API src

Found 370 results.

Related terms

Vermessung des Brom- und Iodgehalts in der unteren und mittleren Stratosphäre

Das Projekt "Vermessung des Brom- und Iodgehalts in der unteren und mittleren Stratosphäre" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. In unserem Vorhaben soll der Gehalt von Brom (Bry) und Iod (Iy) in der unteren und mittleren Stratosphäre bestimmt werden. Brom-Verbindungen sind für ca. 30% des Ozonverlusts in der Stratosphäre verantwortlich und damit ist eine regelmäßige Vermessung des stratosphärischen Bry angezeigt. Direkte Messungen in der mittlerenStratosphäre wurden aber seit 2011 nicht mehr durchgeführt. Zudem finden wir bei unseren jüngeren, flugzeuggetragenen Messungen von Bry (an Bord der NASA Global Hawk und des HALO Forschungsflugzeugs) in der tropsichen Tropopausenregion (TTL) und unteren Stratosphäre (UT/LS) etwa 2-3 ppt mehr Bry als aus lang- (Halone), mittel- (CH3Br) und kurzlebigen Bromverbindungen (VSLS) sowie deren Abbauprodukten zu erwarten ist. Die Gründe hierfür sind derzeit unklar. Unser Ziel ist es, die Messzeitreihe von Bry in der unteren und mittleren Stratosphäre wiederaufzunehmen und die entsprechenden Trends zu evaluieren. Insbesondere wollen wir untersuchen, ob die erhöhten Konzentrationen von Bry in der TTL mit Bry in der Stratosphäre kompatibel sind und was die Gründe für mögliche Differenzen sind. In Bezug of Iy weisen unsere früherenBeobachtungen auf Konzentrationen unterhalb der Nachweisgrenze hin, aber auch diese Untersuchungen liegen mehr als eine Dekade zurück. Neuere Arbeiten schlagen vor, dass die Bildung von höheren Iodoxiden zu einer Revision der bisher angenommenen Photochemie von Iod in der Stratosphäre führt, so dass ein erneuertes Interesse anstratosphärischem Iod besteht. Mit begrenztem zusätzlichem Aufwand wollen wir hier auch den Iy Gehalt (oder die entsprechenden Höchstgrenzen) in der Stratosphäre vermessen. Die Messungen sollen von einem Höhenforschungsballon (Steighöhe 30-38 km) aus mittels etablierter spektroskopischer Methoden in Sonnen-Okkultationsgeometrie durchgeführt werden. Es sind zwei Messflüge für Sommer 2021 von Kiruna, Schweden, und für Sommer 2022 von Timmins, Canada, aus geplant. Die Flüge und Kampagnen selbst werden durch die EU Infrastruktur HEMERA gefördert.

Neue Verfahren zur Behandlung asbesthaltiger Abfaelle

Das Projekt "Neue Verfahren zur Behandlung asbesthaltiger Abfaelle" wird vom Umweltbundesamt gefördert und von Universität Gießen, Fachbereich 08 Biologie, Chemie und Geowissenschaften, Institut für Angewandte Geowissenschaften durchgeführt. Die von uns in Laborversuchen und grosstechnisch durchgefuehrte thermische Behandlung, bei der die Temperaturen innerhalb der Sintergrenze liegen, ist ein energiesparendes und kostenguenstiges Verfahren, bei dem die Asbestfasern voellig zerstoert werden. Als Endprodukt entstehen asbestfreie Oxide und Silikate, z.T. mit hydraulischen Eigenschaften, die als Zuschlaege fuer Baustoffe, feuerfestkeramische Massen u.a. wieder verwertet werden koennen. Eine Vermehrung durch Zugabe z.B. von Bindemitteln findet nicht statt, sondern generell eine Reduktion von Gewicht und Volumen. Es entstehen keine Sonderabfaelle oder andere zu deponierende Materialien, sondern z.T. hochwertige Sekundaerrohstoffe. Deponieraum und neue Altlasten werden vermieden. Ziel ist es, den zu entsorgenden Asbest restlos zu vernichten. Ansaetze, dies durch thermische Behandlung zu erreichen, beduerfen der Vervollkommnung und weiteren Erprobung im grosstechnischen Massstab.

Charakterisierung von Schiffsemissionen und ihr Eintrag ins Meer

Das Projekt "Charakterisierung von Schiffsemissionen und ihr Eintrag ins Meer" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. PlumeBaSe beschäftigt sich mit der detaillierten Analyse der Zusammensetzung organischer Aerosole, freigesetzt während der Verbrennung fossiler Treibstoffe durch Schiffe, und deren weiterem Weg in der marinen Umwelt. Durch die hochaufgelöste Beprobung der Aerosole und ihrer Transformationsprodukte vom Schiffsschornstein bis in die Ostsee wird eine Brücke zwischen Atmosphären- und Meeresforschung geschlagen. Der zunehmende globale Warentransport auf dem Wasserweg erhöht den Druck auf marine Ökosysteme. Große Schiffe emittieren, zusätzlich zu gasförmigen Schadstoffen, große Mengen an Partikeln reich an Spurenmetallen und organischen Schadstoffen zunächst in die Atmosphäre von wo aus die Schadstoffe ins Meer gelangen. Negative Auswirkungen saurer Oxide und organischer Schadstoffe sind bekannt, weniger hingegen wurde bisher die Deposition der Schiffsaerosole und deren Beitrag zur Meeresverschmutzung untersucht. Besonders lückenhaft ist das Verständnis für die Alterungsprozesse während des atmosphärischen Transports sowie in der Wassersäule, beispielweise durch UV-Strahlung oder reaktive Sauerstoffspezies, obwohl die Transformationsprodukte sehr unterschiedliche Auswirkungen auf Biota haben und die Molekülstruktur den weiteren Weg in der Umwelt maßgeblich beeinflussen können.Um diese Wissenslücken zu schließen, soll in PlumeBaSe durch eine vielschichtige Umweltbeprobung eine neuartige, umfassende Erhebung des Emissionstransports und der Aerosolalterung erreicht werden. Die Projektpartner des Leibniz Instituts für Ostseeforschung Warnemünde (IOW), der Universität Rostock (UR) und der Karls-Universität Prag (CU) befassen sich mit den folgenden zentralen Hypothesen: (H1) Schiffsemissionen tragen signifikant zur Verschmutzung des Oberflächenwassers bei, der Eintrag ist besonders hoch entlang der Hauptschifffahrtsrouten. (H2) Während des atmosphärischen und marinen Transports ändern sich die physikalischen (Partikelgrößenverteilung) und chemischen (molekulare Profile) Eigenschaften der emittierten Aerosole, was ihren weiteren Weg in der Umwelt beeinflusst. (H3) Die Veränderungen auf molekularer Ebene können verfolgt und genutzt werden um Schadstoffeinträge über die Atmosphäre von den über Nassabscheider eingebrachte Verschmutzungen zu unterscheiden.Diese angestrebten Zielsetzungen werden in drei Arbeitspaketen adressiert via I. Zeitlich und räumlich hochaufgelöster Analyse von Partikelgrößenverteilungen direkt in den Abgasfahnen der Schiffe unter Nutzung eines unbemannten Luftschiffes, kombiniert mit hochsensitiven gerichteten und ungerichteten chemischen Analysen der II. atmosphärischen Schadstoffe in Partikeln unterschiedlicher Größe, sowie der III. Schadstoffe im Meerwasser. Die Ostsee stellt durch die hohe Schiffsverkehrsdichte, gute Erreichbarkeit und Regulation der Schiffsemissionen ein ideales Untersuchungsgebiet dar, welches sich auch als Modellsystem für die Beeinflussung küstennaher Ozeane durch Schiffsverkehr weltweit eignet.

Die Anwendung Maschinellen Lernens bei der Fertigung von Festoxidzellen ( Machine-Learning for Solid Oxide Cells )

Das Projekt "Die Anwendung Maschinellen Lernens bei der Fertigung von Festoxidzellen ( Machine-Learning for Solid Oxide Cells )" wird vom Umweltbundesamt gefördert und von Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung (IEK), IEK-1: Werkstoffsynthese und Herstellungsverfahren durchgeführt. Im Rahmen des Projekts werden Verfahren des maschinellen Lernens (ML) angewandt, um die Herstellung von elektrochemischen Energiewandlern (Festoxidzellen als wichtige Technologie für die Wasserstoffwirtschaft) durch Foliengießen zu optimieren. Poröse Substrate und Elektrodenschichten für Brennstoff- und Elektrolysezellen weisen komplexe Mikrostrukturen auf, die stark von den Rohpulvern, den Eigenschaften des Schlickers, den Gießparametern und den anschließenden Trocknungs- und Sinterungsschritten abhängen und folglich die Funktionalität der Zellen bestimmen. Die Entwicklung von Schlickern und die Optimierung von Gieß- und Trocknungsparametern erfolgt bisher fast ausschließlich empirisch und mit großem Aufwand. Datenbasiertes maschinelles Lernen soll einerseits diese Entwicklungszeit im Labor minimieren und andererseits die Qualität und Produktivität erhöhen sowie den Gesamtenergieverbrauch (insbesondere beim Trocknen / Sintern) für die industrielle Produktion reduzieren. Dies wird zusätzlich zu den allgemeinen Zielen der Energie-wende und der Bewältigung der Klimakrise beitragen. Zu diesem Zweck wird eine neue Forschungsdatenmanagementstruktur aufgebaut, die eine lückenlose Erfassung aller Prozessschritte auf Basis eines elektronischen Laborbuchs, d.h. von der Schlickerherstellung bis zur fertigen Schicht, mittels in-situ Messmethoden ermöglicht. Anschließend werden Schlickerrezepte und Verarbeitungsparameter bereitgestellt und durch ausgewählte ML-Algorithmen getestet, um die optimalen Prozessparameter zu ermitteln. Schließlich werden diese durch Simulationen ermittelten Parameter von den Projektpartnern praktisch überprüft.

Entwicklung einer Mehrschichtanode fuer die SOFC

Das Projekt "Entwicklung einer Mehrschichtanode fuer die SOFC" wird vom Umweltbundesamt gefördert und von Universität Karlsruhe (TH), Institut für Werkstoffe der Elektrotechnik durchgeführt. Hochtemperaturbrennstoffzellen mit keramischem Festelektrolyt (SOFC: Solid Oxide Fuel Cell) sind aufgrund ihres hohen Wirkungsgrades und ihrer Umweltvertraeglichkeit eine zukunftsweisende Alternative gegenueber konventioneller Energieerzeugung. Die Leistungsfaehigkeit und Lebensdauer der Einzelzellen sind dabei entscheidende Kriterien fuer die wirtschaftliche Nutzung von Brennstoffzellen. Bisherige Untersuchungen haben ergeben, dass es bei Langzeitbetrieb zu irreversiblen Veraenderungen in der Mikrostruktur der Anode kommt, die zu einer Senkung der Leistungsfaehigkeit fuehren. Je nach Belastung der Einzelzellen treten unterschiedliche Degradationsmechanismen auf. Ziel dieses Projektes ist die Entwicklung einer Anode, die aus mehreren Funktionsschichten besteht, um so die noetige Leistungsfaehigkeit und Langzeitstabilitaet zu liefern. Es soll ein Gradient in der Korngroesse, dem Nickelanteil und somit der Porositaet und der elektrischen Leitfaehigkeit erreicht werden, da die einzelnen Bereiche der Anodenstruktur unterschiedlichen Anforderungen genuegen muessen. So sind an der Grenzschicht Elektrolyt/Anode kleine Koerner erwuenscht, um eine moeglichst grosse Reaktionsflaeche zu erhalten. Wohingegen an der Grenzflaeche Anode/Interkonnektor ein hoher Anteil an grossen Nickelkoernern erforderlich ist, um einen guten elektrischen Kontakt und hohe Porositaet zu gewaehrleisten. Die optimale Zusammensetzung und Mikrostruktur der einzelnen Funktionsschichten soll durch systematische Belastungstests (elektrisch, chemisch, thermomechanisch) an verschiedenen homogenen Modellstrukturen, das sind Cermetproben aus Nickel- und YSZ-Teilchen mit definierter, homogener Zusammensetzung und Mikrostruktur, und durch die elektrochemische Charakterisierung von Einzelzellen mit entsprechenden homogenen Anodenstrukturen ermittelt werden. Vor und nach Durchfuehrung der Belastungstests ist eine umfassende Analyse der Zusammensetzung und Mikrostruktur der Modell- und Anodenstrukturen mittels Elektronenmikroskopie (REM, TEM, EDX, WDX) vorgesehen. Anhand der gewonnenen Ergebnisse soll ein Modell fuer die verschiedenen Verlust- und Degradationsmechanismen in der Anode entwickelt werden.

Teilvorhaben: Strukturierte passivierte Kontakte für TOPCon und IBC Solarzellen

Das Projekt "Teilvorhaben: Strukturierte passivierte Kontakte für TOPCon und IBC Solarzellen" wird vom Umweltbundesamt gefördert und von International Solar Energy Research Center Konstanz e.V. durchgeführt. TOPCon Solarzellen (Tunnel Oxide Passivating Contact) wurden in den letzten Jahren von vielen Forschungsinstituten und Firmen entwickelt und werden nun zunehmend in industrieller Produktion hergestellt und kommerziell vertrieben. Dabei werden Zellspannungen von knapp über 700 mV erreicht und Wirkungsgrade von 23.0% bis 23.8% erzielt. Die Spannung solcher Zellen wird vor allem durch die Rekombination auf der Vorderseite limitiert, weshalb als nächster Schritt eine Verbesserung der Zellvorderseite notwendig ist. Um optische Verluste durch parasitäre Absorption zu vermeiden, sind dafür strukturierte passivierte Kontakte notwendig. Entwickelt werden soll eine Prozess-Sequenz zur kostengünstigen Herstellung solcher strukturieren passivierten Kontakte. Diese soll in den Standardprozess für TOPCon Solarzellen eingebunden werden und basiert auf lokaler Laserdotierung von poly-Silizium zur Herstellung von in alkalischer Lösung ätzstabilen p+ poly-Silizium-Bereichen. Auf diese Weise sollen auf der Vorderseite der Solarzelle lokale passivierte Kontakte implementiert werden, um den Wirkungsgrad der Solarzelle, vor allem durch eine erhöhte Zellspannung von 715-720 mV, deutlich zu steigern. Eine weitere Anwendungsmöglichkeit des Verfahrens zur Herstellung solcher lokalen Kontakte besteht bei IBC Solarzellen (interdigitated back contact). Hierbei ermöglicht die lokale Behandlung durch den Laser die Herstellung separater p+ dotierter poly-Silizium Bereiche. Im Teilprojekt des ISC werden vor allem die Schichtentwicklung, die Laserprozessentwicklung und die Entwicklung der Zellstrukturen bearbeitet. Das überragende Ziel des ISC ist es, kosteneffiziente Prozessfolgen für TOPCon und IBC Solarzellen mit strukturierten passivierten Kontakten zu entwickeln, die sich in die industrielle Fertigung überführen lassen.

Teilvorhaben: Prozesstechnische Aspekte der Anwendung Maschinellen Lernens bei der Fertigung von Festoxidzellen

Das Projekt "Teilvorhaben: Prozesstechnische Aspekte der Anwendung Maschinellen Lernens bei der Fertigung von Festoxidzellen" wird vom Umweltbundesamt gefördert und von KMS Technology Center GmbH durchgeführt. Im Rahmen des Projekts ML4SOC werden Verfahren des maschinellen Lernens (ML) angewandt, um die Herstellung von elektrochemischen Energiewandlern (Festoxidzellen (Solid Oxide Cells, SOC) als wichtige Technologie für die Wasserstoffwirtschaft) durch Foliengießen zu optimieren. Es wird eine neuartige Forschungsdaten-Managementstruktur aufgebaut werden, die eine lückenlose Erfassung aller Prozessschritte auf Basis eines elektronischen Laborbuchs, d.h. von der Schlickerherstellung bis zur fertigen Schicht, mittels in-situ Messmethoden ermöglicht. Anschließend werden Schlickerrezepte und Verarbeitungsparameter bereitgestellt und durch ausgewählte ML-Algorithmen getestet, um die optimalen Prozessparameter zu ermitteln. Schließlich werden diese durch Simulationen ermittelten Parameter von den Projektpartnern praktisch überprüft. Ziel des Teilprojektes KMS ist es dabei, die für die Multi-Skalen-Modellierung mit künstlicher Intelligenz (KI) und maschinellem Lernen (ML) benötigten Daten und Messwerte im Prozess der Fertigung von Festoxidzellen zu gewinnen und der Modellierung zur Verfügung zu stellen. Dazu müssen die verwendeten Foliengießanlagen modifiziert und mit geeigneter Messtechnik und Datenerfassung ausgerüstet werden.

Selektive Polysilizium Finger

Das Projekt "Selektive Polysilizium Finger" wird vom Umweltbundesamt gefördert und von International Solar Energy Research Center Konstanz e.V. durchgeführt. TOPCon Solarzellen (Tunnel Oxide Passivating Contact) wurden in den letzten Jahren von vielen Forschungsinstituten und Firmen entwickelt und werden nun zunehmend in industrieller Produktion hergestellt und kommerziell vertrieben. Dabei werden Zellspannungen von knapp über 700 mV erreicht und Wirkungsgrade von 23.0% bis 23.8% erzielt. Die Spannung solcher Zellen wird vor allem durch die Rekombination auf der Vorderseite limitiert, weshalb als nächster Schritt eine Verbesserung der Zellvorderseite notwendig ist. Um optische Verluste durch parasitäre Absorption zu vermeiden, sind dafür strukturierte passivierte Kontakte notwendig. Entwickelt werden soll eine Prozess-Sequenz zur kostengünstigen Herstellung solcher strukturieren passivierten Kontakte. Diese soll in den Standardprozess für TOPCon Solarzellen eingebunden werden und basiert auf lokaler Laserdotierung von poly-Silizium zur Herstellung von in alkalischer Lösung ätzstabilen p+ poly-Silizium-Bereichen. Auf diese Weise sollen auf der Vorderseite der Solarzelle lokale passivierte Kontakte implementiert werden, um den Wirkungsgrad der Solarzelle, vor allem durch eine erhöhte Zellspannung von 715-720 mV, deutlich zu steigern. Eine weitere Anwendungsmöglichkeit des Verfahrens zur Herstellung solcher lokalen Kontakte besteht bei IBC Solarzellen (interdigitated back contact). Hierbei ermöglicht die lokale Behandlung durch den Laser die Herstellung separater p+ dotierter poly-Silizium Bereiche. Im Teilprojekt des ISC werden vor allem die Schichtentwicklung, die Laserprozessentwicklung und die Entwicklung der Zellstrukturen bearbeitet. Das überragende Ziel des ISC ist es, kosteneffiziente Prozessfolgen für TOPCon und IBC Solarzellen mit strukturierten passivierten Kontakten zu entwickeln, die sich in die industrielle Fertigung überführen lassen.

Teilvorhaben: MaLeFoG (Maschinelles Lernen für Foliengießen)

Das Projekt "Teilvorhaben: MaLeFoG (Maschinelles Lernen für Foliengießen)" wird vom Umweltbundesamt gefördert und von Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung (IEK), IEK-1: Werkstoffsynthese und Herstellungsverfahren durchgeführt. Im Rahmen des Projekts werden Verfahren des maschinellen Lernens (ML) angewandt, um die Herstellung von elektrochemischen Energiewandlern (Festoxidzellen als wichtige Technologie für die Wasserstoffwirtschaft) durch Foliengießen zu optimieren. Poröse Substrate und Elektrodenschichten für Brennstoff- und Elektrolysezellen weisen komplexe Mikrostrukturen auf, die stark von den Rohpulvern, den Eigenschaften des Schlickers, den Gießparametern und den anschließenden Trocknungs- und Sinterungsschritten abhängen und folglich die Funktionalität der Zellen bestimmen. Die Entwicklung von Schlickern und die Optimierung von Gieß- und Trocknungsparametern erfolgt bisher fast ausschließlich empirisch und mit großem Aufwand. Datenbasiertes maschinelles Lernen soll einerseits diese Entwicklungszeit im Labor minimieren und andererseits die Qualität und Produktivität erhöhen sowie den Gesamtenergieverbrauch (insbesondere beim Trocknen / Sintern) für die industrielle Produktion reduzieren. Dies wird zusätzlich zu den allgemeinen Zielen der Energie-wende und der Bewältigung der Klimakrise beitragen. Zu diesem Zweck wird eine neue Forschungsdatenmanagementstruktur aufgebaut, die eine lückenlose Erfassung aller Prozessschritte auf Basis eines elektronischen Laborbuchs, d.h. von der Schlickerherstellung bis zur fertigen Schicht, mittels in-situ Messmethoden ermöglicht. Anschließend werden Schlickerrezepte und Verarbeitungsparameter bereitgestellt und durch ausgewählte ML-Algorithmen getestet, um die optimalen Prozessparameter zu ermitteln. Schließlich werden diese durch Simulationen ermittelten Parameter von den Projektpartnern praktisch überprüft.

Biogeochemical interface formation in soils as controlled by different components

Das Projekt "Biogeochemical interface formation in soils as controlled by different components" wird vom Umweltbundesamt gefördert und von Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Lehrstuhl für Bodenkunde durchgeführt. We consider clay minerals, iron oxides and charcoal as major components controlling the formation of interfaces relevant for sorption of organic chemicals, as they control the assemblage of organic matter and mineral particles. We studied the formation of interfaces in batch incubation experiments with inoculated artificial soils consisting of model compounds (clay minerals, iron oxide, char) and natural soil samples. Results show a relevant contribution of both iron oxides and clay minerals to the formation of organic matter as sorptive interfaces for hydrophobic compounds. Thus, we intend to focus our work in the second phase on the characterization of the interface as formed by organic matter associated with clay minerals and iron oxides. The interfaces will be characterized by the BET-N2 and ethylene glycol monoethyl ether (EGME) methods and 129Xe and 13C NMR spectroscopy for determination of specific surface area, sorptive domains in the organic matter and microporosity. A major step forward is expected by the analysis of the composition of the interface at different resolution by reflected-light microscopy (mm scale), SEM (scanning electron microscopy, micrometer scale) and secondary ion mass spectrometry at the nanometer scale (nanoSIMS). The outcomes obtained in combination with findings from cooperation partners will help to unravel the contribution of different types of soil components on the formation and characteristics of the biogeochemical interfaces and their effect on organic chemical sorption.

1 2 3 4 535 36 37