Chlordioxid (ClO2) wird weltweit zur Oxidation und Desinfektion eingesetzt, wenngleich über die Reaktionen des Chlordioxids noch wenig bekannt ist. So haben erst kürzlich erschiene Arbeiten gezeigt, dass es bei der Reaktion von ClO2 zur Bildung von freiem Chlor kommen kann, welches bei der Desinfektion und Schadstoffabbau sowie bei der Bildung von Transformations- und Nebenprodukten berücksichtigt werden muss. Das vorliegende Projekt behandelt die Reaktionen von ClO2 mit Schadstoffen. Dabei sollen N-haltige Verbindungen untersucht werden, die einen Großteil der in der aquatischen Umwelt vorhandenen Schadstoffe ausmachen. Ziel der Untersuchungen ist es zunächst die pH-wertabhängige Reaktionskinetik von N-haltigen organischen Modellverbindungen zu bestimmen um die Stoffe zu identifizieren, die ein hohes Potenzial haben durch ClO2 abgebaut zu werden. Dann werden die elementaren Reaktionsschritte anhand der "reaktiven" Modellverbindungen untersucht und Reaktionsmechanismen ermitteln. Hierbei werden auch sekundäre Oxidationsmittel, die aus Reaktionen des ClO2 entstehen können (freies Chlor und freies Brom und Iod) erfasst. Die mechanistischen Untersuchungen umfassen zudem die Rolle des Sauerstoffs und der Peroxylradikale in ClO2 Reaktionen, die bisher kaum diskutiert wurden. Schließlich werden Transformationsprodukten bestimmt. Aus den erarbeiteten Daten werden Reaktionsmechanismen abgeleitet und angewendet um die Bildung von Transformationsprodukten für komplexere Schadstoffe zu vorherzusagen. Die Vorhersagen werden daraufhin sowohl in synthetischen wässrigen Lösungen als auch in realen Wässern anhand von realen N-haltigen Schadstoffen überprüft. Insgesamt soll dabei das Verständnis der ClO2 Reaktionen unter Berücksichtigung der sich bildenden sekundären Oxidationsmittel soweit verbessert werden, dass signifikante wissenschaftliche Fortschritte erreicht werden die in der Praxis der Wasseraufbereitung etwa zur Abschätzung der Abbaubarkeit von N-haltigen Schadstoffen und der Bildung von transformations- und Nebenprodukten genutzt werden können.
Flüchtige organische Verbindungen (VOC) werden in großen Mengen (1300 TgC pro Jahr) von biogenen und anthropogenen Quellen in die Atmosphäre emittiert. Die Oxidation solcher Verbindungen führt zur Bildung von semivolatilen Produkten, welche in die Partikelphase übergehen können und somit zur Bildung von sekundärem organischem Aerosol (SOA) beitragen. Die globale SOA Produktion anthropogenen Ursprungs beläuft sich auf 0,05 bis 9,7 Tg pro Jahr. Hingegen wird die biogene SOA Produktion mit bis zu 910 Tg pro Jahr beziffert, was einem Umsatz von 70% der emittierten biogenen VOCs entspricht. Ein solcher Umsatz ist unvereinbar mit den vergleichsweise niedrigen SOA Ausbeuten aus Aerosolkammerexperimenten. Die Ursache für diese Diskrepanz liegt vermutlich an zusätzlichen SOA Bildungswegen wie der Weiterreaktion von VOC Oxidationsprodukten, welche von den Umgebungsbedingungen wie dem Oxidationsmittel, der relativen Feuchte und der Art der vorhandenen Partikel abhängt. Somit sind zwar Tag- und Nachtchemie grundverschieden, allerdings auch eng miteinander verbunden, denn die Produkte der Nachtchemie werden durch die darauffolgende Tagchemie weiterprozessiert und umgekehrt. Dadurch wird das Partitionierungsverhalten der Produkte und somit die SOA Bildung stark beeinflusst. Daher soll im Rahmen des Projektes Dark Knight der Einfluss der Tagchemie auf die Nachtchemie und umgekehrt untersucht werden. Das Wissen über die Verschaltung von Tag- und Nachtchemie kann erheblich zum Verständnis über die an der SOA Bildung beteiligte Prozesse beitragen.
Geothermalwässer sind eine der wichtigsten Quellen im geochemischen Arsen-Kreislauf. Untersuchungen konzentrieren sich häufig auf Arsenit und Arsenat, die sich nach dem Austritt aus Geothermalquellen weit ausbreiten und z.B. die Qualität von Trinkwasser-Aquiferen negativ beeinflussen können. Erst kürzlich wurde gezeigt, dass nicht Arsenit und Arsenat, sondern Thioarsenate (AsVSnO4-n3-; n = 1 - 4), die sich aus Arsenit und reduziertem Schwefel bilden, die häufigsten Arsenspezies an Geothermalquellen sind. Allerdings ist deren Ausbreitung durch Reaktivität gegenüber Sauerstoff begrenzt. Für das vorliegende Projekt postulieren wir, dass Methylierung ein viel häufigerer Prozess an Geothermalquellen ist als bisher angenommen und dass methylthiolierte Arsenate signifikanten Anteil am Gesamtarsengehalt haben, v.a. bei leicht saurem pH und hohen Gehalten an Sulfid und gelöstem organischem Kohlenstoff. Wir postulieren weiter, dass methylthiolierte Arsenate im Vergleich zu anorganischen Thioarsenaten geringere abiotische und mikrobielle Umwandlungen zeigen und im Vergleich zu Arsenit und Arsenat geringere und langsamere Sorption an Eisenminerale und organische Substanz. All dies würde zu einem potentiell hohen Austrag aus Geothermalgebieten führen. Um unsere Hypothesen zu testen, werden wir an zwei Geothermalgebieten in China (Rehai, Yunnan und Daggyai, Tibet) Arsenspezies an den Quellen bestimmen und ihre Umwandlung entlang der natürlichen Abflusskanäle sowie in on-site Inkubationsstudien verfolgen. Wir werden dabei auch klären, welche anderen abiotischen oder biotischen Faktoren zur Arsenspeziesumwandlung beitragen. Im Labor werden wir methylthiolierte Arsenate synthetisieren und ihre Bildung und Stabilität unter verschiedenen S/As Verhältnissen, Temperaturen, pH und in Anwesenheit von Oxidationsmitteln untersuchen. Desweiteren werden wir Ausmaß und Kinetik von Sorption an häufig vorkommenden Eisenmineralen (Ferrihydrit, Goethit, Mackinawit, Pyrit) und an einer organischen Modelsubstanz untersuchen. Um natürliche Bedingungen besser abzubilden, werden wir das Sorptionspotential für methylthiolierte Arsenate auch an natürlichen Sedimenten von Geothermalquellen und ihren Abflusskanälen bestimmen. Das Projekt wird in enger Zusammenarbeit zwischen Prof. Dr. Britta Planer-Friedrich (Deutschland), Expertin für Thioarsenchemie und -analytik, und Prof. Dr. Qinghai Guo (China), Experte für Geothermalwasserchemie, durchgeführt. Die Zusammenarbeit schliesst gemeinsam betreute Promotions- und Masterarbeiten ein, gemeinsame Geländearbeiten in China und Laborarbeiten in Deutschland, ein kickoff meeting in Deutschland sowie ein Abschlusstreffen in China. Das übergeordnete Ziel des Projekts ist es, ein neues Modell für die Bildung, den Transport und die Umwandlung von Arsenspezies in Geothermalgebieten zu entwickeln sowie das mögliche Vorkommen von methylthiolierten Arsenaten auch für andere natürliche Systeme vorhersagen zu können.
Es werden einerseits neue Produktions- und Verfahrenstechnologien entwickelt und andererseits bestehende so verbessert, dass durch Verringerung der Schadstoffemission der Gefahr einer Gesundheitsschaedigung am Arbeitsplatz begegnet wird. Ziel der Untersuchungen ist es, u.a. Oxidationsmittel einzusetzen, die den Schadstoff unter wirtschaftlichen Bedingungen unschaedlich machen.
Der Klimawandel stellt eines der größten Probleme unserer Gesellschaft der nächsten Jahrzehnte dar. Verlässliche Klimaprognosen sind in diesem Zusammenhang von enormer politischer und sozioökonomischer Relevanz. Genaue Vorhersagen sind jedoch derzeit durch ein noch begrenztes Verständnis wichtiger atmosphärischer Parameter, wie zum Beispiel der chemischen Zusammensetzung der Atmosphäre, der Aerosolbelastung, den Zirruswolken und Zirkulationsrückkopplungen in der oberen Troposphäre/unteren Stratosphäre (OTUS) nur sehr eingeschränkt möglich. Insbesondere unser Wissen über die wichtigsten klimarelevanten atmosphärischen Bestandteile wie z.B. der Wasserdampf, Eis- und Aerosolpartikel ist unvollständig.Kürzlich wurden in der OTUS starke Partikelneubildungsereignisse beobachtet, in einer Region, in der Eisbildung und tiefe Konvektion vorherrschen. Es scheint, dass die Region überhalb troposphärischen Wolken ein günstiger Ort für die Bildung neuer Teilchen ist. Der zugrunde liegende Bildungsmechanismus ist jedoch nur sehr qualitativ verstanden. Diese Partikelneubildungsereignisse sind möglicherweise mit der Bildung von kondensierbaren Dämpfen in großer Höhe verbunden und nicht nur mit dem Aufsteigen verschmutzter Luftmassen, die diese enthalten. Partikelneubildung erfordert somit eine Quelle von atmosphärischen Oxidationsmitteln, die die Flüchtigkeit von Vorläufergasen reduzieren, um Partikel im unteren Nanometerbereich durch Gas-zu-Partikel-Umwandlung zu bilden. Diese Oxidationsmittelquelle muss stark genug sein, um mit den durch die bereits vorhandenen Partikel induzierten Kondensationssenken zu konkurrieren.Wir vermuten, dass die Bildung von Eispartikeln durch das Gefrieren von unterkühltem flüssigem Wasser, gefolgt von Wasserkondensation, Quellen von H2O2 oder HOx-Radikalen in der OTUS sind, die zur Partikelneubildung führen Es ist bekannt, dass das Gefrieren wässriger Lösungen elektrische Felder erzeugt (sogenannter Workman-Reynolds-Effekt). In ähnlicher Weise wurde kürzlich gezeigt, dass die bevorzugte Orientierung der Wassermoleküle an der Grenzfläche zwischen Luft und Wasser ein elektrisches Grenzflächenpotential induziert. Solche lokalisierten elektrischen Felder können elektrochemische Prozesse in oder auf den Eispartikeln induzieren, die H2O2 oder HOx produzieren und erheblich zur Oxidationskapazität der Atmosphäre beitragen, wodurch die Bildung neuer Partikel und Wolken und schließlich der Strahlungshaushalt und das Klima der Erde beeinflusst werden. Diese Hypothese wird durch einige sehr aktuelle aktuelle Messungen gestützt.Dieses Projekt hat zum Ziel, diese Oxidationsprozesse zu charakterisieren und quantifizieren.
Elektronenmikroskopische Untersuchungen.
Bei zahlreichen Stoffwechselvorgängen in Organismen kommt es zur Bildung von reduzierten Sauerstoffformen wie Wasserstoffperoxid, Superoxidanionen oder des Hydroxylradikals. Marine Eisdiatomeen bilden zusammen mit anderen Mikroorganismen im Packeis in den Salzlaugenkanälchen eine eigenständige Meereisgesellschaft. Diese Kanälchen zeichnen sich durch extreme Umweltbedingungen aus (Licht, Salinität, Temperatur, hohe Zelldichten), die eine vermehrte Bildung von aktivierten Sauerstoff Spezies begünstigen. Bei Untersuchungen zum Oxidationsschutz der Eisdiatomee Enteromoneis kufferathii MANGUIN wurde festgestellt, dass diese in Gesellschaft mit epiphytisch lebenden Bakterien vorkommen. Die Ergebnisse ergaben, dass die Bakterien maßgeblich an der Entgiftung der Oxidantien beteiligt sein können, so dass die Vermutung einer symbiotischen oder kommensalistischen Beziehung naheliegt. Es soll die Art der Bakterien/Algen-Wechselwirkung näher untersucht und der jeweilige Anteil an Oxidationsschutzsystemen (enzymatisch oder durch Schutzsubstanzen) überprüft werden, um die These vom gegenseitigen Schutz vor Sauerstoffradikalen zu überlegen. Die Bakterien werden charakterisiert und ihr Einfluss auf das Wachstum von E. Kufferathii und anderen Algen der Eislaugengesellschaft wird untersucht. Elektonenmikroskopische Aufnahmen (TEM/REM/LSM) sollen Aufschluss über die Art des Kontaktes zwischen Algen und Bakterien geben.
Zur Untersuchung der Ursachen, des Standes und der Entwicklung von Luftschadstoffen in den Untersuchungsgebieten und sonstigen Stadtgebieten und zur Ermittlung des Antransports von Luftschadstoffen in die Waldregionen im Rahmen der Ursachenanalyse des neuartigen Waldsterbens werden mit zZ 25 Luftmessstationen die Luftschadstoffe landesweit in Rheinland-Pfalz gemessen: Erfasst werden SO2, NO, NO2, Schwebstaub, Ozon, CO, CnHm-CH4, CH4 (letzte 3 nur in Untersuchungsgebieten). Ferner werden an 19 Messstationen die meteorologischen Komponenten Windrichtung, Windgeschwindigkeit, Temperatur, Feuchte, Luftdruck, Niederschlag und Globalstrahlung gemessen. Alle Komponenten werden als Halbstundenmittelwerte gewonnen, Schwebstaub als Stundenmittelwert. Die Messdaten werden telemetrisch zentral gesammelt und ausgewertet. Untersucht wird der Ferntransport von Schwefeldioxid und Schwebstaub, die Entwicklung und Ausbreitung von Oxidantien waehrend sommerlicher Hochdruckwetterlagen, das Verhalten der verkehrsrelevanten Schadstoffe CO, NO, NO2 und Kohlenwasserstoffe (methanfrei) bei austauscharmen Wetterlagen in Stadtgebieten und das Verhalten von Methan im Einflussbereich von Klaeranlagen. Ferner dient das System zur Ueberwachung von Grenzwertueberschreitungen von Smog-Grenzwerten waehrend grossflaechiger austauscharmer Wetterlagen. Die Analyse der Messwerte dient der Erforschung von Ausbreitungverhalten und Abbaumechanismen der gasfoermigen Luftschadstoffe als Grundlage fuer moegliche Massnahmen weiterer Schadstoffreduktionen an den Quellen Hausbrand, Industrie und Verkehr.
| Origin | Count |
|---|---|
| Bund | 334 |
| Land | 5 |
| Type | Count |
|---|---|
| Chemische Verbindung | 1 |
| Förderprogramm | 323 |
| Gesetzestext | 1 |
| Text | 11 |
| unbekannt | 4 |
| License | Count |
|---|---|
| geschlossen | 9 |
| offen | 330 |
| Language | Count |
|---|---|
| Deutsch | 288 |
| Englisch | 77 |
| Resource type | Count |
|---|---|
| Bild | 2 |
| Dokument | 2 |
| Keine | 255 |
| Webseite | 83 |
| Topic | Count |
|---|---|
| Boden | 243 |
| Lebewesen und Lebensräume | 281 |
| Luft | 226 |
| Mensch und Umwelt | 339 |
| Wasser | 294 |
| Weitere | 327 |