API src

Found 13 results.

Teilvorhaben G1

Das Projekt "Teilvorhaben G1" wird vom Umweltbundesamt gefördert und von ThyssenKrupp Industrial Solutions AG durchgeführt. Das geplante Forschungsvorhaben adressiert die Hauptziele der Bekanntmachung 'Kopernikus-Projekte für die Energiewende' des Bundesministeriums für Bildung und Forschung. Aufgrund der gestiegenen Umwelt- und Klimaschutzanforderungen sollen eine langfristige Dekarbonisierung der Energiesysteme und eine Speicherung und Nutzung des 'Überschussstromes' aus erneuerbaren Quellen erfolgen. Das Vorhaben soll im Erfolgsfall als Teil des Kopernikus-Projektes 'P2X' einen signifikanten Beitrag zu den Zielen der deutschen Energiewende leisten. Ziel des Vorhabens ist es, Lösungen zu erarbeiten, zu demonstrieren und zu implementieren, mit denen unter Einsatz erneuerbar erzeugter elektrischer Energie stoffliche Energieträger und chemische Produkte für Anwendungen in den industriellen Leitmärkten Energie, Transport/Verkehr und Chemie wirtschaftlich, zeitlich flexibel und auf die gesellschaftlichen Bedürfnisse abgestimmt produziert werden. thyssenkrupp Industrial Solutions bearbeitet hierbei die Arbeitspakete AP 2.1. und AP 2.2. des Forschungsclusters FC-B3. Das Arbeitspaket 2.1. umfasst Tätigkeiten zur Verfahrensentwicklung und Wirtschaftlichkeitsbetrachtung. In dem Arbeitspaket 2.2. wird hingegen ein Konzept für eine Pilotanlage entwickelt. Ziel des Projekts FC-B3 ist die Entwicklung eines Gesamtkonzepts zur Herstellung von maßgeschneiderten Oxymethylenethern (OMEx) mit definierter Kettenlänge auf Basis erneuerbarer Energien für deren Nutzung als alternative Dieselkraftstoffe in Verbrennungsmotoren sowie als Bausteine für Polyurethan-Kunststoffe. Der verfolgte Ansatz nutzt als Ausgangsstoffe CO2 und mittels regenerativer elektrischer Energie erzeugtes H2 zur Synthese der nötigen C1-Bausteine oder direkt zu OME-Produkten.

Teilvorhaben A

Das Projekt "Teilvorhaben A" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Technische Chemie und Makromolekulare Chemie durchgeführt. Das geplante Forschungsvorhaben adressiert die Hauptziele der Bekanntmachung 'Kopernikus-Projekte für die Energiewende' des Bundesministeriums für Bildung und Forschung. Aufgrund der gestiegenen Umwelt- und Klimaschutzanforderungen sollen eine langfristige Dekarbonisierung der Energiesysteme und eine Speicherung und Nutzung des 'Überschussstromes' aus erneuerbaren Quellen erfolgen. Das Vorhaben soll im Erfolgsfall als Teil des Kopernikus-Projektes 'P2X' einen signifikanten Beitrag zu den Zielen der deutschen Energiewende leisten. Ziel des Vorhabens ist es, Lösungen zu erarbeiten, zu demonstrieren und zu implementieren, mit denen unter Einsatz erneuerbar erzeugter elektrischer Energie stoffliche Energieträger und chemische Produkte für Anwendungen in den industriellen Leitmärkten Energie, Transport/Verkehr und Chemie wirtschaftlich, zeitlich flexibel und auf die gesellschaftlichen Bedürfnisse abgestimmt produziert werden. Die RWTH bearbeitet hierbei einen signifikanten Teil der Arbeitspakete des Forschungsclusters FC-B3 sowie die Arbeitspakete AP-3 und AP-5 des Forschungsclusters FC-B1 und die Arbeitspakete AP-2.1, AP-2.2 und AP-2.3 des Forschungsclusters FC-A2. Der Schwerpunkt liegt aktuell auf Forschungscluster FC-B3. FC-B3: Ziel des Projekts ist die Entwicklung eines Gesamtkonzepts zur Herstellung von maßgeschneiderten Oxymethylenethern (OMEx) mit definierter Kettenlänge auf Basis erneuerbarer Energien für deren Nutzung als alternative Dieselkraftstoffe in Verbrennungsmotoren sowie als Bausteine für Polyurethan-Kunststoffe. Der verfolgte Ansatz nutzt als Ausgangsstoffe CO2 und mittels regenerativer elektrischer Energie erzeugten H2 zur Synthese der nötigen C1-Bausteine oder direkt zu OME-Produkten.

Teilvorhaben L1

Das Projekt "Teilvorhaben L1" wird vom Umweltbundesamt gefördert und von Ford-Werke GmbH durchgeführt. Das geplante Forschungsvorhaben adressiert die Hauptziele der Bekanntmachung 'Kopernikus-Projekte für die Energiewende' des Bundesministeriums für Bildung und Forschung. Aufgrund der gestiegenen Umwelt- und Klimaschutzanforderungen sollen eine langfristige Dekarbonisierung der Energiesysteme und eine Speicherung und Nutzung des 'Überschussstromes' aus erneuerbaren Quellen erfolgen. Das Vorhaben soll im Erfolgsfall als Teil des Kopernikus-Projektes 'P2X' einen signifikanten Beitrag zu den Zielen der deutschen Energiewende leisten. Ziel des Vorhabens ist es, Lösungen zu erarbeiten, zu demonstrieren und zu implementieren, mit denen unter Einsatz erneuerbar erzeugter elektrischer Energie stoffliche Energieträger und chemische Produkte für Anwendungen in den industriellen Leitmärkten Energie, Transport/Verkehr und Chemie wirtschaftlich, zeitlich flexibel und auf die gesellschaftlichen Bedürfnisse abgestimmt produziert werden. Das Ford Research and Innovation Center Aachen bearbeitet hierbei die Arbeitspakete AP-3.1.3 des Forschungsclusters FC-B3. Der Schwerpunkt liegt aktuell auf Forschungscluster FC-B3. Ziel des Projekts ist die Entwicklung eines Gesamtkonzepts zur Herstellung von maßgeschneiderten Oxymethylenethern (OMEx) mit definierter Kettenlänge auf Basis erneuerbarer Energien für deren Nutzung als alternative Dieselkraftstoffe in Verbrennungsmotoren sowie als Bausteine für Polyurethan-Kunststoffe. Ford Research übernimmt hierbei die Betrachtung geeigneter OMEx/Diesel Kraftstoffblends sowohl in Vollmotoruntersuchungen am Prüfstand als auch in Fahrzeugdemonstratoren (Leichte Nutzfahrzeuge).

Teilvorhaben K0 (Kopernikus-Projekt - Forschungscluster FC-B3 'Oxymethylenether: Kraft- und Kunststoffe auf Basis von CO2 und Wasserstoff' - Verfahren zur Synthese von OMEx und Polyoxymethylenetherpolyolen)

Das Projekt "Teilvorhaben K0 (Kopernikus-Projekt - Forschungscluster FC-B3 'Oxymethylenether: Kraft- und Kunststoffe auf Basis von CO2 und Wasserstoff' - Verfahren zur Synthese von OMEx und Polyoxymethylenetherpolyolen)" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Sondervermögen Großforschung, Institut für Mikroverfahrenstechnik durchgeführt. Ziel der Arbeiten ist ein optimiertes Verfahren zur Herstellung von oligomeren Oxymethylenethern (OMEn, CH3O(CH2O)nCH3 mit n = 1-5) für Kraftstoffanwendungen. Diese eignen sich als Dieselkraftstoffe und zeichnen sich durch extrem niedrige Ruß- und NOx-Emissionen aus. Die Arbeiten erfolgen im Rahmen der Kopernikus-Initiative (Power2X-Projekt), die vom Bundesministerium für Bildung und Forschung gefördert wird. Die Aktivitäten sind hochgradig interdisziplinär und werden von einem Konsortium aus Forschungseinrichtungen und Unternehmen durchgeführt. In der Anfangsphase des Projekts werden Katalysatorsysteme zur Umsetzung von Methanol zu Formaldehyd getestet. Hierbei werden Katalysatoraktivitäten ermittelt und Reaktionsparamater wie Druck und Temperatur optimiert. Zu diesem Zweck wird eine breit ausgelegte Laboranlage betrieben. Im nächsten Schritt wird die Direktsynthese von Dimethoxymethan (DMM, OME1) aus Methanol in einem kontinuierlichen Verfahren untersucht. Darauf aufbauend erfolgt die Synthese oligomerer OMEn. Hierbei steht auch die Aufarbeitung der anfallenden Produktgemische im Fokus. Die erarbeiteten Ergebnisse dienen als Grundlage für die Planung und Errichtung einer Pilotanlage.

Teilvorhaben 3 der Technischen Universität München: Motorische Nutzung

Das Projekt "Teilvorhaben 3 der Technischen Universität München: Motorische Nutzung" wird vom Umweltbundesamt gefördert und von Technische Universität München, Institut für Energietechnik, Lehrstuhl für Verbrennungskraftmaschinen durchgeführt. Der Einsatz von Biokraftstoffen im Transportsektor erfährt gegenwärtig einen beispiellosen Aufschwung, was nicht nur auf die Verknappung fossiler Ressourcen sondern auch auf die sich stetig verschärfende Klimaproblematik zurückzuführen ist. Darüber hinaus müssen immer höhere Anforderungen im Hinblick auf NOx- und Partikelemissionssenkungen erfüllt werden. Gegenwärtig sind insbesondere solche Biokraftstoffe gefragt, die keine aufwändigen Modifikationen sowohl der Motoren als auch des Versorgungsnetzes erfordern. Dies setzt möglichst gleiche physikalisch-chemische Kenngrößen wie die konventioneller, auf Basis von Erdöl gewonnener Kraftstoffe voraus. Wichtige Parameter sind z.B. Siedepunkt, Dampfdruck, Löseeigenschaften, Verunreinigungen, Dichte oder der Heizwert sowie Kenngrößen zur motorischen Verbrennung wie z.B. Zündtemperatur, Oktan- bzw. Cetanzahl. Als Substituenten für Dieselkraftstoffe sind biobasierte Kraftstoffe wie z.B. Fettsäuremethylester (Fatty Acid Methyl Ester, FAME) und hydrierte Pflanzenöle (Hydrogenated Vegetable Oil, HVO) bereits weit verbreitet und finden sich insbesondere in Blends mit konventionellen Dieselkraftstoffen wieder. Eine weitere Option stellt Dimethylether (DME) dar. In seinen Eigenschaften ist DME dem Flüssiggas (Liquefied Petroleum Gas, LPG) sehr ähnlich, weist aber im Gegensatz zu diesem eine sehr hohe Cetanzahl von ca. 55 auf und ist damit als alternativer Dieselkraftstoff geeignet. Mit DME ist eine emissionsarme Verbrennung ohne Rußbildung sowie eine einfache Abgasnachbehandlung möglich, was auf den Sauerstoffgehalt im Kraftstoff zurückgeführt werden kann. Nachteilig ist allerdings, dass DME bei Normalbedingungen als gasförmige Substanz vorliegt, so dass Anpassungen sowohl des Fahrzeugs als auch der Kraftstofflogistik erforderlich sind. Diese Nachteile können umgangen werden, wenn Oxymethylenether CH3O-(CH2O)n-CH3 (OME) mit kurzen Kettenlängen zum Einsatz kommen. Sie leiten sich formal von DME (n = 0) ab und liegen unter Normalbedingungen als Flüssigkeiten vor. Ziel der Arbeit ist die Senkung von NOx- und Partikelemissionen von Dieselmotoren im Hinblick auf die EU VI Norm. Um den sich stetig verschärfenden, gesetzlichen Abgasnormen gerecht zu werden, wird der Ansatz verfolgt den konventionellen Dieselkraftstoff durch 'sauber' verbrennendes OME zu ersetzen. Durch den erhöhten Sauerstoffgehalt wird eine direkte Rußminderung während der Verbrennung und somit eine deutliche Vereinfachung der Abgasnachbehandlung erreicht. Darüber hinaus soll durch solche OME der Luftbedarf des Motors und damit die Ladungswechselarbeit verringert werden, was zu einer Erhöhung des Wirkungsgrades des Motors führt. Die OME werden am Lehrstuhl für Verbrennungskraftmaschinen (LVK) der Technischen Universität München (TUM) in Motorentests untersucht. Parallel dazu werden die Anforderungen an OME-geeignete Motoren hinsichtlich des Brennverfahrens durch rechnerische Simulation ermittelt.

Teilvorhaben 1 des Sondervermögens Großforschung beim Karlsruher Institut für Technologie (KIT): Synthese

Das Projekt "Teilvorhaben 1 des Sondervermögens Großforschung beim Karlsruher Institut für Technologie (KIT): Synthese" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Sondervermögen Großforschung, Institut für Katalyseforschung und -technologie durchgeführt. Das geplante Projekt knüpft direkt an die Aktivitäten von KIT-IKFT zur Synthese und Weiterverarbeitung von Methanol (MeOH) bzw. Dimethylether (DME) an. Beide können, letzteres z.B. im bioliq®-Verfahren, aus biomassestämmigem Synthesegas gewonnen werden und es soll ein effizienter Prozess zur Synthese von Oxymethylenethern (OME), ausgehend von MeOH/DME entwickelt werden. OME sind leistungsfähige Dieseladditive zur Rußemissionssenkung. Bei ihrer Erzeugung aus nachwachsenden Rohstoffen verbleibt der ursprünglich in der Biomasse gebundene Sauerstoff weitgehend im Produkt, so dass eine Herstellung mit hoher Energie- und Atomeffizienz möglich ist. Es ist bekannt, dass sich OME durch Reaktion von MeOH/DME mit Trioxan als Formaldehydquelle herstellen lassen. Allerdings sind die Umsätze und Selektivitäten dieser Reaktion nicht befriedigend. Durch systematische Variation von Reaktionsparametern wie z.B. Druck, Temperatur, Stöchiometrie oder Katalysatorverweilzeit sollen hier, begleitet von einem umfassenden Katalysatorscreening, Fortschritte erzielt werden. Hinsichtlich Reaktionstechnik, werden die Versuche zunächst im Batchbetrieb durchgeführt und auf Basis der so gewonnenen Daten wird im nächsten Schritt eine kontinuierlich operierende, heterogen katalysierte Gasphasensynthese entwickelt. Im nächsten Schritt soll der benötigte Formaldehyd unter oxidativen Bedingungen direkt aus MeOH/DME generiert werden, so dass auf den Einsatz einer separaten Formaldehydquelle verzichtet werden kann.

Teilvorhaben 2 der Technischen Universität Kaiserslautern: Verfahrenstechnik

Das Projekt "Teilvorhaben 2 der Technischen Universität Kaiserslautern: Verfahrenstechnik" wird vom Umweltbundesamt gefördert und von Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Lehrstuhl für Thermodynamik durchgeführt. Die Beimischung von Poly(oxymethylen)dimethylethern (OME) zu Dieselkraftstoff führt zur Senkung der Rußentstehung bei der Verbrennung im Motor ohne Modifikationen am Kraftstoffsystem oder der Einspritztechnik. OME können vollständig aus Methanol aus nachwachsenden Rohstoffen hergestellt werden. In den letzten Jahren wurden am LTD zwei Syntheserouten für OME untersucht: im Vordergrund stand die Synthese von OME aus Methylal und Trioxan, beides Methanol-Derivate. Mittlerweile stehen für diese vielversprechende Route alle benötigten Stoff- und Reaktionsdaten zur Verfügung. Ein Verfahrensentwurf ist auf der Basis eines rigorosen Prozessmodells ausgearbeitet. Diese Arbeiten sind so weit fortgeschritten, dass damit Anlagen ausgelegt werden können. Dies soll im Rahmen des Projekts für eine Pilot Demonstration Unit (PDU) durchgeführt werden, die in einem eventuellen Folgeprojekt gebaut werden könnte. Des Weiteren wurde auch die Synthese von OME in der Flüssigphase aus den Edukten Formaldehyd und Methanol untersucht. Die Schwierigkeiten liegen dabei in der Trennung. Im Prozess tritt unvermeidbar Wasser auf. Die aufzuarbeitenden Mischungen aus Formaldehyd, Wasser, Methanol und OME sind aufgrund von Oligomerisationsreaktionen extrem komplex. Diese Reaktionen sind auch im Aufarbeitungsteil unvermeidlich vorhanden. Ziel ist die Ausarbeitung des Verfahrens auf Basis von Messungen zu Reaktionen und Stoffdaten. Die Arbeitsplanung der sich ergänzenden Partner ist im Antrag genauer erläutert.

Teilvorhaben BASF SE

Das Projekt "Teilvorhaben BASF SE" wird vom Umweltbundesamt gefördert und von BASF SE durchgeführt. In L6 wird die 3-stufige Synthese von Oxymethylenethern (OME) aus Synthesegas untersucht, das aus Hüttengasen des thyssenkrupp-Stahlwerks in Duisburg erzeugt wird. Die Synthese erfolgt über Dimethylether und Formaldehyd (FA) als Zwischenprodukte, die aus Synthesegas (vgl. C2C TV L3) bzw. aus Methanol (vgl. C2C TV L2) erzeugt und abschließend zu OME mit 3 bis 5 Formeleinheiten FA umgesetzt werden. Zusätzlich zum stofflichen Verbund aus Stahl und Chemie für die Synthesegas-Erzeugung wird die Nutzung von Abwärmen der Stahlherstellung für die endotherme FA-Synthese untersucht. Die Dynamik von Lastwechselprozessen im Verbund aus Stahl- und Chemieanlagen wird betrachtet, indem für die Prozessparameter Zeitkonstanten aus Bilanz- und Flussgrößen ermittelt werden. Parallel zur Entwicklung des OME-Verfahrens werden OME als Komponenten in Dieselkraftstoffen mit bevorzugten Verbrennungseigenschaften bewertet und daraus Konzepte für ihre Vermarktung abgeleitet. In U1-U5 wird durch Prozesssimulation der Einfluss der Zusammensetzung von Hüttengasen auf die DME-Synthese an Cu-Katalysatoren untersucht. Falls nötig, werden Adsorber für die Synthesegas-Reinigung ausgelegt. BASF wird Rezepturen für Cu- & Ag-haltige Dehydrierkatalysatoren zur Verfügung stellen und bei der Entwicklung des Konzeptes für den Wärmetransfer aus der Stahlerzeugung in die FA-Herstellung, bei der Simulation statischer Prozess-Performance und bei der Schätzung dynamischer Effekte mitwirken. Des Weiteren wird BASF mit TU KL das Konzept für eine OME-Synthese erarbeiten. Als Koordinator für L6 wird BASF die drei Verfahren durch Simulation zu einem OME-Verfahren zusammenführen und diesen in den Stahl-Chemie-Verbund integrieren. Abschließend wird die Wirtschaftlichkeit des Verfahrensverbundes untersucht und in Patentrecherchen werden Schutzrechte Dritter identifiziert werden. BASF wird OME-Probemengen bereitstellen und gefahrstoffliche Fragestellungen klären, um Flottentests in der Experimentalphase vorzubereiten.

Teilvorhaben Linde AG

Das Projekt "Teilvorhaben Linde AG" wird vom Umweltbundesamt gefördert und von Linde GmbH durchgeführt. In L6 wird die 3-stufige Synthese von Oxymethylenethern (OME) aus Synthesegas untersucht, das aus Hüttengasen des thyssenkrupp-Stahlwerks in Duisburg erzeugt wird. Die Synthese erfolgt über Dimethylether und Formaldehyd (FA) als Zwischenprodukte, die aus Synthesegas (vgl. C2C TV L3) bzw. aus Methanol (vgl. C2C TV L2) erzeugt und abschließend zu OME mit 3 bis 5 Formeleinheiten FA umgesetzt werden. Zusätzlich zum stofflichen Verbund aus Stahl und Chemie für die Synthesegas-Erzeugung wird die Nutzung von Abwärmen der Stahlherstellung für die endotherme FA-Synthese untersucht. Die Dynamik von Lastwechselprozessen im Verbund aus Stahl- und Chemieanlagen wird betrachtet, indem für die Prozessparameter Zeitkonstanten aus Bilanz- und Flussgrößen ermittelt werden. Parallel zur Entwicklung des OME-Verfahrens werden OME als Komponenten in Dieselkraftstoffen mit bevorzugten Verbrennungseigenschaften bewertet und daraus Konzepte für ihre Vermarktung abgeleitet. Linde bearbeitet U1 ('Modifizierte DME-Synthese') und U4 ('Prozess-Integration') als Teil einer Gesamtroute über DME zu OME. In Zusammenarbeit mit L0 werden alle im Hüttenabgas enthaltenen Hauptkomponenten und Verunreinigungen beschrieben. Typische Gehalte werden zeitabhängig quantifiziert. W

Teilvorhaben thyssenkrupp AG

Das Projekt "Teilvorhaben thyssenkrupp AG" wird vom Umweltbundesamt gefördert und von ThyssenKrupp AG, Corporate Function Technology - Innovation & Sustainability durchgeführt. In L6 wird die 3-stufige Synthese von Oxymethylenethern (OME) aus Synthesegas untersucht, das aus Hüttengasen des thyssenkrupp-Stahlwerks in Duisburg erzeugt wird. Die Synthese erfolgt über Dimethylether und Formaldehyd (FA) als Zwischenprodukte, die aus Synthesegas (vgl. C2C TV L3) bzw. aus Methanol (vgl. C2C TV L2) erzeugt und abschließend zu OME mit 3 bis 5 Formeleinheiten FA umgesetzt werden. Zusätzlich zum stofflichen Verbund aus Stahl und Chemie für die Synthesegas-Erzeugung wird die Nutzung von Abwärmen der Stahlherstellung für die endotherme FA-Synthese untersucht. Die Dynamik von Lastwechselprozessen im Verbund aus Stahl- und Chemieanlagen wird betrachtet, indem für die Prozessparameter Zeitkonstanten aus Bilanz- und Flussgrößen ermittelt werden. Parallel zur Entwicklung des OME-Verfahrens werden OME als Komponenten in Dieselkraftstoffen mit bevorzugten Verbrennungseigenschaften bewertet und daraus Konzepte für ihre Vermarktung abgeleitet. Die Arbeiten von thyssenkrupp mit den Tochterunternehmen Steel Europe und Industrial Solutions konzentrieren sich zum einen auf die Ausarbeitung der endothermen Formaldehyd-Synthese (AP2) und zum anderen auf der stofflichen sowie energetischen Integration der Einzelsynthesen (AP4) in die bestehenden Prozessketten. thyssenkrupp Industrial Solutions beteiligt sich mit seiner Expertise im chemischen Anlagenbau besonders an den verfahrenstechnisch apparativen Lösungsansätzen. thyssenkrupp Steel Europe als Betreiber der Stahlhütte Duisburg wird zu Beginn des Projekts eine detaillierte Stoff- und Wärmebilanz ausgewählter Referenzräume erstellen, so dass hierüber potentielle Kopplungspunkte bewertet und identifiziert werden können.

1 2