landmanagement zu Änderungen in der Bestäubungsleistung führen. Zudem werden wir experimentell verschiedene Landnutzungszenarien (Nahrungsverfügbarkeit und Insektizideinsatz) simulieren, um zu untersuchen, wie Einzelfaktoren und deren Kombination zu Änderungen in der Bestäubergesundheit beitragen. Zusammenfassend wird unsere Studie aufzeigen, ob sich Änderungen in der Bestäubergesundheit durch Intensivierung der Landnutzung negativ auf die Bestäubungsleistung auswirken und welche Änderungen die treibenden Faktoren dahinter sind. Somit wird diese Studie wichtige Informationen für Managementmaßnahmen zur Verbesserung der Bestäubergesundheit und dem Erhalt von Bestäubungsleistung in Agrarlandschaften liefern.

Teilprojekt: EXClAvE - Landnutzungseffekte auf Pflanzen- und Bakteriengemeinschaften in einem experimentellen 'common garden' Ansatz

Das Projekt "Teilprojekt: EXClAvE - Landnutzungseffekte auf Pflanzen- und Bakteriengemeinschaften in einem experimentellen 'common garden' Ansatz" wird vom Umweltbundesamt gefördert und von Universität Marburg, Fachbereich 17: Biologie, Arbeitsgruppe Evolutionäre Ökologie der Pflanzen durchgeführt. In der nächsten Phase der Biodiversitäts Exploratorien sollen Experimente dabei helfen die Effekte verschiedener Landnutzungskomponenten auf Ökosysteme zu ermitteln. 'Common garden' Experimente werden genutzt, um die Umweltheterogenität zu minimieren, die ansonsten interessante Effekte verschleiert. Wir planen Grasnarben, die von n = 42 Plots der Biodiversitäts Exploratorien entnommen werden, in einem 'common garden' auszubringen wo die Intensität der Mahd und der Düngung manipuliert werden soll. In den nächsten drei bis 15 Jahren werden die Veränderungen in den Pflanzen- und Bakteriengemeinschaften auf den Grasnarben verfolgt. Hierfür wird die Zusammensetzung und Diversität der Pflanzen und Bakterien (next-generation 16S rRNA gene amplicon sequencing) ermittelt. Zusätzlich werden noch 3D-Modelle der Pflanzengemeinschaften, die durch multispektrale Information ergänzt werden, erstellt (PlantEye F500, Phenospex, Heerlen, The Netherlands). Diese Modelle erlauben die Errechnung von Parametern, die ganze Pflanzengemeinschaften charakterisieren. Änderungen in den Pflanzen- und Bakteriengemeinschaften werden mit der Landnutzung der Plots in den vergangenen Jahren ins Verhältnis gesetzt. Wir erwarten, dass Gemeinschaften, die aus verschiedenen Plots stammen, aber die gleiche Landnutzung erfahren in Ihrer Zusammensetzung und Diversität konvergieren; Gemeinschaften aus den gleichen Plots, die aber unterschiedliche Landnutzung erfahren, sollten divergieren. Das Projekt nutzt das Vorwissen zu den einzelnen Plots in Bezug auf Landnutzung und Artenzusammensetzung, liefert neuartige Daten für die Biodiversitäts Exploratorien, und stellt einen unabhängigen und neuartigen Beitrag zu der Frage, wie Landnutzug Ökosysteme beeinflusst, dar.

Teilprojekt: MacroBEEs: Wie beeinflusst Landnutzung Interaktionen zwischen Bienen und Pflanzen sowie deren mutualistische Kosequenzen?

Das Projekt "Teilprojekt: MacroBEEs: Wie beeinflusst Landnutzung Interaktionen zwischen Bienen und Pflanzen sowie deren mutualistische Kosequenzen?" wird vom Umweltbundesamt gefördert und von Universität Würzburg, Fakultät für Biologie, Center for Computational and Theoretical Biology (CTB) durchgeführt. Interaktionen zwischen Bienen und Blütenpflanzen sind Teil eines 'berühmten' und evolutiv 'alten' Mutualismus, welcher die reproduktive Fitness von Pflanzen und Bienen maßgeblich bestimmen kann. Die Struktur, Stabilität und Fitness-Auswirkungen hängen dabei von der Diversität und Zusammensetzung der interagierenden Gemeinschaft ab, welche ihrerseits stark von der vorherrschenden Landnutzung beeinflusst werden. So nimmt die Diversität von Interaktionspartnern und Interaktionen mit zunehmend intensiverer Landnutzung ab. Welche Auswirkungen das auf die reproduktive Fitness der Interaktionspartner hat, ob diese Auswirkungen abhängig von der Art oder Gemeinschaft variieren, und wie das mit der Struktur des Interaktionsnetzwerkes zusammen hängt, wurde bisher jedoch kaum experimentell untersucht und soll nun in MacroBEEs geklärt werden. Dabei bauen wir auf bereits bestehenden Daten zu Interaktionsnetzwerken abhängig von Landnutzung auf und nutzen sowohl das etablierte Plot-Netzwerk als auch die neuen 'multi-grassland experiment' Plots, um besser zu verstehen, wie sich Landnutzung unabhängig von anderen Faktoren auf die reproduktive Fitness der Interaktionspartner auswirkt. Im Rahmen von drei 'Work Packages' (WPs), sollen folgende Fragen geklärt werden:1. Wie wirken sich Landnutzungs-bedingte Veränderungen in der Diversität und Zusammensetzung von Pflanzengemeinschaften auf die Besuchsmuster und Furagierentscheidungen von wilden Bienen und Honigbienen aus (WP1)?2. Wie beeinflussen diese Furagierentscheidungen die taxonomische und chemische (Nährstoff-) Zusammensetzung der erstellten (Pollen und Nektar) Diäten und damit die Gesundheit und Fitness der Tiere (WP2)?3. Wie beeinflussen Veränderungen der Besuchsmustern den Transfer von Pollen innerhalb und zwischen Pflanzenarten und folglich den Samenansatz und damit den Bestäubungserfolg von Pflanzen (WP3)? Um diese Fragen zu beantworten, werden wir ganz unterschiedliche Methoden anwenden (Beobachtungen im Feld, DNA Metabarcoding von Pollen von Bienen und Blüten, chemischer Analytik, Fütterungsversuche mit Bienen im Labor, Netzwerkanalysen und Modeling) und eng mit anderen geplanten sowie den Kern-Projekten zusammenarbeiten. Dabei können wir auf Daten zu Bestäubernetzwerken in Abhängigkeit von Landnutzung seit 2008 zurückgreifen, was die einzigartige Möglichkeit eröffnet, Langzeiteffekte von Landnutzung auf Netzwerk Stabilität, Widerstandfähigkeit, Interaktions-Asymmetrien usw. dieses bedeutenden Mutualismus zu untersuchen. Indem wir zusätzlich die Mechanismen untersuchen, welche den Auswirkungen von Landnutzung auf den Reproduktionserfolg von Bienen und Pflanzen zu Grunde liegen, ermöglicht MacroBEEs ein weitreichenderes Verständnis darüber, wie sich Landnutzung auf die funktionale Stabilität von Bestäubernetzwerken und damit die Sicherheit der Bestäubungsleistung in Pflanzengemeinschaften auswirkt.

Teilprojekt: Prädation von Pflanzensamen und Vielfalt von Arthropodengemeinschaften als Reaktion auf die Landnutzungsintensität (SPRINT)

Das Projekt "Teilprojekt: Prädation von Pflanzensamen und Vielfalt von Arthropodengemeinschaften als Reaktion auf die Landnutzungsintensität (SPRINT)" wird vom Umweltbundesamt gefördert und von Westfälische Wilhelms-Universität Münster, Institut für Landschaftsökologie durchgeführt. Die Intensivierung der Landnutzung ist ein wichtiger Faktor für den Verlust der biologischen Vielfalt in terrestrischen Ökosystemen. Studien in Graslandökosystemen haben gezeigt, dass Veränderungen im lokalen Pflanzenreichtum Effekte auf höhere trophische Ebenen, biotische Interaktionen und damit verbundene Ökosystemprozesse haben können. Einer dieser Prozesse, die Prädation auf Pflanzensamen, kann schwerwiegende Auswirkungen auf die Demographie von Pflanzenarten haben und letztlich die Artenvielfalt und die Gemeinschaftsstruktur verändern. Bislang fehlt uns ein klares Verständnis, wie sich Samen-Prädation auf Veränderungen in Grasländern reagieren. Bisher waren die Fortschritte begrenzt durch die Kluft zwischen Biodiversitätsexperimenten einerseits, und reinen Beobachtungsstudien andererseits. Ein neues Grünlandexperiment zielt darauf ab, dies zu überwinden, indem es die Managementintensität einzelner Faktoren der Landnutzung experimentell erhöht oder verringert. Darüber hinaus wird der Reichtum der lokalen Pflanzenarten durch die Zugabe von Saatgut beeinflusst. Das neue Experiment dient damit als wichtige Brücke zwischen Beobachtungs- und experimentellen Grünland-Biodiversitätsstudien. In unserem Projektantrag planen wir auf allen 75 Plots des neuen Experimentes zu arbeiten. Wir werden die Beziehungen zwischen der Pflanzengemeinschaft und den bodenbewohnenden Arthropoden und dem Ökosystemprozess der Samen-Prädation als Reaktion auf Veränderungen der Landnutzungsintensität und der Vegetationsmerkmale untersuchen: (i) Untersuchung der Veränderungen der Vielfalt an Arthropodenarten und funktionellen Gruppen, der Merkmalsvielfalt und der Zusammensetzung der Gemeinschaft in allen drei Exploratorien. Dies ermöglicht es erstmals, die Auswirkungen einzelner Komponenten der Landnutzung, d.h. der Bewirtschaftung durch Mähen und Weiden sowie der Düngung, zu entflechten. (ii) Quantifizierung der Ökosystemprozessrate der Samen-Prädation und des relativen Beitrags der verschiedenen Taxa der Samenprädatoren. Um dieses Ziel zu erreichen, werden wir ein neuartiges Feldexperiment unter realen Bedingungen durchführen, dass in das neue Grünlandexperiment im Hainich-Dün eingebettet ist.(iii) Wir werden die Ernährungspräferenzen von Samenprädatoren qualitativ und quantitativ mit zusätzlichen Messungen erfassen. Wir werden Merkmalseigenschaften der Arten wie Körpergröße und Mandibelbreite mit Hilfe neuartiger HD-Mikroskopiertechniken ermitteln. Messungen der elementaren Zusammensetzung von Konsumenten und ihren Ressourcen werden neue Erkenntnisse über Fraßinteraktionen liefern.Das Projekt wird eng mit anderen Projekten der Biodiversitäts-Exploratorien zusammenarbeiten. Insgesamt kombiniert unser neuartiger Ansatz Manipulationen von Diversität und Messungen einer Prozessrate mit reellen Formen der Landnutzung. Er wird einen wichtigen Beitrag zum Verständnis der Rolle der Pflanzendiversität und der Intensität der Landnutzung für die Samen-Prädation liefern.

1 2 3 4 5 6 7