API src

Found 449 results.

Related terms

Fahrzeug und Plakette

In der Berliner Umweltzone müssen Fahrzeuge mit der grünen Plakette gekennzeichnet sein. Fahrzeuge, die im Ausland zugelassen sind, benötigen ebenfalls eine grünen Plakette. Die Plakette muss an der Windschutzscheibe angebracht sein und erleichtert die Kontrolle der Umweltzone. Die Plaketten gelten in allen Umweltzonen in Deutschland. Ob Ihr Fahrzeug eine grüne Plakette, ggf. mit Partikelfilternachrüstung, erhält, können Sie für in Deutschland zugelassene Fahrzeuge der Tabelle unten oder über die Internetdatenbank www.feinstaubplakette.de erfahren. Elektrofahrzeuge und Plug-in-Hybrid-Fahrzeuge mit einem E-Kennzeichen sind in Berlin aufgrund einer Berliner Allgemeinverfügung von der Plakettenpflicht befreit. Im Ausland zugelassene Elektrofahrzeuge können mit einer blauen E-Plakette nach Anlage 3a FZV gekennzeichnet werden und damit in der Umweltzone fahren. Ohne grüne Plakette oder Ausnahmegenehmigung in der Umweltzone zu fahren oder zu parken ist eine Ordnungswidrigkeit und kostet 100 Euro Bußgeld . Rechtliche Grundlage für die Kennzeichnung mit Plaketten ist die 35. Verordnung zum Bundes-Immissionsschutzgesetz – Kennzeichnungsverordnung , die im Jahr 2007 erlassen wurde. Das System wurde seitdem nicht weiterentwickelt, so dass auch die neusten Fahrzeuge mit dem Abgasstandard Euro 6 nur eine grüne Plakette erhalten. Mehr Informationen zur Kennzeichnungsverordnung finden Sie weiter unten. Wo bekomme ich die Plakette? Läuft die Gültigkeit der Plakette irgendwann ab? Wieviel kostet die Plakette? Was regelt die Kennzeichnungsverordnung? Wie sind die Schadstoffgruppen definiert? Zu welcher Schadstoffgruppe gehört mein Fahrzeug? Wo finde ich meine Schlüsselnummer in den deutschen Fahrzeugpapieren? Zuordnung der Schlüsselnummern zu den Schadstoffgruppen/Plakette Wie werden ausländische Fahrzeuge den Schadstoffgruppen zugeordnet? Ausgabestellen sind die Kfz-Zulassungsbehörde ( Landesamt für Bürger- und Ordnungsangelegenheiten – LABO ) und die Abgasuntersuchungsstellen wie TÜV, DEKRA, GTÜ, FSP, KÜS und für Abgasuntersuchungen autorisierte Autowerkstätten. Die Ausgabestelle prüft anhand der Fahrzeugpapiere, zu welcher Schadstoffgruppe das Fahrzeug gehört und welche Plakette es erhält. Daher muss das Fahrzeug selbst nicht vorgeführt werden. Plaketten können beim Feinstaubplaketten-Shop der Berliner Kfz-Zulassungsbehörde über folgenden Link online bestellt werden: https://www.berlin.de/labo/mobilitaet/kfz-zulassung/feinstaubplakette/shop.85047.php Für die Ausstellung und Versand der Plakette wird eine Gebühr von 6 Euro berechnet. Durch Bearbeitungszeit und Versandzeiten kann es 7 bis 14 Tage bis zum Erhalt der Plakette dauern. Auch Fahrzeuge, die im Ausland zugelassen sind , benötigen eine Plakette. Sie kann z.B. auf der englischsprachigen Web-Site der Kfz-Zulassungsbehörde in Berlin unter folgendem Link https://www.berlin.de/labo/mobilitaet/kfz-zulassung/feinstaubplakette/shop.86595.en.php bestellt werden, sofern die für die Zuteilung der Plakette notwenigen Angaben aus den Fahrzeugpapieren, z.B. durch eine Herstellerbescheinigung für die Zulassungsbehörde erkennbar hervorgehen. Die erforderlichen Fahrzeugpapiere oder der Fahrzeugschein sind eingescannt als Anhang zur E-Mail beizufügen oder als Kopie per Post zu senden. Insbesondere Touristen und anderen Berlin-Besuchern aus dem Ausland ist zu empfehlen, die Plakette ca. 3 Wochen vor dem Berlin-Aufenthalt zu beantragen, um eine pünktliche Zustellung an den Heimatort zu gewährleisten. Zusammenfassende Informationen für ausländische Touristen sind in einem Flyer erhältlich. Die Gültigkeit der Plakette ist nicht befristet. Sie brauchen jedoch eine neue Plakette, wenn Sie Ihr Fahrzeug ummelden und sich dabei das Kfz-Kennzeichen ändert, denn auf der Plakette muss das aktuelle Kfz-Kennzeichen eingetragen sein. Eine neue Plakette ist auch erforderlich, wenn das eingetragene Kennzeichen nicht mehr lesbar ist, weil z.B. die Farbe verblasst ist. In der Kennzeichnungsverordnung des Bundes oder anderen Bundesvorschriften wurde keine einheitliche Gebühr für die Plakette festgelegt. Privatwirtschaftliche Ausgabestellen können daher frei kalkulieren. Bei der Zulassungsbehörde Berlin kostet die Plakette 5,- €, bei online-Bestellung mit Versand 6,- €. Die “Kennzeichnungsverordnung zum Bundes-Immissionsschutzgesetz (35. BImSchV)”: http://www.gesetze-im-internet.de/bimschv_35/BJNR221810006.htmlregelt die Kennzeichnung von Fahrzeugen nach Schadstoffgruppen mit Plaketten für die Windschutzscheibe sowie Ausnahmen von Fahrverboten. Sie definiert vier Schadstoffgruppen, die sowohl für Pkw als auch für Lkw gelten. Die Verordnung schafft damit die Voraussetzungen für die Einführung von Umweltzonen mit emissionsabhängigen Fahrverboten. Durch die Kennzeichnungsverordnung selbst werden keine Umweltzonen oder Fahrverbote festgelegt. Dies erfolgt durch die zuständigen Behörden in Ländern und Kommunen auf der Grundlage von Luftreinhalteplänen, wenn die Schadstoffgrenzwerte überschritten werden und der Verkehr eine wichtige Ursache ist. Die vier Schadstoffgruppen orientieren sich an den Euro-Normen von Diesel-Fahrzeuge zum Zeitpunkt der Erstellung der Verordnung im Jahr 2007. Durch Nachrüstung mit einem Partikelfilter können Diesel-Fahrzeuge höhere Schadstoffgruppen erreichen. Für Fahrzeuge mit Otto-Motor (“Benziner”) gibt nur zwei Einstufungen. Im Detail können sich aufgrund der Komplexität der Abgasnormen Abweichungen ergeben. Die Zuordnung eines in Deutschland zugelassenen Fahrzeugs zu einer Schadstoffgruppe erfolgt daher anhand seiner Emissionsschlüsselnummer. Die Zuordnung der Plaketten zu einem Fahrzeug ergibt sich aus der Emissionsschlüsselnummer, die in den Fahrzeugpapieren eingetragen ist; ggf. zusammen mit der Partikelfilternachrüstung. Sie können die Plakette für Ihr Fahrzeug auch in der Internetdatenbank www.feinstaubplakette.de ermitteln. 1) Im Falle von Gasfahrzeugen nach Richtlinie 2005/55/EG (vormals 88/77/EWG) 2) Pkw mit Schlüsselnummer “27” bzw. “0427” und der Klartextangabe “96/69/ EG I” mit einer zulässigen Gesamtmasse (zGM) vom mehr als 2500 kg ist nach Anhang 2 Abs. 1 Nr. 4 n) der Kennzeichnungsverordnung eine grüne Plakette zuzuteilen. Dies dann, wenn nachgewiesen wird, dass der Pkw die Anforderungen der Stufe PM 1 der Anlage XXVI StVZO einhält. Fahrzeuge der Euronorm 5 oder 6 sowie Fahrzeuge mit Antrieb ohne Verbrennungsmotor (z.B. Elektromotor, Brennstoffzellenfahrzeuge) gehören zur Schadstoffgruppe 4 und erhalten eine grüne Plakette. Spezielle Plaketten für emissionsarme Fahrzeuge, z.B. für Fahrzeuge mit der Euronorm 6, wurden bisher nicht entwickelt. Elektrofahrzeuge mit E-Kennzeichen dürfen ohne Plakette in der Berliner Umweltzone fahren. Erläuterungen zu den Partikelminderungsstufen PM und PMK Die Straßenverkehrszulassungsordnung (StVZO) regelt die technischen Anforderungen für die Nachrüstung mit Partikelminderungssystemen. Sie definiert auch die Einteilung in die Partikelminderungsklassen PM 01 bis PM 4 (für Pkw) und PMK 01 bis PMK 4 (für Lkw). Eingebaute Partikelfilter müssen die vorgegebenen Anforderungen erfüllen, damit das Fahrzeug die entsprechende Plakette führen darf. siehe: Fahrzeuge aus dem Ausland Umweltzone: alle Straßen Kostenlose Android App zum Verlauf der Umweltzone Formulare Rechtsvorschriften

Lärm durch Laubbläser und Laubsauger

Auf Straßen und Wegen stellt Laub bei Regen und Nässe eine Unfallgefahr dar. Bei der Beseitigung von Laub greifen viele Städte und Gemeinden häufig zu motorgetriebenen Laubbläsern oder Laubsaugern. Auch in privaten Gärten werden diese Geräte gerne als Hilfe zum Laub sammeln und entsorgen genutzt. Laubbläser mit Verbrennungsmotoren erzeugen am Ohr der betreibenden Person einen Schalldruckpegel zwischen 83 und 90 Dezibel (dB(A)). Das ist in etwa so laut wie ein Presslufthammer. Dabei gilt nach Meinung von Fachleuten eine Dauerbelastung ab 80 dB(A) als schädigend für das menschliche Ohr. Deshalb wundert es nicht, dass der Lärm von Laubbläsern und Laubsaugern mit klassischen Benzin- Verbrennungsmotoren häufig als besonders belästigend empfunden wird. Lärm und Emissionen sind heutzutage in vielen Einsatzbereichen vermeidbar, denn wesentlich leisere und emissionsärmere Laubbläser und Laubsauger mit elektrischen Antrieben haben sich am Markt bewährt. Je nach Einsatzbedingungen und Leistung halten die Akkus nach Herstellerangaben bis zu elf Stunden – damit ist auch ein professioneller Einsatz gewährleistet. Bei vergleichbarer Leistung liegt der Schallleistungspegel eines modernen Akku-Laubbläsers heute bis zu 10 dB(A) unter dem Schallleistungspegel eines Laubbläsers mit Benzinmotor. Sollen nur kleine Flächen vom Laub befreit werden, können Akku-Laubsauger verwendet werden, deren Schallleistungspegel nochmals geringer ist. Diese deutliche Lärmminderung schont nicht nur die Nerven in der Nachbarschaft, auch Nasen und Lungen profitieren von den Akkulösungen und Elektroantrieben, da keine Verbrennungsabgase mehr entstehen. In der Lärmschutzverordnung für Geräte und Maschinen ist die Kennzeichnungspflicht für Laubbläser und Laubsauger geregelt. Alle Geräte dieser Art, die neu auf den Markt kommen, müssen mit einer Kennzeichnung versehen werden, auf der die Hersteller den Schallleistungspegel angeben, der garantiert nicht überschritten werden darf. Die Verordnung regelt aber auch, welche Geräte zu welcher Zeit und an welchem Ort eingesetzt werden dürfen. Demnach dürfen besonders laute Geräte in Wohngebieten grundsätzlich nur werktags von 09:00 Uhr bis 13:00 Uhr und von 15:00 Uhr bis 17:00 Uhr genutzt werden. Das gilt sowohl für die private als auch für die professionelle Nutzung. Örtliche Bestimmungen können die Betriebszeiten weiter einschränken. Weitere Informationen zum Thema „Lärm im Alltag sind zu finden beim Aktionsbündnis „NRW wird leiser“: www.nrw-wird-leiser.nrw.de Vor allem für private und kleinere Flächen sollte geprüft werden, ob ein Laubbläser oder Laubsauger wirklich benötigt wird, oder ob das Laub nicht ebenso schnell und einfach mit einem Laubrechen beseitigt werden kann. Damit werden nicht nur Umwelt und Gesundheit geschont, sondern auch kleine Lebewesen. Denn vor allem durch Laubsauger werden viele wertvolle Kleintiere wie Regenwürmer oder Käfer mit eingesaugt und vernichtet, die für die Bodenverbesserung wichtig sind. Zudem hilft es, Energie zu sparen, wenn auf den Einsatz einen Laubbläsers oder Laubsaugers verzichtet wird. zurück

7. Maschinenbauliche Einrichtungen

7. Maschinenbauliche Einrichtungen 7.1 Hinsichtlich der einzelnen Komponenten der maschinenbaulichen Einrichtungen ist die Regel 2.1 zu beachten. Dies gilt insbesondere für Hauptantriebs- und Hilfsmotoren einschließlich ihrer Starteinrichtungen, Verschlussvorrichtungen sowie für Öffnung, Anordnung und Querschnitt der Zuluftleitung und Fortluftöffnung, Lenzsysteme und kombinierte Lenz-/Seewassersysteme einschließlich Alarmeinrichtungen in geschlossenen Maschinenräumen, Brennstoffsysteme und Brennstofftanks, Brennstoffleitungen aus Stahlrohren und in begrenztem Umfang eingesetzte Schläuche, Steuerung und Antriebsanlagen, Propellerwellen und Getriebe, 7.2 Hauptantriebsmotoren müssen Dieselmotoren oder Elektromotoren sein. Benzinmotoren sind nur als Außenbordmotoren zulässig. 7.3 Hauptantriebsmotoren müssen mit einem Typenschild ausgerüstet sein. Auf dem Typenschild der Hauptantriebsmotoren sind nachstehende Angaben vorzusehen: Nennleistung als Dauerleistung und zugehörige Nenndrehzahl, Motornummer, Baujahr, Typenbezeichnung des Motors, Hersteller. 7.4 Die in Kleinfahrzeugen verbauten Akkumulatoren müssen wartungsfrei sein. 7.5 Anzahl und Kapazität von Lenzpumpen müssen der nachfolgenden Tabelle entsprechen, unbeschadet der Regel 9.7: 3,60 m ≤ L < 8 m 8 m ≤ L < 12 m 12 m ≤ L < 24 m Kraftgetriebene Lenzpumpe --- 1 1 Handlenzpumpe 1 1 1 Kapazität 5 m³/h 8 m³/h 12 m³/h Zum Abpumpen von ölhaltigen Rückständen in der Bilge ist eine Handlenzpumpe vorzusehen. Sofern der Hauptantrieb über einen Elektromotor und Akkumulatoren erfolgt, sind gesonderte Bauvorschriften zu beachten, welche mit der Berufsgenossenschaft abzustimmen sind. 7.6 Für alle Kleinfahrzeuge ist eine Notsteuermöglichkeit vorzusehen, die im Bedarfsfall schnell in Betrieb genommen werden kann. Kleinfahrzeuge, die mit einer kraftbetriebenen Hauptruderanlage ausgerüstet sind, müssen über eine Hilfsruderanlage verfügen. Die Hilfsruderanlage muss stark genug und in der Lage sein, das Kleinfahrzeug bei einer für die Steuerfähigkeit ausreichenden Geschwindigkeit steuern zu können. Bei Rudern mit Kraftantrieb muss die Ruderlage am Hauptruderstand angezeigt werden. Bei Kleinfahrzeugen mit einer mechanischen Hauptruderanlage ist eine Notpinne ausreichend. Bei Kleinfahrzeugen mit einer Länge unter 5 m ist ein Satz Paddel ausreichend. Stand: 30. November 2024

Langfristige Entwicklung der Luftqualität

Durch eine Vielzahl von Maßnahmen ist die Berliner Luft in den letzten drei Jahrzehnten deutlich besser geworden und die Konzentration von Luftschadstoffen langsam aber über den langen Zeitraum doch deutlich zurückgegangen. Dadurch konnten die Immissionsgrenzwerte für Partikel-PM 10 (Feinstaub) in Berlin schon seit einigen Jahren flächendeckend eingehalten werden und auch die flächendeckende Einhaltung des Grenzwertes für das Jahresmittel von Stickstoffdioxid von 40 µg/m³ wird 2020 voraussichtlich erreicht werden. Die folgenden Abbildungen zeigen den langjährigen Verlauf der mittleren Luftbelastung einzelner Schadstoffe in den drei Belastungsregimen Verkehr (Hauptverkehrsstraßen), innerstädtischer Hintergrund und Stadtrand. Für die Luftschadstoffe Stickstoffdioxid, Partikel PM 10 und Ozon werden die langzeitlichen Entwicklungen auf Basis eines Differenzenmodels analog zum Jahresbericht 2019 ermittelt. Die Methodik ist im Jahresbericht 2019 genauer erklärt. Die Langzeittrends der weiteren Luftschadstoffe werden durch arithmetische Mittelwertbildung bestimmt. Stickstoffdioxid Schwebstaub / Partikel PM 10 Partikel PM 2,5 Ozon Polyzyklische aromatische Kohlenwasserstoffe (PAK) Schwefeldioxid Benzol Kohlenmonoxid Stickstoffdioxid gehört zu den Luftschadstoffen, die überwiegend vom Straßenverkehr verursacht werden. Die nebenstehende Grafik zeigt die langjährige Entwicklung der NO 2 -Belastung der automatischen Messstellen am Stadtrand, im innerstädtischen Hintergrund und an Hauptverkehrsstraßen sowie der acht beurteilungsrelevanten Passivsammlerstandorte (Passivsammler = PS) (weiter Informationen finden sich im Jahresbericht 2019. Bis Mitte der neunziger Jahre konnte durch die Ausrüstung der Berliner Kraftwerke mit Entstickungsanlagen und die Einführung des geregelten Katalysators für Ottomotoren ein Rückgang der NO 2 -Belastung erreicht werden. Durch eine zunehmende Anzahl an Dieselfahrzeugen wurde dieser Trend jedoch weitestgehend aufgehoben, so dass bis 2014 nur eine sehr langsame Abnahme der NO 2 -Belastung verzeichnet wurde. Auffällig sind die erhöhten Jahresmittelwerte von 2006. Vor allem für die Straßenmessstellen zeigen diese hohen Jahresmittelwerte eindrucksvoll den Einfluss von meteorologischen Bedingungen auf die Konzentration von Luftschadstoffen, denn das Jahr 2006 war geprägt durch eine hohe Anzahl windschwacher Hochdruckwetterlagen und ungünstigen meteorologischen Ausbreitungsbedingungen. In den Jahren zwischen 2008 und 2015 blieben die NO 2 -Jahresmittelwerte auf einem annähernd gleichbleibenden Niveau, da Emissionsminderungen nicht in dem gesetzlich vorgeschriebenen Maß erfolgten. Besonders Diesel-Pkw der Schadstoffklasse Euro 5 stießen durch Software-Manipulation im realen Betrieb sehr viel mehr NOx aus, als von den Herstellern angegeben wurde bzw. als sich auf dem Prüfstand ergab. Auffällig ist, dass seit 2016 die NO 2 -Belastung an Straßenmessstellen stark sank, am Stadtrand und im innerstädtischen Hintergrund aber keine bzw. nur eine sehr geringe Veränderung zu beobachten war. Dies unterstreicht nochmals den starken Einfluss der Verkehrsemissionen auf die an den verkehrsnahen Stationen gemessenen Immissionen. Von 2013 bis 2019 ergab sich für die sechs automatischen Straßenmessstellen ein Rückgang um 24 %, wobei mit einem absoluten Rückgang von 5 µg/m³ die Belastung von 2018 auf 2019 am stärksten gesunken ist. Ähnlich verhält es sich mit den Messergebnissen der Passivsammler, für welche von 2018 auf 2019 ebenfalls ein absoluter Rückgang von etwa 5 µg/m³ ermittelt wurde. Erzielt wurden diese bemerkenswert rückläufige Entwicklung der NO 2 -Belastung durch zielgerichtete und wirkungsvolle Maßnahmen der Berliner Luftreinhaltung (Senatsverwaltung für Umwelt, Verkehr und Klimaschutz, 2019). Dabei lag und liegt der Fokus darauf, den motorisierten Verkehr in der Berliner Innenstadt zu verringern und die Stärkung des Umweltverbundes aus öffentlichem Personennahverkehr (ÖPNV), Rad- und Fußverkehr voranzutreiben. Neben Maßnahmen wie der Modernisierung der BVG-Busflotte – 2030 soll diese zu 100 % aus elektrisch angetriebenen Fahrzeugen bestehen –, Tempo-30-Anordnungen und Durchfahrverboten für Diesel-Pkw bis einschließlich Euro 5/V hat aber auch die generelle Erneuerung der Kfz-Flotten, mit einem steigenden Anteil von Euro VI und 6d-TEMP Fahrzeugen, einen Anteil an dieser positiven Entwicklung. Deshalb lässt sich dieser Trend auch unabhängig von einzelnen Maßnahmen der Berliner Luftreinhaltung in ganz Deutschland beobachten. Modellergebnissen zu Folge sind etwa ein bis zwei µg/m³ des NO 2 -Rückgangs 2019 in Deutschland auf Softwareupdates und die Flottenerneuerung zurückzuführen (Umweltbundesamt, Luftqualität 2018, 2019). Einen Überblick über die verkehrsbedingte Luftbelastung im Straßenraum 2015 und 2020 finden Sie im Umweltatlas unter Verkehrsbedingte Luftbelastung im Straßenraum . Ende der 1990er Jahre wurde mit der Messung von PM 10 , also von besonders gesundheitsschädlichen Teilchen kleiner als 10 Mikrometer (µm), begonnen. Sie ersetzte die Gesamtstaubmessung, bei der auch grobe Teilchen > 10 µm erfasst wurden. Deshalb sind beide Reihen nicht direkt miteinander vergleichbar. Seit den 1980er Jahren ist die Gesamtstaub-Belastung in Berlin deutlich gesunken. Auch die PM 10 -Belastung zeigt über den dargestellten Zeitraum eine deutliche Abnahme um rund 30 % im innerstädtischen Hintergrund und am Stadtrand sowie eine Abnahme um etwa 40% an Straßenmessstellen. Seit 2004 wird in Berlin der für das Jahresmittel gültige Immissionsgrenzwert von 40 µg/m³ (siehe auch Grenz- und Zielwerte) durchgängig und an allen Stationen eingehalten. Auch die Anzahl der Überschreitungen des Tagesmittels von 50 µg/m³ ist im dargestellten Zeitraum rückläufig. Im Jahr 2015 wurden letztmals mehr als die zulässigen 35 Überschreitungen des Tagesmittels von 50 µg/m³ beobachtet (Station MC174, 36 Überschreitungen). Die PM 10 -Belastung in Berlin und ihre langjährige Entwicklung wird maßgeblich durch emissionsmindernde Maßnahmen und meteorologische Bedingungen geprägt. Die jährlichen Schwankungen der PM 10 -Jahresmittelwerte von bis zu 20 % und insbesondere die Variabilität der Anzahl der Überschreitungen des Tagesmittels von 50 µg/m³ von bis zu einem Faktor zwei spiegeln die Abhängigkeit der PM 10 -Belastung von den Witterungsbedingungen wider. Besonders der Ferntransport von Partikeln bei südlichen bis östlichen Anströmungen, vermehrtes Heizen bei tiefen Temperaturen und die Häufigkeit von austauscharmen, in der Regel durch Hochdruck geprägten Wetterlagen, beeinflussen die PM 10 -Belastung stark. Ein großer Teil der Überschreitungstage des Tagesgrenzwerts wird auf Ferntransport aus östlichen und südöstlichen Richtungen zurückgeführt. In Jahren mit vergleichsweise geringer PM 10 -Belastung, beispielsweise 2007, 2008, 2012, 2013 und 2017, herrschten stets günstige meteorologische Bedingungen. Auch im Jahr 2019 trugen die Witterungsbedingungen maßgeblich zu einer geringen PM 10 -Belastung bei. So führten einerseits hohe Temperaturen der Wintermonate im Jahr 2019 zu einem geringen Heizbedarf, was niedrige lokale Partikelemissionen mit sich bringt. Weiterhin ist das geringe Auftreten von Ost- und Südwinden in den 2019er Wintermonaten ein Indiz für wenig Hochdruckeinfluss und den damit zusammenhängenden geringen Ferntransport von vorbelasteten Luftmassen aus Süd-Osteuropa. Der langjährige Rückgang der PM 10 -Belastung ist hingegen auf emissionsmindernde Maßnahmen zurückzuführen. Eine sehr wichtige Maßnahme zur Minderung der PM 10 -Belastung war die Einführung der Umweltzone in zwei Stufen zum 01.01.2008 und 01.01.2010. Nach einer Untersuchung zur Wirkung der Stufe 2 der Umweltzone von 2011 ( Wirkungsanalyse; 2. Stufe Umweltzone ), verhinderte die Einführung der Umweltzone eine um etwa 7 % höhere PM 10 -Belastung und 10 Überschreitungstage mit Tagesmitteln über 50 µg/m³. Zur vereinfachten Ermittlung des lokalen Verkehrsbeitrages kann die Differenz der PM 10 -Konzentration an Straßen und im innerstädtischen Hintergrund hergezogen werden. Die Annäherung der roten Linie an die gelbe Linie verdeutlicht, dass der lokale Verkehrsbeitrag durch den Straßenverkehr im dargestellten Zeitraum deutlich abgenommen hat. Der mit dieser Methode ermittelte Verkehrsbeitrag konnte seit Ende der 1990er Jahre um etwa 70 % reduziert werden. Weitere wichtige Maßnahmen zur Verringerung der PM 10 -Belastung waren die Einführung wirksamer Rauchgasreinigungssysteme bei Kohlekraftwerken und bei der Abfallverbrennung zur Minderung von Staub, Schwefeldioxid und Stickoxiden, der Ersatz von Kohleheizungen durch Fernwärme und Gasheizungen sowie die Einführung von Partikelfiltern für Dieselfahrzeuge und Baumaschinen auf Baustellen der Öffentlichen Hand. Als Partikel PM 2,5 werden kleinere Partikel des Feinstaubs bezeichnet, deren aerodynamischer Durchmesser kleiner als 2,5 µm ist. Sie können nachhaltig die Lunge schädigen, da sie tief in die Atemwege eindringen und länger dort verweilen. Außerdem führen hohe PM 2,5 Belastungen zu Herz- und Kreislauferkrankungen. Der im Feinstaub enthaltene Ruß gilt als stark krebserregend. Zum Schutz der menschlichen Gesundheit wurde ein PM 2,5 -Grenzwert von 25 µg/m³ im Jahresmittel festgelegt. Er muss ab 2015 an allen Luftgütemessstellen eingehalten werden. Zusätzlich gibt es einen deutschlandweiten Indikator für die durchschnittliche PM 2,5 -Exposition der städtischen Wohnbevölkerung (AEI, Average Exposure Indicator). Er wird vom Umweltbundesamt im Durchschnitt über jeweils 3 Kalenderjahre als Mittel über 36 ausgewählte Messstationen in Deutschland bestimmt, die sich ausschließlich in Wohngebieten größerer Städte befinden. Drei dieser Hintergrundmessstellen gehören zum Berliner Luftgütemessnetz. Der AEI-Zielwert von 16,4 µg/m³ für das Jahr 2020 ergibt sich aus der Minderung um 15 % des AEI-Wertes von 2010. In Berlin wird PM 2,5 seit 2004 an der Hauptverkehrsstraße Frankfurter Allee (MC174) und im innerstädtischen Hintergrund an der Station in Neukölln (MC042) gemessen. 2008 kamen noch die innerstädtischen Hintergrund-Stationen in Mitte (MC171) und in Wedding (MC010) hinzu. Alle drei städtischen Hintergrund-Stationen werden vom UBA zur Ermittlung des AEI herangezogen. Die nebenstehende Grafik zeigt die zeitliche Entwicklung von PM 2,5 . Der Grenzwert von 25 µg/m³, der seit 2015 einzuhalten ist, wird bereits seit 2007 unterschritten. Der bundesweite AEI-Zielwert für 2020 wurde bereits seit 2016 unterschritten. Es kann daher angenommen werden, dass 2020 das bundesweite Minderungsziel von 15 % erreicht wird. Tendenziell ist, wie die PM 10 -Belastung, auch die PM 2,5 -Belastung rückläufig. Dies zeigt die Wirkung der Umweltzone, die gezielt den Ausstoß der sehr feinen Dieselrußpartikel reduziert hat. Dadurch hat sich die Belastung an Straßen der niedrigeren Belastung im städtischen Hintergrund angenähert. Die erhöhte PM 2,5 -Belastung in 2006, 2010 und 2014 wird aufgrund schlechter Ausbreitungsbedingungen vor allem auf den Schadstoffausstoß aus Heizungen mit Holzfeuerung und einen hohen Beitrag aus Gebieten außerhalb Berlins zurückgeführt. In einem Projekt zur Holzfeuerung wurden gerade in den Herbst-und Wintermonaten bei Inversionswetterlagen erhöhte Beiträge dieser Partikel zur PM 2,5 -Belastung festgestellt. Dieser dreiatomige Sauerstoff ist ein natürlicher Bestandteil der Luft und wird nur selten direkt emittiert. Die Bildung von bodennahem Ozon geschieht über chemische Reaktionen sogenannter Vorläuferstoffe unter dem Einfluss von UV-Strahlung. Der wichtigste Vorläuferstoff für die Bildung von Ozon ist NO 2 . Aber auch flüchtige organische Verbindungen (VOC, volatile organic compounds) sind für die Ozonbildung von Bedeutung, da diese mit NO zum Ozonvorläuferstoff NO 2 reagieren können. Abgebaut wird Ozon wiederum durch NO. Die Bildung von bodennahem Ozon ist damit eine reversible photochemische Reaktion und stark von der Jahreszeit abhängig. Da zur Bildung UV-Strahlung benötigt wird und bei höheren Temperaturen mehr VOCs von der Vegetation freigesetzt werden, die als Vorläuferstoff fungieren, sind die Ozon-Konzentrationen im Sommer und besonders während sonnigen Schönwetterperioden am höchsten. Im nebenstehenden Diagramm sind für die O 3 -Belastung im innerstädtischen Hintergrund und am Stadtrand unterschiedliche langjährige Entwicklungen zu erkennen. Im innerstädtischen Hintergrund stieg die Belastung seit Ende der 80er Jahre nahezu stetig an; eine Regressionsanalyse ergibt eine Zunahme von etwa 0,4 µg/m³ pro Jahr. Am Stadtrand kam es dagegen zu Beginn der 90er Jahre zu einer Abnahme und seitdem zu einer sehr geringen Zunahme von etwa 0,1 µg/m³ pro Jahr. Diesen langzeitlichen Entwicklungen sind Schwankungen infolge der Witterungssituation des jeweiligen Sommers (Temperaturen, Bewölkung) überlagert, so dass Sprünge in den Jahresmittelwerten von bis zu 7 µg/m³ von einem auf das nächste Jahr nicht unüblich sind. Auf Grund der meteorologischen Bedingungen im Jahr 2018 und 2019 mit hohen Temperaturen und einer sehr hohen Sonneneinstrahlung war die mittlere Ozonbelastung im Vergleich zu den Vorjahren 2016 und 2017 erhöht. Kurzzeitige O 3 -Belastungsspitzen sind gesundheitlich besonders relevant, da erhöhte Ozon-Konzentrationen zu Reizerscheinungen der Augen und Schleimhäute sowie Lungenschäden führen können. Deshalb wurden zum Zweck des Gesundheitsschutzes die Informationsschwelle von 180 µg/m³ und die Alarmschwelle von 240 µg/m³ festgelegt. Diese Belastungsspitzen sind jedoch im Gegensatz zur mittleren O 3 -Belastung seit Jahren rückläufig. Bemerkenswerterweise, war dies auch in den Jahren 2018 und 2019 der Fall (siehe Jahresbericht 2018 und Jahresbericht 2019 ), obwohl die Witterungsbedingungen sehr günstig für die Bildung von Ozon waren. Grund dafür können die besonders in den Sommermonaten niedrigen NO 2 Konzentrationen sein, so dass hohe Ozon-Spitzenkonzentrationen durch ein Fehlen von Vorläuferstoffen verhindert wurden. Zusätzlich kann auch die extreme Trockenheit in den Sommermonaten in 2018 und 2019 ein Grund für diese Beobachtung sein. Es wird vermutet, dass die Emission von VOC durch die Vegetation auf Grund der Trockenheit und Dürrestress geringer war als üblich, so dass auch aus diesem Grund die Spitzenbelastung von Ozon nicht auffällig hoch war. Deutschlandweit wurde im Gegensatz zur Abnahme der Ozon-Spitzenkonzentrationen durch Minderungsmaßnahmen – Ozonvorläuferstoffe (Autoverkehr, Kraftwerke, Industriebetriebe, gewerblicher und privater Gebrauch von Farben, Lacken und Lösemitteln) konnten seit 1990 fast halbiert werden – eine schwache Zunahme der Jahresmittelwerte an städtischen Stationen beobachtet. Im ländlichen Hintergrund wurden bis Ende der 1990er Jahre eine deutschlandweite Zunahme und eine darauffolgende Stagnation der Ozon-Jahresmittelwerte registriert (siehe Luftqualität 2019 – Vorläufige Auswertung vom Umweltbundesamt). Da auch die Berliner Stadtrandstationen im Fall von Ozon maßgeblich von städtischen Emissionen beeinflusst sind, hier besonders die im Lee der Stadt liegenden Stationen MC027 und MC085 , passt der in Berlin im Mittel über alle Stationen festgestellte Anstieg, zum deutschlandweiten Trend. Polyzyklische aromatische Kohlenwasserstoffe (PAK) gelten unter den organischen Verbindungen als krebserregend. Als Leitkomponente für diese Verbindungen wird Benzo(a)pyren verwendet. Mitte der 1990er Jahre wurden an der Messstelle Nansenstraße in Neukölln bereits orientierende Messungen von Benzo(a)pyren B(a)P durchgeführt. Nachdem die 4. Tochterrichtlinie zur europäischen Rahmenrichtlinie 96/62/EG in Kraft trat, wurden die Messungen ab 2006 in erweitertem Umfang an vier Messstandorten (Hauptverkehrsstraßen, städtisches Wohngebiet und städtischer Hintergrund) aufgenommen, um die ab 2013 geforderte Einhaltung des Zielwerts für Benzo(a)pyren B(a)P von 1 ng/m³ zu überwachen. Der Zielwert gilt bis zu einer Konzentration von 1,49 ng/m³ als eingehalten. Einen Überblick über die langfristige Entwicklung der Leitkomponente B(a)P gibt die nebenstehende Abbildung. Für das städtische Wohngebiet hat die Belastung seit den 90er Jahren um den Faktor 5 abgenommen. Im Jahr 2010 wird der Zielwert von 1 ng/m³ sowohl an der Station im innerstädtischen Wohngebiet Neukölln als auch in der Hauptverkehrsstraße, Schildhornstraße, erreicht. Dies wird auf den sehr kalten Winter und auf den gestiegenen Verbrauch an Kohle und Holz bei nicht genehmigungsbedürftigen Feuerungsanlagen (Kohleheizungen, Holzöfen und Kamine) der privaten Haushalte zurückgeführt. Im Bereich des Wohngebiets (MC042) und an den Straßenschluchten Frankfurter Allee (MC174) und Schildhornstraße (MC117) sind solche Öfen noch häufiger vertreten. Seit 2012 liegen die PAK-Konzentrationen aller Stationen eng beieinander und deutlich unter dem Zielwert. Sie bewegen sich um den unteren Schwellenwert von 0,4 ng/m³. Die Luftbelastung durch die meisten direkt emittierten Schadstoffe ist in den letzten 20 Jahren stark gesunken. Beim Schwefeldioxid, das hauptsächlich aus Kraftwerken, Industrie und Kohleöfen stammte, ist dieser Rückgang am deutlichsten. Die Emissionen sind durch die Sanierung oder Stilllegung von Industrieanlagen und die Installation von Rauchgasentschwefelungsanlagen in Kraftwerken Ende der 80er Jahre in West-Berlin und nach 1990 auch in den neuen Bundesländern und osteuropäischen Nachbarländern stark gesunken. Auch der fast vollständige Ersatz von Kohleheizungen durch Gasheizungen oder Fernwärme und der Einsatz von schwefelarmen Kraftstoff haben zur Verbesserung der Luftqualität beigetragen. Seit 2004 hat sich die Schwefeldioxidimmission im gesamten Stadtgebiet, sowohl in der Innenstadt als auch in den Außenbezirken auf Jahresmittelwerte zwischen 1-4 µg/m³ eingependelt. Damit ist die Konzentration von Schwefeldioxid im Vergleich zu 1989 um 96 % zurückgegangen. Benzol gehört zu den krebserregenden Stoffen und kann Leukämie (Blutkrebs) verursachen. Benzol wird vorwiegend von Pkw mit Ottomotor emittiert. Durch den Einsatz des geregelten Katalysators, verbesserter Motortechnik, besserer Kraftstoffe und den Einsatz von Gaspendelsystemen an Tankstellen sowie in Tanklagern konnte die Emission dieses Schadstoffes in den letzten Jahren deutlich verringert werden. Entsprechend hat auch die Immissionsbelastung durch Benzol in den vergangenen Jahren in Berlin stark abgenommen. Die Benzolwerte im Jahr 2010 waren an den Hauptverkehrsstraßen nur ein Fünftel und im innerstädtischen Hintergrund nur noch ein Drittel so hoch wie 1993. Der ab 2010 einzuhaltende Grenzwert von 5 µg/m³ wird bereits seit dem Jahr 2000 unterschritten. In den letzten fünf Jahren lag auch die straßennahe Benzolkonzentration im Jahresmittel unter 1,5 µg/m³. Die nebenstehende Abbildung zeigt die langjährige Entwicklung der Kohlenmonoxid (CO) Konzentration als Jahresmittel an den Hauptverkehrsstraßen, im innerstädtischen Hintergrund und am Stadtrand. In den letzten drei Jahrzehnten nahm die Kohlenmonoxid-Belastung an den Hauptverkehrsstraßen und im innerstädtischen Hintergrund um jeweils ca. 80 % ab. Dadurch wurde auch der seit 2005 einzuhaltende Kohlenmonoxid-Grenzwert zum Schutz der menschlichen Gesundheit von 10 mg/m³ als höchster 8-Stunden-Mittelwert eines Tages an allen Messstationen nie überschritten. Der starke Rückgang der Kohlenmonoxid-Belastung wird auf die Einführung des geregelten Katalysators und effizienterer Motoren zurückgeführt. Auch der fast vollständige Ersatz von Kohleheizungen durch Gasheizungen oder Fernwärme hat dazu beigetragen. Seit 2007 werden die Messungen von CO nur noch an der Schildhornstraße und an der Frankfurter Allee durchgeführt.

Letzter Laternenladepunkt offiziell eingeweiht

Die Berliner Luft soll sauberer werden. Dazu leistet Elektromobilität einen wesentlichen Beitrag. Anderthalb Jahre nach dem Beginn des Forschungsprojekts „ElMobileBerlin“ sind nun insgesamt 825 Laternenladepunkte installiert – in Marzahn-Hellersdorf, Steglitz-Zehlendorf, Treptow-Köpenick, Reinickendorf und Spandau. An der Adamstraße 27/28 wurde heute der letzte Laternenladepunkt in Anwesenheit von Senatorin Schreiner offiziell eingeweiht. Manja Schreiner, Senatorin für Mobilität, Verkehr, Klimaschutz und Umwelt: „Wenn wir die Dekarbonisierung des Verkehrs schaffen wollen, sind wir darauf angewiesen, dass möglichst viele Autofahrer auf ihren Benziner verzichten und auf E-Autos umsteigen. Das wird uns nur gelingen, wenn wir ausreichend Ladepunkte auf Berliner Straßen und Plätzen zur Verfügung stellen. Die Laternenladepunkte ergänzen die Ladeinfrastruktur des bereits 2015 als Vorreiter gestarteten Berliner Modells.“ Ziel des Programms „Neue Berliner Luft“ – als Teil des von der Bundesregierung geförderten „Sofortprogramms Saubere Luft“ – ist es, für weniger Emissionen in Städten zu sorgen. Dazu wurden Projekte unterstützt, die gezielt die Elektromobilität fördern. In dem Teilvorhaben „ElMobileBerlin“ wurde untersucht, wie eine Infrastruktur mittels Laternen im öffentlichen Raum dazu beitragen kann, die Attraktivität von Elektromobilität durch möglichst einfach zugängliche Ladegelegenheiten zu steigern. Im Juli 2022 ging der erste Laternenladepunkt des Projekts ans Netz, rund anderthalb Jahre später nun der letzte. Mit rund 2.360 E-Ladepunkten im öffentlichen Straßenland von Berlin ist die Zahl binnen eines Jahres fast verdoppelt worden. Zählt man die öffentlich zugänglichen Ladepunkte (z.B. Kundenparkplätze oder Tankstellen) hinzu, ist E-Tanken in Berlin nun insgesamt an mehr als 3.500 Ladepunkten möglich. Damit nimmt Berlin bei der Anzahl öffentlich zugänglicher Ladepunkte die Spitzenposition unter den deutschen Städten ein und übertrifft schon jetzt die neuen Vorgaben der EU-Kommission für öffentlich zugängliche Ladeinfrastruktur (AFIR). Daneben hat im vergangenen Jahr auch die Zahl privater Ladepunkte in Berlin deutlich zugelegt – auf über 20.000 Stück. Natürlich geht der Ausbau der Ladeinfrastruktur weiter. Aktuell befinden sich viele hundert weitere Ladestandorte von Berliner Stadtwerken und privaten Betreibern im Antrags- und Genehmigungsverfahren.

Autokauf

Beim Autokauf Elektroautos bevorzugen, auf geringen Energieverbrauch und CO2-Ausstoß achten Worauf Sie beim umweltbewussten Autokauf achten sollten Kaufen Sie einen Pkw mit geringem Kraftstoff- bzw. Energieverbrauch und niedrigem CO 2 -Ausstoß – das Elektroauto ist hier die erste Wahl. Es muss nicht immer das eigene Auto sein: Vor allem Wenig-Fahrer können beim Carsharing viel Geld sparen. Gewusst wie Der größte Teil der Umweltbelastungen eines Autos wie Treibhausgase (CO 2 ), Schadstoffe (Stickstoffdioxide, Feinstaub) und Lärm entsteht beim Fahren. Aber bereits beim Kauf entscheiden Sie über den spezifischen Kraftstoffverbrauch ihres Autos und damit über die zukünftigen Umweltbelastungen und Tank- bzw. Energiekosten. Sparsames Auto wählen: Die CO 2 -Emissionen eines Autos und damit seine Klimawirksamkeit hängen direkt vom Kraftstoffverbrauch ab: Pro Kilowattstunde Strom werden rund 0,4 kg CO 2 (Deutscher Strommix), pro Liter Benzin rund 2,3 kg CO 2 und pro Liter Diesel rund 2,6 kg CO 2 freigesetzt. Auch die Kosten für das Tanken steigen linear mit dem Verbrauch. Mit Ihrer einmaligen Kaufentscheidung für ein bestimmtes Auto legen Sie in hohem Maße die Tank- bzw. Energiekosten und CO 2 -Emissionen für die gesamte langjährige Nutzungszeit fest. Es lohnt sich deshalb doppelt, ein Auto mit einem möglichst geringen Energieverbrauch zu wählen. Händler und Hersteller sind deshalb auch gesetzlich verpflichtet, den Kraftstoff- bzw. Stromverbrauch und die spezifischen CO 2 -Emissionen sowohl in der Werbung als auch im Autohaus anzugeben. Häufig weisen schon verschiedene Modellvarianten desselben Herstellers große Spannbreiten beim Energieverbrauch und CO 2 -Ausstoß auf. Elektroantrieb bevorzugen: Die klimaschonendste Antriebsvariante beim Autokauf ist das Elektroauto. Die CO 2 -Einsparungen während der Nutzung übersteigen die höheren Treibhausgasemissionen bei der Herstellung durch den zusätzlichen Aufwand für Batterien deutlich. Ein Vorteil des Elektroantriebs ist auch, dass lokal keine Schadstoffe durch Abgase emittiert werden. Zudem wird die Lärmbelastung reduziert. Bei Elektrofahrzeugen hängen die Emissionen bei der Fahrzeugherstellung und beim Betrieb (Abriebemissionen von Reifen) sowie das Gewicht des Fahrzeuges stark von der Größe bzw. Kapazität der verbauten Antriebsbatterie ab. Deshalb sollte die Antriebsbatterie bedarfsgerecht ausgewählt werden, auch um ein unnötiges Mitschleppen von zusätzlichem Gewicht zu vermeiden. Hierdurch können sowohl Emissionen als auch der Energieverbrauch des Fahrzeuges verringert werden. Wenn man sich nichtdestotrotz zum Kauf eines Verbrenner-Pkw entscheidet, sollte das Neufahrzeug bei einem Dieselantrieb mindestens die Euro 6d-TEMP Abgasnorm einhalten. Ein Otto-Pkw mit Direkteinspritzung muss mindestens die Euro 6c-Norm erfüllen. So wird sichergestellt, dass auch die Partikelemissionen des Otto-Direkteinspritzers gering sind. Auf dem Pkw-Label werden Neuwagen in sieben CO2-Effizienzklassen eingeteilt: von „A“ (grün, beste) bis „G“ (rot, schlechteste). Auf Pkw-Label achten: Wie klimafreundlich und kostengünstig ein Neuwagen im Betrieb ist, lässt sich einfach am Pkw-Label erkennen, mit dem jeder Neuwagen ausgezeichnet sein muss. Das Pkw-Label enthält Informationen zum Energieverbrauch und zum CO 2 -Ausstoß neuer Autos. Außerdem beinhaltet es Kostenrechnungen für die Kraftstoff-/Energie- und CO 2 -Kosten. Somit erhalten Verbraucherinnen und Verbraucher auch Informationen darüber, wie sich die CO 2 -Bepreisung fossiler Kraftstoffe bei den Kosten an der Tankstelle auswirken wird. Die Darstellung des Labels ist analog zum bekannten EU-Energielabel und stuft die Autos nach CO 2 -Klassen (A bis G bzw. dunkelgrün bis rot) ein (siehe Abbildung). Die Einstufung nach CO 2 -Klassen erfolgt in Abhängigkeit von der Antriebsart. Sparsam bei der Ausstattung sein: Klimaanlage , elektrische Fensterheber oder beheizbare Sitze und Heckscheiben sind heute oft Standard. Sie treiben aber auch den Energieverbrauch des Fahrzeugs in die Höhe. Die Klimaanlage ist dabei der größte Spritfresser: Sie erhöht beispielsweise den Verbrauch im Stadtverkehr um bis zu 30 %. Leider wird der Verbrauch durch die Nebenaggregate bei den normierten Verbrauchsangaben der Autohersteller nicht berücksichtigt. Verzichten Sie deshalb beim Kauf nach Möglichkeit auf solche verbrauchssteigernden Nebenaggregate bzw. verwenden Sie diese – insbesondere die Klimaanlage – sparsam. Carsharing nutzen: Oft geht es auch ohne eigenen Pkw. Insbesondere dann, wenn Sie Ihr Auto nicht täglich benötigen. Mit Carsharing können Sie zudem richtig viel Geld sparen. Wenn Sie nicht mehr als 10.000 bis 14.000 km pro Jahr fahren, ist Carsharing in der Regel kostengünstiger als ein eigenes Auto. Die hohen Fixkosten für Anschaffung und Versicherung entfallen. Außerdem müssen Sie sich nicht mehr um die Wartung des Fahrzeugs kümmern. Was Sie noch tun können: Steuern sparen: Je geringer der CO 2- Ausstoß, desto weniger zahlen Sie für ihre Kfz-Steuer. Ein Elektroauto ist sogar steuerbefreit. Sprit sparen: Beachten Sie unsere Tipps zum Sprit sparen . Umweltfreundlich mobil sein: Beachten Sie unsere Tipps zu Bus und Bahn fahren , zu Fahrrad und Radeln und zu Fahrgemeinschaften . Altauto-Entsorgung: Beachten Sie unsere Tipps zur Altautoentsorgung . Grünfläche vs.Carsharing Quelle: Umweltbundesamt Fahrzeug = "Stehzeug" Quelle: Umweltbundesamt Hintergrund Umweltsituation: Der Anteil des Verkehrs an den Treibhausgasemissionen in Deutschland ist seit 1990 von etwa 13 % auf 19,4 % im Jahr 2021 gestiegen. Das lag vor allem am stetig wachsenden Straßengüterverkehr und dem Motorisierten Individualverkehr. Technische Effizienzsteigerungen werden durch höhere Fahrleistungen und dem Trend zu größeren und schwereren Fahrzeugen aufgehoben. Mehr Informationen dazu finden Sie auf unserer Seite Emissionen des Verkehrs . Bezüglich ⁠ Klimawirkung ⁠ haben Elektrofahrzeuge die Nase vorn. Gemäß einer Studie im Auftrag des ⁠ UBA ⁠ sind im Jahr 2020 zugelassene Elektroautos um etwa 40% klimafreundlicher in ihrer Wirkung als Pkw mit Benzinmotor (UBA 2024). Bei einigen Umweltwirkungen wie die Auswirkungen auf Wasser (aquatische ⁠Eutrophierung⁠) und Böden (⁠Versauerung⁠) ergeben sich für E‑Pkw aktuell noch Nachteile, die größtenteils auf die noch fossile Strom­bereitstellung zurückzuführen sind. Nach Umstellung auf ein erneuerbares Stromsystem liegt der E-Pkw bei allen untersuchten Umweltwirkungen vor Pkw mit Verbrennungsmotoren. Eine weitere Umweltbelastung stellt die Versiegelung und Zerschneidung von Flächen durch den Straßenverkehr dar. Damit wird der Lebensraum der Menschen massiv eingeschränkt sowie die ⁠ Flora ⁠ und ⁠ Fauna ⁠ stark beeinträchtigt. Gesetzeslage: Fossile Kraftstoffe unterliegen einem CO 2 -Preis, der im Brennstoffemissionshandelsgesetz (BEHG) für die Jahre 2024 (45 Euro/ t CO 2 ) und 2025 (55 Euro/ t CO 2 ) festgelegt ist. Das neue Pkw-Label informiert Verbraucherinnen und Verbraucher beispielhaft darüber, wie sich die CO 2 -Bepreisung fossiler Kraftstoffe bei den Kosten an der Tankstelle auswirken kann. Darüber hinaus finden Sie umfassende Hinweise zu gesetzlichen Regelungen auf unserer Themenseite Pkw und leichte Nutzfahrzeuge . Marktbeobachtung: Der Marktanteil von Elektroautos bei Neuwagen nimmt seit dem Jahr 2020 deutlich zu (siehe Abbildung). Allerdings war im Jahr 2023 nur etwa jedes fünfte neue Auto ein Elektroauto. Weitere Marktbeobachtungen finden Sie auf unserer Themenseite Marktdaten: Mobilität . Weitere Informationen finden Sie auf unseren UBA-Themenseiten : Emissionen des Verkehrs Fahrleistungen, Verkehrsleistung und Modal Split Pkw und leichte Nutzfahrzeuge Marktdaten: Mobilität Quellen: UBA (2024): Analyse der Umweltbilanz von Kraftfahrzeugen mit alternativen Antrieben oder Kraftstoffen auf dem Weg zu einem treibhausgasneutralen Verkehr Neuzulassungen und Marktanteil von Pkw mit Elektro- oder Hybridantrieb Quelle: Kraftfahrt-Bundesamt Diagramm als PDF Diagramm als Excel mit Daten Entwicklung der Pkw im Bestand nach Kraftstoffart Quelle: Bundesministerium für Verkehr und digitale Infrastruktur / Kraftfahrt-Bundesamt Diagramm als PDF Diagramm als Excel mit Daten

Gartenhäcksler

Gartenhäcksler: Rücksicht auf Nachbar*innen und Umwelt nehmen So gehen Sie umwelt- und verantwortungsbewusst mit Ihrem Gartenhäcksler um Kaufen Sie ein lärmarmes Gerät (Blauer Engel). Kaufen Sie lieber ein Elektrogerät statt eines Benzinmotors. Halten Sie sich an die bundesweit vorgeschriebenen Betriebs- und Ruhezeiten. Reinigen Sie Ihren Häcksler nach jedem Gebrauch sorgfältig. Bei seltener Nutzung: Leihen oder teilen Sie sich einen Gartenhäcksler. Gewusst wie Häcksler sind Zerkleinerungsmaschinen. Holzige Pflanzenreste aus dem Baum- und Strauchschnitt können zerkleinert und so als Kompost- oder Mulchmaterial verwendet werden. Ihr Energiebedarf ist vergleichsweise gering. Es gibt zwei Arten von Schneidetechniken : Messerhäcksler zerschneiden das Pflanzenmaterial. Sie verursachen eine erhebliche Lärmbelästigung. Hohe Lärmpegel stören nicht nur die Nachbar*innen, sondern können auch einen selbst schädigen - von Kopfschmerzen über Schwerhörigkeit bis hin zu Ohrgeräuschen (Tinnitus). Bei Walzengeräten werden die Pflanzenmaterialien von einer Walze gepresst. Sie sind deutlich geräuschärmer. Deswegen sind sie sehr gut für besiedelte Wohngebiete geeignet. Lärmarmes Gerät kaufen: Bei Häckslern gibt es im Hinblick auf Lärm große Unterschiede. Dies lässt sich einfach an dem Schallleistungspegel (LWA) auf jedem Gerät erkennen. Je geringer der LWA-Wert, desto geringer die Lärmentwicklung. So bedeutet zum Beispiel drei dB weniger bereits eine Halbierung der Schallleistung. Der Blaue Engel garantiert, dass es sich um lärmarme Geräte handelt (LWA kleiner 92 dB(A)). Elektroantrieb bevorzugen: Gartenhäcksler gibt es mit Elektro- oder mit Benzinmotor. Aus Umweltsicht sind Elektrogeräte zu bevorzugen. Sie erzeugen am Einsatzort weniger Lärm und keine Abgase am Einsatzort, sind jedoch wegen der Kabelführung nur für kleinere Grundstücke geeignet. Wenn Sie einen Häcksler mit Akku wählen, können Sie auch ohne Kabel arbeiten. Betriebs- und Ruhezeiten : Die bundesweit gültigen Betriebs- und Ruhezeiten für Gartengeräte gelten auch für Gartenhäcksler. Demnach ist der Betrieb eines Häckslers nur werktags von 7 bis 20 Uhr gestattet. Sonntags und an Feiertagen ist der Betrieb eines Häckslers grundsätzlich nicht erlaubt. Teilweise gelten kommunal erweiterte Ruhezeiten. Nehmen Sie darüber hinaus Rücksicht auf Nachbar*innen und insbesondere kleine Kinder, die generell sehr lärmempfindlich sind. Reinigung und Pflege: Nach jedem Gebrauch sollten Häcksler – mit gezogenem Netzstecker bzw. entnommenen Akkus – entsprechend der Bedienungsanleitung gereinigt werden. Damit die Lager geschmeidig laufen, sollten diese entsprechend den Vorgaben geschmiert werden. Bei Messerhäckslern müssten die Messer regelmäßig nachgeschärt werden. Bei Walzengeräten müssen in regelmäßigen Abständen die Andruckplatte und Gegenplatte nachgestellt werden. Leihen und teilen: Gartenhäcksler sind teuer, sperrig und werden meist nur sehr selten benötigt. Sie eignen sich deshalb hervorragend für die gemeinschaftliche Nutzung. Schließen Sie sich mit Ihren Nachbar*innen zusammen. Viele Baumärkte oder Geräteverleiher verleihen auch Gartenhäcksler. Die Leihgeräte sind meist auch leistungsstärker, sodass das Zerkleinern insgesamt schneller geht. Achten Sie auf einen integrierten Auffangkorb, der leicht zu entnehmen und zu entleeren ist. Das vereinfacht die Arbeit. Richtig entsorgen: Weitere Informationen zur richtigen Entsorgung Ihres Gartenhäckslers und anderer Elektroaltgeräte finden Sie in unserem ⁠UBA⁠-Umwelttipp "Alte Elektrogeräte richtig entsorgen" . Was Sie noch tun können: Tragen Sie Hörschutz bei der Arbeit mit dem Häcksler. Nutzen Sie für kleinere Holzmengen die Garten- oder Astschere. Legen Sie einen Reisighaufen oder eine Benjeshecke an. Das ist ein nützlicher Lebensraum für viele Kleinst- und Kleintiere, wie zum Beispiel Igel. Gartenabfälle richtig entsorgen: Beachten Sie unsere weiteren Tipps zu Gartenabfällen . Kompostieren: Beachten Sie unsere weiteren Tipps zum Kompostieren . Prüfen Sie vor der Neuanschaffung eines Häckslers, ob Sie auch ein geeignetes gebrauchtes Gerät finden. Gartenhäcksler zu lagern, benötigt viel Platz. Wenn Sie Ihren Häcksler nicht mehr regelmäßig benutzen, überlegen Sie, ob Sie das Gerät Secondhand verschenken oder verkaufen möchten. Hintergrund Lärmbelästigung kann in hohem Maße zu Konzentrationsstörungen, Nervosität und Stressreaktionen führen. Auch die Nachbarschaft leidet. Lärm ist eine häufige Ursache von Nachbarschaftsstreitereien. Mit der Europäischen Maschinen- und Gerätelärm-Richtlinie 2000/14/EG gelten in Deutschland seit 2002 bestimmte Bedingungen für Hersteller von Geräten und Maschinen, die im Freien verwendet werden. Danach sind diese verpflichtet, jedes Gerät, das in Verkehr gebracht werden soll, mit dessen Schallleistungspegel (LWA) in einheitlicher Form zu kennzeichnen. In Deutschland existieren außerdem Vorgaben über die Betriebszeiten vieler Geräte und Maschinen in Wohn-, Kleinsiedlungs-, Erholungs-, Kur- und Klinikgebieten (32. Verordnung des Bundes-Immissionsschutzgesetzes). Diese sind bundesweit verbindlich. In kommunalen Verordnungen können bestimmte einzuhaltende Ruhezeiten noch ausgeweitet sein.

Kraftstoffe und Antriebe

Kraftstoffe und Antriebe Im Straßen-, Schiffs- und Flugverkehr dominieren immer noch klimaschädliche fossile Kraftstoffe. Zunehmend kommen jedoch auch klimafreundlichere alternative Kraftstoffe und Antriebe zum Einsatz. Im Bereich der Treibhausgasminderung bei Kraftstoffen ist das UBA im Rahmen der 37. und 38. Bundes-Immissionsschutzverordnung (BImSchV) auch für den Vollzug zuständig. Unsere Mobilität basiert zurzeit zu großen Teilen auf der Verbrennung flüssiger Kraftstoffe in Verbrennungskraftmaschinen. Da das ⁠ Verkehrsaufkommen ⁠ in Deutschland stetig wächst, stagnieren trotz vorhandener Effizienzgewinne durch den Einsatz von moderneren Motoren und Flugzeugturbinen die absoluten Treibhausgasemissionen des Verkehrs auf einem hohen Niveau. Für die notwendige deutliche Reduktion der Treibhausgasemissionen des Verkehrs für einen ausreichenden Klimaschutzbeitrag des Verkehrs sind neben weiteren Effizienzverbesserungen bei Motoren und einer weitreichenden Elektrifizierung des Straßenverkehrs auch ein Umstieg auf nachhaltige alternative Kraftstoffe in der Schifffahrt und der Luftfahrt notwendig. Konventionelle Kraftstoffe Bei konventionellen Kraftstoffen handelt es sich um Mineralölprodukte. Im Jahr 2019 entfielen ca. 94 Prozent des Endenergieverbrauchs im Verkehrssektor auf diese Kraftstoffe. Die dominierenden Kraftstoffe im deutschen Verkehrssektor sind die im Straßenverkehr eingesetzten Diesel- und Ottokraftstoffe. Ottokraftstoff wird unter dem Namen E5 oder E10 vermarktet und bezeichnet Benzin, das einen bestimmten Anteil an Ethanol enthalten darf. Während "E" für Ethanol steht, gibt die Zahl "5", beziehungsweise "10" an, wieviel Prozent Ethanol das Benzin maximal enthalten kann. Bei dem im Benzin typischerweise enthaltenen Ethanol handelt es sich um biogen bereitgestelltes Ethanol – kurz Bioethanol – das hauptsächlich aus zucker- und stärkehaltigen Pflanzen wie Zuckerrohr, Zuckerrübe, Getreide und Mais Pflanzen gewonnen wird. Die Mindestanforderungen für Ottokraftstoffe sind in der Norm DIN EN 228 festgeschrieben. Im weiteren Sinne sind alle Kraftstoffe, die in Ottomotoren genutzt werden können, Ottokraftstoffe, also unter anderem auch Flüssiggas (LPG) bzw. Erdgas (CNG). Bei diesen handelt es sich zwar nicht um Mineralölprodukte, jedoch werden sie hauptsächlich fossil hergestellt. Da beide keine typischen Kraftstoffe sind, werden diese oft den „alternativen Kraftstoffen“ zugeordnet. Dieselkraftstoff – auch vereinfacht Diesel genannt – wird nach den in der Norm DIN EN 590 definierten Mindestanforderungen an Tankstellen unter dem Namen B7 geführt und bezeichnet Diesel aus Mineralöl mit einer Beimischung von maximal sieben Prozent Biodiesel. In Deutschland wird Biodiesel vorwiegend aus Rapsöl hergestellt. Der Großteil des Biodiesels wird jedoch importiert und aus Abfall- und Reststoffen sowie aus Palmöl sowie Rapsöl hergestellt. Palmöl als Ausgangstoff für hydrierte Pflanzenöle (HVO - Hydrogenated Vegetable Oils) spielt im Bereich des Dieselkraftstoffes zumindest für das Jahr 2020 auch eine entscheidende Rolle. Durch die Überarbeitung der Treibhausgasminderungsquote (THG-Quote) ist die Verwendung von Palmöl seit dem 1. Januar Jahr 2022 deutlich beschränkt und ab 2023 beendet, da der Anbau von Ölpalmen einer der Haupttreiber für die Rodung von Regenwald ist. Im Flugverkehr wird größtenteils aus Erdöl hergestelltes Kerosin getankt. Kerosin bezeichnet Kraftstoffe, die sich für den Einsatz in Flugturbinen eignen. In der Binnenschifffahrt wird schwefelreduzierter Binnenschiffsdiesel verwendet. In der Seeschifffahrt kommen Marinediesel- und Marinegasöle sowie Schweröle mit unterschiedlichem Schwefelgehalt und ggf. notwendigen Abgasnachbehandlungssystemen (Kraftstoffnorm: ISO 8217) zum Einsatz. Sowohl im Binnen- als auch im Seeverkehr werden mehr und mehr Schiffe mit Flüssigerdgas (⁠ LNG ⁠ – Liquified Natural Gas) oder – in ersten Modellanwendungen – mit LPG (Liquified Petroleum Gas), auch Autogas genannt, Methanol oder Biodiesel betrieben. Mehr Informationen hierzu finden Sie auf unserer Themenseite zur Seeschifffahrt. Nur durch den Ersatz von mineralölbasierten Kraftstoffen durch klimafreundliche Alternativen kann der Verkehrssektor den notwendigen Beitrag zur Senkung seiner Treibhausgasemissionen leisten. Um diese Energiewende im Verkehr zu erreichen, ist die Entwicklung und Innovation bei alternativen Antriebstechnologien von zentraler Bedeutung. Perspektivisch sollte Strom aus erneuerbaren Energiequellen zur Energieversorgung im Verkehr direkt genutzt werden, d. h. ohne weitere Umwandlungsschritte zu strombasierten Kraftstoffen, sofern dies, wie etwa im Pkw-Verkehr, technisch möglich ist. Alternative Kraftstoffe Alternative Kraftstoffe sind entweder bezüglich der Bereitstellung alternativ, also "biogen" oder "synthetisch", oder es handelt sich um andere Kraftstoffe als Alternative zu Benzin oder Diesel. Biogene Kraftstoffe, oder auch Biokraftstoffe, werden vor allem aus Pflanzen, Pflanzenresten und ‑abfällen oder Gülle gewonnen. Synthetische Kraftstoffe unterscheiden sich von konventionellen Kraftstoffen durch ein geändertes Herstellungsverfahren und oft auch durch andere Ausgangsstoffe als Mineralöl. Biokraftstoffe wie Bioethanol oder Biodiesel leisten bereits seit vielen Jahren einen Beitrag zur Minderung der Treibhausgasemissionen des Verkehrssektors. Biokraftstoffe sind entweder flüssige (zum Beispiel Ethanol und Biodiesel) oder gasförmige (Biomethan) Kraftstoffe, die aus ⁠ Biomasse ⁠ hergestellt werden und für den Betrieb von Verbrennungsmotoren in Fahrzeugen bestimmt sind. Man unterscheidet Biokraftstoffe der ersten und zweiten Generation, wobei eine klare Abgrenzung der Kraftstoffe beider Generationen schwierig ist. Bei der Erzeugung von Biokraftstoffen der ersten Generation wird nur die Frucht (Öl, Zucker, Stärke) genutzt, während ein Großteil der Pflanze als Futtermittel Verwendung finden kann. Biokraftstoffe der zweiten Generation sind noch in der Entwicklung und werden aus Pflanzenmaterial hergestellt, das nicht als Nahrung verwendet werden kann, zum Beispiel aus Ernteabfällen, Abfällen aus der Landwirtschaft oder Siedlungsmüll. Zu dieser Generation, dessen Vertreter auch „fortgeschrittene Biokraftstoffe“ genannt werden, gehört auch solches Bioethanol, das aus zellulosehaltigen Materialien wie Stroh oder Holz gewonnen wird. Generelle Informationen zur energetischen Nutzung von Biomasse und zu den Nachhaltigkeitsanforderungen sind auf unserer UBA-Themenseite zur Bioenergie zusammengestellt. Synthetische Kraftstoffe sind Kraftstoffe, die durch chemische Verfahren hergestellt werden und bei denen, im Vergleich zu konventionellen Kraftstoffen, die Rohstoffquelle Mineralöl durch andere Energieträger ersetzt wird. XtL-Kraftstoffe sind synthetische Kraftstoffe, die ähnliche Eigenschaften und chemische Zusammensetzungen wie konventionelle Kraftstoffe aufweisen. Sie entstehen durch die Umwandlung eines Energieträgers zu einem kohlenstoffhaltigen Kraftstoff, der unter Normalbedingungen flüssig ist. Das "X" wird in dieser Schreibweise durch eine Abkürzung des ursprünglichen Energieträgers ausgetauscht. "tL" steht für "to Liquid". Aktuell sind in dieser Schreibweise die Abkürzungen GtL (Gas-to-Liquid) bei der Verwendung von Erdgas beziehungsweise Biogas, BtL (Biomass-to-Liquid) bei der Verwendung von Biomasse und CtL (Coal-to-Liquid) bei der Verwendung von Kohle als Ausgangsenergieträger gebräuchlich. Zur Herstellung von Power-to-X (Power-to-Gas/⁠ PtG ⁠ oder ⁠ PtL ⁠)-Kraftstoffen wird Wasser unter Einsatz von Strom in Wasserstoff und Sauerstoff aufgespalten. In einem Folgeschritt kann der gewonnene Wasserstoff in Verbindung mit anderen Komponenten – hier vor allem Kohlenstoffdioxid – zu Methan (PtG-Methan) oder flüssigem Kraftstoff (PtL) verarbeitet werden. Der gewonnene Wasserstoff (PtG-Wasserstoff) kann jedoch auch direkt als Energieträger im Verkehr, zum Beispiel in Brennstoffzellen-Fahrzeugen genutzt werden. Mehr Informationen hierzu finden Sie in den vom UBA beantworteten „Häufig gestellten Fragen zu Wasserstoff im Verkehr“ . Elektrischer Antrieb: Strom als Energieversorgungsoption Energetisch betrachtet, ist der Einsatz von ⁠ PtG ⁠-Wasserstoff in Brennstoffzellen-Pkw bzw. von ⁠PtG⁠-Methan und PtL⁠ in Verbrennungsmotoren von Pkw hochgradig ineffizient. Für dieselbe ⁠ Fahrleistung ⁠ muss etwa die drei- beziehungsweise sechsfache Menge an Strom im Vergleich zu einem Elektro-Pkw eingesetzt werden, wie die folgende Abbildung veranschaulicht. Da erneuerbarer Strom, beispielsweise aus Wind und Photovoltaik, und die notwendigen Ressourcenbedarfe für die Energieanlagen nicht unbegrenzt zur Verfügung stehen, muss auch mit erneuerbaren Energien sparsam umgegangen werden. Am effizientesten ist die direkte Stromnutzung im Verkehr, beispielsweise über Oberleitungen für Bahnen. Ähnlich effizient ist die Stromnutzung über batterieelektrisch betriebene Fahrzeuge. Deswegen sollte zur möglichst effizienten Defossilisierung des Straßenverkehrs ein weitgehender Umstieg auf batterieelektrisch betriebene Fahrzeuge angestrebt werden, wo immer dies technisch möglich ist. Vollzugsaufgaben des UBA zur 38. BImSchV In Deutschland sind Inverkehrbringer von Kraftstoffen gesetzlich verpflichtet, den Ausstoß von Treibhausgasen (THG) durch die von ihnen in Verkehr gebrachten Kraftstoffe um einen bestimmten Prozentsatz zu mindern. Dies regelt die im seit 1. Januar 2022 gültigen Gesetz zur Weiterentwicklung der Treibhausgasminderungsquote festgeschriebene THG‑Quote. Im Rahmen der THG-Quote hat das Umweltbundesamt (⁠ UBA ⁠) verschiedene Vollzugsaufgaben. Eine Aufgabe regelt die Verordnung zur Festlegung weiterer Bestimmungen zur Treibhausgasminderung bei Kraftstoffen (38. ⁠ BImSchV ⁠): Das UBA bescheinigt auf Antrag Strommengen, die im Straßenverkehr genutzt wurden. Weitere Informationen finden Sie auf der entsprechenden Themenseite zur 38. BImSchV .

Umweltbewusst leben - Nr.: 2/2024

Willkommen zur neuen Newsletter-Ausgabe "Umweltbewusst leben"! Ob Sie gerade Ihren nächsten Urlaub planen, nach einem neuen Stromanbieter suchen oder sich gesund & klimafreundlich ernähren möchten – In den „UBA-Umwelttipps“ finden Sie sowohl kompakte Tipps als auch interessante Hintergründe. Außerdem möchte wir Ihnen in dieser Newsletter-Ausgabe die Ergebnisse unserer Umweltbilanz von Fahrzeugen mit verschiedenen Antrieben vorstellen. Auch wenn es immer wieder in Zweifel gezogen wird: E-Autos sind bereits jetzt klimafreundlicher als Benziner oder Diesel-Pkw, auch wenn man die Herstellung und Entsorgung mit einrechnet. Interessante Lektüre wünscht Ihr UBA-Team der Presse-und Öffentlichkeitsarbeit

Straßenverkehr - Emissionen und Immissionen 2014

Emissionskataster Kraftfahrzeugverkehr Das Emissionskataster Kfz-Verkehr ist auf der Basis der Verkehrszählungen für das Jahr 2014 neu erhoben worden, weil diese Verursachergruppe nach den bisherigen Erfahrungen erheblich zu den Feinstaub- und Stickoxid-Belastungen beiträgt. Seit dem Jahr 2001 sind in den Hauptverkehrsstraßen Berlins an vielen Stellen Detektoren errichtet worden, die die dort fahrenden Kraftfahrzeuge zählen. Diese Daten dienen primär dazu, die aktuelle Verkehrssituation in Berlin zu kennen und sie in die Verkehrssteuerung mit einzubeziehen. Diese Informationen werden in der Verkehrsregelungszentrale (VKRZ) ausgewertet, um die Bevölkerung und insbesondere die Autofahrer über Rundfunk, Internet und Anzeigetafeln an zentralen Punkten über die aktuelle Verkehrssituation zu informieren und gegebenenfalls Routenempfehlungen zur Umfahrung von Staus zu geben. Mit dem Ausbau der VKRZ soll das Ziel einer dynamischen Verkehrssteuerung nach aktueller Verkehrslage und -belastung ermöglicht werden. Erhebung der Verkehrsbelastung Seit 2002 stehen die Daten von ca. 400 Detektoren an etwa 300 Standorten innerhalb des Berliner Hauptstraßennetzes bei der Verkehrslenkung zur Verfügung. Viele dieser Detektoren unterscheiden zwischen Pkw und Lkw und können für jährliche überschlägige Verkehrsmengenerhebungen genutzt werden. Für das Jahr 2014 standen zusätzlich die Verkehrszahlen für Pkw, Lkw, Busse und Motorräder durch eine alle 5 Jahre durch die Senatsverwaltung für Umwelt, Verkehr und Klimaschutz in Auftrag gegebene amtliche Zählung durch geschulte Personen an vielen Verkehrsknotenpunkten zur Verfügung. Diese amtliche Verkehrszählung hat gegenüber der Zählung durch die Detektoren den Vorteil, dass die Lkw unter und über 3,5 t besser von den sonstigen Kfz getrennt werden können. Daher wurde für 2014 diese Verkehrszählung als Grundlage für eine “ Emissionserhebung Kfz-Verkehr 2015 im Rahmen der Fortschreibung des Luftreinhalteplans 2011-2017 ” gewählt, so wie bei den bisherigen Emissionskatastern Kfz-Verkehr der Jahre 1994, 1999, 2005 und 2009 auch. Die Auspuffemissionen wurden dann wie folgt bestimmt: die Hochrechnung der punktbezogenen Knotenzählungen auf das gesamte Berliner Hauptstraßennetz mit einem Verkehrsfluss-Rechenmodell (VISUM) durch die Senatsverwaltung für Umwelt, Verkehr und Klimaschutz lieferte als Resultat die mittleren täglichen Verkehrszahlen (DTV) und die Lkw-Anteile für alle Hauptstraßen; die Ermittlung der abschnittsbezogenen Belastung des Hauptverkehrsstraßennetzes mit Linienbusverkehr der Berliner Verkehrsbetriebe (BVG) wurde aus den Fahrplandaten 2014 errechnet; die Berechnung der Emissionen mit den Emissionsfaktoren aus dem UBA-Handbuch für Emissionsfaktoren (Version 3.3) unter Berücksichtigung der Straßenart und -funktion wird mit Hilfe des Programms IMMIS em/luft ermittelt. Erhebung der Emissionen Zu den Schadstoffemissionen des Kfz-Verkehrs zählen die Auspuff- und Abriebemissionen des fließenden Verkehrs, die Verdunstungsemissionen des ruhenden Verkehrs und Verdunstungsemissionen an Tankstellen. Abbildung 2 gibt eine Übersicht über die Erhebungssystematik. Die Emissionen an Tankstellen werden dem Kleingewerbe zugeordnet. Mit Hilfe von Emissionsmodellen werden die Schadstoff- und CO 2 -Emissionen für Linienquellen (Hauptverkehrsstraßen) und Flächenquellen (Nebenstraßennetz und Verdunstungsemissionen) berechnet. Die Auspuff- und Abriebemissionen treten als Linienquellen auf Hauptverkehrs- und Nebenstraßen auf. Sie werden jedoch nur für das Hauptverkehrsstraßennetz als Linienquellen berechnet, weil nur für diese Straßen DTV-Werte und Angaben zur stündlichen Kapazität aus Zählungen vorliegen. Die Emissionen der Linienquellen werden anschließend dem Rasternetz als Flächenwerte zugeordnet. Die Emissionen im Nebenstraßennetz werden dagegen aus Annahmen zum Verkehrsaufkommen und zum Lkw-Anteil direkt für die einzelnen Raster abgeleitet. Emissionsmodelle Hauptverkehrsstraßen (Linienquellen) und Nebenstraßennetz (Flächenquellen) Die Auspuffemissionen durch den Kraftfahrzeugverkehr hängen von Faktoren ab, die sich in verkehrsspezifische und kraftfahrzeugspezifische Kenngrößen zusammenfassen lassen. Die verkehrsspezifischen Kenngrößen werden durch die Verkehrsdichte, d.h. die Anzahl der auf dem betrachteten Straßenabschnitt (Quelle) bewegten Fahrzeuge und deren Fahrverhalten (Fahrmodus) beschrieben. Das Fahrverhalten wird den verschiedenen Straßentypen (Stadtkernstraße, Nebenstraße, Hauptverkehrsstraße mit oder ohne Lichtsignalanlage, Autobahn) und Funktionen (Geschäftsstraße, Wohngebietsstraße oder Einfallstraße) zugeordnet. Die kraftfahrzeugspezifischen Kenngrößen , im Allgemeinen ausgedrückt durch die Abgasemissionsfaktoren, werden bestimmt durch: die Art des motorischen Antriebsverfahrens (Viertakt-, Zweitakt- oder Dieselmotor), die Art der Gemischaufbereitung (durch Vergaser oder Einspritzung beim Otto-Motor), die Art des Kraftstoffes (Zweitaktgemisch, Benzin, Diesel), die Art eventuell vorhandener Reinigungssysteme (geregelter und ungeregelter Katalysator, Abgasrückführung, Partikelfilter, Entstickungssysteme) sowie sonstige, den technischen Zustand des Motors charakterisierende Größen. Die Emissionsfaktoren hängen auch vom Fahrverhalten (Fahrmodus) ab und werden daher für unterschiedliches Fahrverhalten angegeben. Als wesentliche kraftfahrzeugspezifische Größe werden auch der Kaltstarteinfluss, der zu erhöhten Schadstoffemissionen während der Warmlaufphase des Motors führt, und die Verdunstungsemissionen berücksichtigt. Die Emissionsfaktoren werden im UBA-Handbuch für Emissionsfaktoren (Version 3.3) für jedes Jahr seit 1990 bis zum Jahr 2030 zur Verfügung gestellt. Hier finden sich für jede Fahrzeuggruppe (Pkw, leichte Nutzfahrzeuge, motorisierte Zweiräder, Busse und schwere Nutzfahrzeuge), für zurzeit mindestens sechs Minderungsstufen (80er Jahre ECE-Zyklus, Euro I/1, Euro II/2, Euro III/3, Euro IV/4, EURO V/5und EURO VI/6) und für jeden Straßentyp die Emissionsfaktoren aller relevanten emittierten Stoffe. Die strengere Norm Euro VI für schwere Nutzfahrzeuge ist seit Januar 2013 gültig, der Euro 6 – Standard für Pkw ist seit September 2014 bzw. in Stufen verschärft seit September 2017 und ab Januar 2020 vorgeschrieben. Diese Abgasnormen können mit der jetzigen Version des UBA-Handbuchs berücksichtigt werden, so dass realistische Prognosen der Kfz-Emissionen möglich sind. Ermittlung der Emission durch Abrieb und Aufwirbelung des Straßenverkehrs Nach heutiger Erkenntnis geht man davon aus, dass ein großer Anteil der verkehrsbedingten PM10-Emissionen nicht aus dem Auspuff der Fahrzeuge stammt, sondern über Aufwirbelung von auf der Straßenoberfläche liegenden Partikeln und vom Reifen- und Bremsabrieb herrührt. Grundlage der Berechnung dieser Emissionen mit IMMIS em/luft bildet die modifizierte EPA-Formel aus entsprechenden Untersuchungen. Diese Formel wurde in Berlin durch Messungen an der Schildhornstraße und an der Frankfurter Allee entwickelt und basiert auf der Erkenntnis, dass bezogen auf das Jahr 2001 ca. 50 % der in Straßenschluchten gemessenen Zusatzbelastung von Feinstaub nicht der Auspuffemission der Kraftfahrzeuge zugeordnet werden kann, sondern durch die fahrzeugbedingten Abriebe (Brems-, Straßen- und Reifenabrieb) und Aufwirbelungen verursacht werden. Da die Auspuffemissionen durch die verbesserte Motortechnik seitdem weiter vermindert wurden, ist der Anteil der nicht Auspuff bedingten Emissionen an der Zusatzbelastung heute deutlich höher als 50 %. Abbildung 3 stellt die einzelnen Ausgangsgrößen zur Berechnung der Auspuff- und Abriebemissionen des Verkehrs, wie Fahrleistungsfaktoren, Stop-and-Go-Zuschläge, Kaltstartfaktoren etc. sowie die Ergebnisse vor. Für Gebiete mit ausgeprägter Orographie sind die Straßenabschnitte in Längsneigungsklassen einzuordnen. In Berlin wurde dies für das Emissionskataster „Verkehr 2015“ erstmalig angewandt. Emissionsmodell Nebenstraßennetz (Flächenquellen) Die Verkehrsbelastung der Nebenstraßen für das Jahr 2015 wurde mit Hilfe des Verkehrsumlegungsprogramms VISUM aus den zugrunde gelegten Quell-Ziel-Relationen berechnet. Die daraus ermittelten Gesamtfahrleistungen und Anteile an schweren Nutzfahrzeugen wurden den Verkehrszellen in der Stadt zugeordnet. Die aus dem Auspuff und durch Aufwirbelung und Abrieb bedingten Emissionen im Nebennetz wurden mit dem Emissionsmodul von IMMIS em/luft bestimmt. Im Nebenstraßennetz werden die Emissionen nicht für einzelne konkrete Straßenabschnitte berechnet, sondern für Rasterflächen von jeweils einem Quadratkilometer. Die Fahrleistung in den Rasterflächen wird auf der Grundlage folgender Angaben ermittelt: überwiegende Nutzung des Gebietes, unterteilt in Wohnen in Außenbereichen, Gewerbe- und Industrie, Innenstadt und Subzentren, Anzahl der Einwohner und der Arbeitsplätze, differenziert nach Handel und Dienstleistungen, produzierendem Gewerbe, daraus abgeleitete Quelle-Ziel-Matrizen des Kfz-Verkehrs. Die weiteren Eingangsgrößen zur Ermittlung der Gesamtemissionen je Schadstoffkomponente für jede Rasterfläche entsprechen denen für die Berechnung im Hauptverkehrsstraßennetz. Auspuff- und Abriebemissionen im Stadtgebiet Tabelle 2 gliedert die auf Hauptverkehrsstraßen Berlins vom Kraftfahrzeugverkehr erbrachten Fahrleistungen (Mio. Fahrzeug-km/Jahr), den Kraftstoffverbrauch (t) und die Auspuff- und Abriebemissionen des Kraftfahrzeugverkehrs (t/Jahr) nach Fahrzeugarten für das Bezugsjahr 2015. Hier dazugezählt werden müssen noch die Emissionen aus dem Nebenstraßennetz, die ca. 18 % der Gesamtemissionen aus dem Straßenverkehr ausmachen. Eine Übersicht über die Emissionen aus Industrie, Gebäudeheizung und Verkehr bietet die Tabelle 2 der Umweltatlaskarte „Langjährige Entwicklung der Luftqualität (03.12)“ . Die für dieses Kataster entwickelte neuartige Emissionsberechnungsmethode ist auch als Grundlage für Ausbreitungsrechnungen zur Ermittlung der Schadstoffbelastungen an Straßen geeignet. Die weitreichende Neugestaltung der Berechnungsmethodik lässt Vergleiche mit vorhergehenden Emissionserhebungen auf der Grundlage einer wesentlich einfacheren Methode nur sehr eingeschränkt zu. Immissionen – Ergebnisse der stationären Messungen Zur Erfassung der durch den Kfz-Verkehr verursachten Schadstoffbelastung werden im Rahmen des automatischen Luftgüte-Messnetzes BLUME Straßen-Messstationen betrieben; um den EU-Richtlinien und der daraus hervorgegangenen Novellierung des BImSchG und der 39. BImSchV von 2010 Rechnung zu tragen, werden kontinuierlich Anpassungen im Berliner Luftgüte-Messnetz vorgenommen. Da die Konzentration von Schwefeldioxid und Kohlenmonoxid nur noch einen Bruchteil der Grenzwerte beträgt, konnten die Messungen dieser Komponenten entsprechend reduziert werden. Gleichzeitig wird aufgrund der Problemlage besonderes Augenmerk auf die Bestimmung von Feinstaub (PM 10 ) und Stickstoffdioxid (NO 2 ) vor allem in Verkehrsnähe gelegt. Für die detaillierte und lückenlose Online-Darstellung der langfristigen Entwicklung der Luftbelastung in Berlin wurde ein Archiv aufgebaut, welches über die Umweltatlaskarte “Langjährige Entwicklung der Luftqualität (03.12)” abgerufen werden kann. Messungen der Immissionsbelastung im Stadtgebiet Im Jahr 2016 wurden an insgesamt 16 Messcontainern (5 am Stadtrand, 5 im innerstädtischen Hintergrund und 6 an Straßenstandorten) und an 23 RUBIS-Messstellen Luftschadstoffmessungen durchgeführt. Mit diesen miniaturisierten Geräten wurden Benzol und Ruß als Wochenproben gesammelt. Zusätzlich wurden Passivsammler an diesen Orten zur Bestimmung von Stickoxiden angebracht. Die Geräte sammeln Proben über eine Probenahmezeit von 14 Tagen, die dann im Labor analysiert werden. Die Lage der einzelnen Messstellen ist schematisiert Abbildung 5 zu entnehmen. Die genauen Adressen sind in den Monatsberichten zur Luftreinhaltung der Senatsverwaltung für Umwelt, Verkehr und Klimaschutz zu finden. Die Lage der automatischen Container-Messstellen des Berliner Luftgüte-Messnetzes (BLUME) sowie der RUBIS-Kleinmessstellen werden einschließlich der dazugehörigen z.T. langjährigen Jahreskennwerte im Geoportal mit der Karte und den Sachdaten zur „Langjährigen Entwicklung der Luftqualität – Immissionen“ angeboten. Bei der kleinräumigen Ortsbestimmung der Probenahmestellen und der Durchführung der Messungen sind folgende Vorgaben der 39. BImSchV soweit wie möglich zu beachten: Der Luftstrom um den Messeinlass darf in einem Umkreis von mindestens 270 Grad nicht beeinträchtigt werden und es dürfen keine Hindernisse vorhanden sein, die den Luftstrom in der Nähe der Probenahmeeinrichtung beeinflussen, das heißt Gebäude, Balkone, Bäume und andere Hindernisse sollen einige Meter entfernt sein und die Probenahmestellen für die Luftqualität an der Baufluchtlinie müssen mindestens 0,5 Meter vom nächsten Gebäude entfernt sein. Im Allgemeinen muss sich der Messeinlass in einer Höhe zwischen 1,5 Meter (Atemzone) und 4 Meter über dem Boden befinden. Eine höhere Lage des Einlasses (bis zu 8 Meter) kann unter Umständen angezeigt sein, z.B. wenn die Messstation für eine größere Fläche repräsentativ sein soll. Der Messeinlass darf nicht in nächster Nähe von Emissionsquellen angebracht werden, um die unmittelbare Einleitung von Emissionen, die nicht mit der Umgebungsluft vermischt sind, zu vermeiden. Die Abluftleitung der Probenahmestelle ist so zu legen, dass ein Wiedereintritt der Abluft in den Messeinlass vermieden wird. Bei allen Schadstoffen sollten verkehrsbezogene Probenahmestellen mindestens 25 Meter vom Rand verkehrsreicher Kreuzungen und höchstens 10 Meter vom Fahrbahnrand entfernt sein. Die Höhe der gemessenen Konzentration ist nicht alleine von der Anzahl der Fahrzeuge und der dadurch bedingten Emissionen abhängig, sondern auch von den Bedingungen für den Luftaustausch, die einerseits durch meteorologische Parameter (z.B. den Wind), andererseits durch Art und Umfang der Bebauung gegeben sind. So werden hohe Immissionsbelastungen an beidseitig bebauten Straßen (Straßenschluchten) wie in der Silbersteinstraße in Neukölln oder der Schildhornstraße in Steglitz registriert, während an der Stadtautobahn, die ein wesentlich höheres Verkehrsaufkommen aufweist, geringere Schadstoffkonzentrationen zu verzeichnen sind. Die Abbildung 5 zeigt eine typische Schadstoffverteilung in einer Straßenschlucht. Eine solche Verteilung entsteht, wenn die Windrichtung (über Dach) vom Messpunkt zur Straßenmitte zeigt und sich in der Straßenschlucht eine Wirbelströmung ausbildet. Diese treibt die Kfz-Emissionen auf die Straßenseite mit der Messstation. Langjähriger Trend der Stickstoffdioxidkonzentration im Stadtgebiet Die Ergebnisse der bis 2016 im Stadtgebiet durchgeführten Messungen zeigen im langjährigen Trend (vgl. Abbildung 6): Bis etwa 1995 wurde durch die Ausrüstung der Berliner Kraftwerke mit Entstickungsanlagen und die Einführung des geregelten Katalysators für Otto-Fahrzeuge ein deutlicher Rückgang der Stickstoffdioxidkonzentrationen erreicht. Die Belastung mit NO 2 hat sich an allen drei dargestellten Stationskategorien während der letzten zehn Jahre kaum verändert. Die Werte an verkehrsreichen Straßen (rote Kurve) liegen immer noch deutlich über dem EU-Grenzwert von 40 µg/m³ im Jahresmittel. Die durch die Verbesserung der Abgastechnik der Fahrzeuge zu erwartende Abnahme der Stickoxidemissionen hat nicht zu einem Rückgang der Stickstoffdioxidbelastung geführt. (weitere Informationen werden unter Langfristige Entwicklung der Luftqualität angeboten) Langjähriger Trend der PM 10 -Konzentration im Stadtgebiet Die Abbildung 7 zeigt die Entwicklung der PM 10 - und Gesamtstaubkonzentration in Berlin und Umgebung über die letzten etwa 30 Jahre (1997 fand die Umstellung der Messungen von Gesamtstaub auf Feinstaub (PM10) statt). Die rote Kurve zeigt die Belastung an drei verkehrsnahen Messstellen, während die blaue und die grüne Linie die gemittelten Konzentrationen an drei Messstellen in innerstädtischen Wohngebieten bzw. an fünf Messpunkten am Stadtrand wiedergeben. (weitere Informationen werden unter Langfristige Entwicklung der Luftqualität angeboten) Beim Vergleich der Kurven fällt folgendes auf: Die PM 10 -Konzentration am Stadtrand und in ländlicher Umgebung in Brandenburg beträgt bis zum Jahr 2003 bereits mehr als die Hälfte der PM 10 -Belastung in Berliner Hauptverkehrsstraßen der Innenstadt; durch die im jährlichen Mittel weiter zurückgehende Konzentration im Verkehrsbereich nähert sich das Verhältnis danach bis 2016 auf etwa 2:3 Stadtrand zu Hauptverkehrsstraße an. Der bis Ende der 90er Jahre anhaltende Rückgang der Staubwerte hat sich in den letzten Jahren nicht fortgesetzt. Im Gegensatz dazu ging die Rußbelastung an Hauptverkehrsstraßen von 1998 bis 2008 kontinuierlich um über 60 % zurück (vgl. Verlauf der absoluten Jahresmittelwerte in µg/m³ für Ruß am BLUME-Messcontainer 174) ; ein Resultat u.a. der abgastechnischen Verbesserung der Fahrzeuge, so zum Beispiel auch der Busflotte der Berliner Verkehrsbetriebe BVG. Die über das Jahr gemittelte Feinstaubbelastung in Verkehrsnähe liegt seit 2004 unter dem EU-Grenzwert von 40 µg/m³. Allerdings traten bis 2006 und ab 2009 noch Überschreitungen des strengeren 24h-Grenzwerts auf. Der 24h-Grenzwert von 50 µg/m³ darf 35 Mal pro Kalenderjahr überschritten werden. Die Abnahme des Jahresmittelwertes und der Anzahl an Überschreitungstage an Hauptverkehrsstraßen ist auch auf günstige meteorologische Bedingungen und auf die Einführung der Umweltzone zurückzuführen. Im Jahr 2010 wäre ohne die Umweltzone die Anzahl der Überschreitungstage mit Tagesmittelwerten von über 50 µg/m 3 um etwa 10 Tage höher gewesen. Die jährliche Variation der PM 10 -Werte ist an allen Stationen ähnlich. Insbesondere der deutliche Wiederanstieg der PM 10 -Werte in den Jahren 2002, 2003, 2005 und 2006 sowie 2010 und 2014 ist ein Phänomen, das gleichzeitig überall im Stadtgebiet, einschließlich der Stadtrandstationen und der Umlandstationen auftrat. Die Ursache ist deshalb nicht in erster Linie bei den Berliner PM10-Emissionen zu suchen, sondern auf ungünstige Witterungsbedingungen (große Anzahl winterlicher austauscharmer Süd- und Südost-Wetterlagen) und die großräumige Verfrachtung der Feinstaubpartikel zurückzuführen.

1 2 3 4 543 44 45