API src

Found 26 results.

Similar terms

s/pca-verfahren/PSA-Verfahren/gi

Xtra-generisch\N2 (flüssig)

Gewinnung von flüssigem Stickstoff durch Lutzerlegung nach dem Lindeverfahren. In dieser Prozeßeinheit wird die Stickstoffherstellung durch Luftzerlegung nach dem Niederdruckverfahren (Lindeverfahren) bilanziert. Bei diesem Verfahren werden aus der atmosphärischen Luft gleichzeitig deren drei wesentlichen Komponenten gewonnen: Stickstoff (N2, 75,5 Massen-%), Sauerstoff (O2, 23,1 Massen-%) und Argon (1,3 Massen-%). Nach der Abtrennung von Staubpartikeln wird die Luft auf ungefähr 6 bis 7 bar verdichtet und gleichzeitig abgekühlt. Dadurch werden Wasser, Kohlendioxid und hochsiedende Kohlenwasserstoffe abgetrennt. Danach wird die abgekühlte Luft in eine Doppelrektifikationssäule geführt, wo eine Zerlegung in Stickstoff und mittelreinen Sauerstoff erfolgt. In der zweiten Säule geschieht dann die Feintrennung in Stickstoff und Sauerstoff. Die Flüchtigkeit des Argons liegt etwa zwischen derjenigen von Stickstoff und Sauerstoff. Es reichert sich deshalb in der Zwischenzone an, wo es entnommen und in einer speziellen Rektifikationskolonne gereinigt wird. Der Trennung der Komponenten schließen sich Verflüssigungs- und Verdichtungsschritte an. Derzeit werden ungefähr 90 % der gesamten Produktion über das hier bilanzierte Niederdruckverfahren hergestellt (Sauerstoff 1996). Andere Verfahren wie PSA (pressure swing adsorption) oder das Membranverfahren werden hier nicht betrachtet. Die Jahresproduktion an Stickstoff (alle Verfahren) betrug 1989 in den USA ca. 27 Mio. t, in der BRD ca. 2,5 Mio. t und in Japan ca. 6,9 Mio. t. Im Durchschnitt werden 1,5 % des Stickstoffs in Stahlflaschen, 50,5 % in flüssiger Form und 48 % über Gasleitungen bereitgestellt (siehe #2). Nach den Angaben in (Produktion 1992) wurden in Deutschland 1991 3,9 Mio. t und 1992 3,2 Mio. t Stickstoff hergestellt. Die Kennziffern in GEMIS stehen für die Produktion in Westeuropa in den 90er Jahren. Allokation: Bei dem Prozeß der Luftzerlegung fallen Stickstoff und Sauerstoff als Produkte an. Für die Herstellung von einer Tonne an Produkten (765 kg Stickstoff und 235 kg Sauerstoff) wird ein Input von 1014 kg atmosphärischer Luft benötigt. Der Prozeß liefert außerdem 13 kg Argon (dieses wird wegen seines geringen Massenanteils bei GEMIS nicht als Produkt gewertet) und ungefähr 0,5 kg CO2. Die den Prozeß der Luftzerlegung beschreibenden Gesamtdaten werden entsprechend dem Massenanteil der beiden Produkte N2 und O2 zu 3,264:1 aufgeteilt. Genese der Kennziffern Massenbilanz: Die Massenbilanz bei der Stickstoffherstellung wurde unter der Annahme eines Wirkungsgrades von 100 % bei der Luftzerlegung berechnet. Entsprechend der Zusammensetzung der Luft (in Massenanteilen) wird für die Herstellung von 1 t N2 eine Menge von 1324 kg Luft benötigt. Dabei fällt als weiteres Produkt 306 kg Sauerstoff (außerdem 17 kg Argon) an (siehe #1). Als nicht verwerteter Bestandteil der atmosphärischen Luft verbleiben 0,61 kg Kohlendioxid. Für GEMIS ergibt sich nach der Allokationsregel ein Wirkungsgrad von 98,66 % (Bedarf an Luft: 1014kg/t N2). Argon und Kohlendioxid werden nicht bilanziert. Energiebedarf: Nach #2 wird für die Luftzerlegung (Anlagenkapazität 10000 m3/h) eine Energiemenge von 0,15 kWh/m3 gasförmigen N2 benötigt. Bei einer kleineren Anlagenkapazität (1500 m3/h) ergibt sich ein Wert von 0,30 kWh/m3. Für die Verflüssigung des gewonnenen Stickstoffs wird zusätzliche Energie benötigt. Es wird ein Wert von 0,5 bis 0,6 kWh/m3 N2 angegeben. Rechnet man diese Werte über die Molmasse von N2 (28,014 g/mol) und das Molvolumen (22,4 l/mol) um, ergeben sich Werte von 0,4 GJ/t (Luftzerlegung, Anlagenkapazität 10000 m3/h) und 1,6 GJ/t N2 (Verflüssigung, Mittelwert aus den beiden Werten: 0,55 kWh/m3 N2). Diese Werte zeigen eine gute Übereinstimmung mit den Daten aus #3, 2 MJ/kg N2, und #1, 1,75 MJ/kg N2 (Werte für Luftzerlegung und Verflüssigung). Bei (DOE 1985) wird nur die Luftzerlegung ohne Verflüssigung bilanziert. Es ergibt sich ein Bedarf an 687,2 btu elektrischer Energie für die Zerlegung von 4,322 lb atmosphärischer Luft. Umgerechnet auf die Herstellung von einer Tonne Stickstoff ergibt sich nach der Allokation (siehe oben) ein Wert von 0,37 GJ/t N2. Die Quellen #1 und #2 geben keine Energiegesamtwerte für die Zerlegung des gesamten Luftinputs, sondern bereits anteilige auf Stickstoff [bzw. #1 bilanziert für 1 kg O2] bezogene Werte an. Da die Angaben aus #2 am besten nachvollziehbar sind, werden diese für GEMIS verwendet. Prozeßbedingte Luftemissionen: Prozeßbedingte Luftemissionen bei der Luftzerlegung sind nicht bekannt. Da das beim Prozeß anfallende CO2 aus der eingesetzten Luft stammt, wird es nicht als Emission gewertet. Wasser: Der Wasserbedarf bei der Sauerstoffherstellung beschränkt sich auf die Verwendung von Kühlwasser. Quantitative Angaben hierüber liegen nicht vor. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1000000t/h Nutzungsgrad: 98,7% Produkt: Grundstoffe-Chemie

Xtra-generisch\O2 (flüssig)

Gewinnung von flüssigem Sauerstoff durch Luftzerlegung nach dem Lindeverfahren und anschließender Verflüssigung. In dieser Prozeßeinheit wird die Sauerstoffherstellung durch Luftzerlegung nach dem Niederdruckverfahren (Lindeverfahren) bilanziert. Bei diesem Verfahren werden aus der atmosphärischen Luft gleichzeitig deren drei wesentlichen Komponenten gewonnen: Stickstoff (75,5 Massen-%), Sauerstoff (23,1 Massen-%) und Argon (1,3 Massen-%). Nach der Abtrennung von Staubpartikeln wird die Luft auf ungefähr 6 bis 7 bar verdichtet und gleichzeitig abgekühlt. Dadurch werden Wasser, Kohlendioxid und hochsiedende Kohlenwasserstoffe abgetrennt. Danach wird die abgekühlte Luft in eine Doppelrektifikationssäule geführt, wo eine Zerlegung in Stickstoff und mittelreinen Sauerstoff erfolgt. In der zweiten Säule geschieht dann die Feintrennung in Stickstoff und Sauerstoff. Die Flüchtigkeit des Argons liegt etwa zwischen derjenigen von Stickstoff und Sauerstoff. Es reichert sich deshalb in der Zwischenzone an, wo es entnommen und in einer speziellen Rektifikationskolonne gereinigt wird. Der Trennung der Komponenten schließen sich Verflüssigungs- und Verdichtungsschritte an. Derzeit werden ungefähr 90 % der gesamten Sauerstoffproduktion über das hier bilanzierte Niederdruckverfahren hergestellt (Sauerstoff 1996). Andere Verfahren wie PSA (pressure-swing adsorption) oder das Membranverfahren werden hier nicht betrachtet. Die Kennziffern in GEMIS stehen für die Produktion in Westeuropa in den 90er Jahren. In Deutschland wurden 1991 ca. 7,3 Mio. und 1992 ca. 6,7 Mio. Tonnen Sauerstoff produziert [berechnet aus den Volumenangaben in (Produktion 1992)]. Der weltweite Jahresverbrauch an Sauerstoff im Zeitraum 1990/91 belief sich auf ca. 21,2 Mio. t in Westeuropa, ca. 22,0 Mio. t in den USA und ca. 12,9 Mio. t in Japan (Sauerstoff 1996). Allokation: Bei dem Prozeß der Luftzerlegung fallen Stickstoff und Sauerstoff als Produkte an. Für die Herstellung von einer Tonne an Produkten (765 kg Stickstoff und 235 kg Sauerstoff) wird ein Input von 1014 kg atmosphärischer Luft benötigt. Der Prozeß liefert außerdem 13 kg Argon (dieses wird wegen seines geringen Massenanteils bei GEMIS nicht als Produkt gewertet) und ungefähr 0,5 kg CO2. Die den Prozeß der Luftzerlegung beschreibenden Gesamtdaten werden entsprechend dem Massenanteil der beiden Produkte N2 und O2 zu 3,264:1 aufgeteilt. Genese der Kennziffern Massenbilanz: Die Massenbilanz bei der Sauerstoffherstellung wurde unter der Annahme eines Wirkungsgrades von 100 % bei der Luftzerlegung berechnet. Entsprechend der Zusammensetzung der Luft (in Massenanteilen) wird für die Herstellung von 1 t O2 eine Menge von 4322 kg Luft benötigt. Dabei fällt als weiteres Produkt 3264 kg Stickstoff (außerdem 55 kg Argon) an (siehe #1). Als nicht verwerteter Bestandteil der atmosphärischen Luft verbleiben 2,0 kg Kohlendioxid. Für GEMIS ergibt sich nach der Allokationsregel ein Wirkungsgrad von 98,66 % (Bedarf an Luft: 1014kg/t O2). Argon und Kohlendioxid werden nicht bilanziert. Energiebedarf: Nach #2 wird für die Luftzerlegung (Anlagenkapazität 10000 m3/h) eine Strommenge von 0,15 kWh/m3 gasförmigen N2 benötigt. Bei einer kleineren Anlagenkapazität (1500 m3/h) ergibt sich ein Wert von 0,30 kWh/m3. Für die Verflüssigung des gewonnenen Stickstoffs wird zusätzliche Energie benötigt. Es wird ein Wert von 0,5 bis 0,6 kWh/m3 N2 angegeben. Da für die Bilanzierung von Stickstoff und Sauerstoff eine Luftzerlegungsanlage betrachtet wird bei der gleichzeitig beide genannten Gase entstehen, werden die obigen Energiedaten für die Sauerstoffherstellung übernommen. Man erhält für die Luftzerlegung einen Wert von 0,4 GJ/t O2 und für die Verflüssigung 1,6 GJ/t O2 (vgl. Prozeßeinheit zur Stickstoffherstellung). Diese Werte zeigen eine gute Übereinstimmung mit den Daten aus #3, 2 MJ/kg O2, und #1, 1,75 MJ/kg O2 (Werte für Luftzerlegung und Verflüssigung). Bei (DOE 1985) wird nur die Luftzerlegung ohne Verflüssigung bilanziert. Es ergibt sich ein Bedarf an 687,2 btu elektrischer Energie für die Zerlegung von 4,322 lb atmosphärischer Luft. Umgerechnet auf die Herstellung von einer Tonne Sauerstoff ergibt sich nach der Allokation in Kapitel 0.1.3 ein Wert von 0,37 GJ/t O2. Die Quellen #2 und #1 (DSD 1995) geben im Unterschied zu (DOE 1985) keine Energiegesamtwerte für die Zerlegung des gesamten Luftinput, sondern bereits anteilige auf Stickstoff [bzw. #1 bilanziert für 1 kg O2] bezogene Werte an. Da die Angaben aus #2 am besten nachvollziehbar sind, werden diese für GEMIS verwendet. Prozeßbedingte Luftemissionen: Prozeßbedingte Luftemissionen bei der Luftzerlegung sind nicht bekannt. Da das beim Prozeß anfallende CO2 aus der eingesetzten Luft stammt, wird es nicht als Emission gewertet. Wasser: Der Wasserbedarf bei der Sauerstoffherstellung beschränkt sich auf die Verwendung von Kühlwasser. Quantitative Angaben hierüber liegen nicht vor. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1000000t/h Nutzungsgrad: 98,7% Produkt: Grundstoffe-Chemie

Xtra-generisch\N2 (gasförmig)

Gewinnung von gasförmigen Stickstoff durch Luftzerlegung nach dem Lindeverfahren. In dieser Prozeßeinheit wird die Stickstoffherstellung durch Luftzerlegung nach dem Niederdruckverfahren (Lindeverfahren) bilanziert. Bei diesem Verfahren werden aus der atmosphärischen Luft gleichzeitig deren drei wesentlichen Komponenten gewonnen: Stickstoff (N2, 75,5 Massen-%), Sauerstoff (O2, 23,1 Massen-%) und Argon (1,3 Massen-%). Nach der Abtrennung von Staubpartikeln wird die Luft auf ungefähr 6 bis 7 bar verdichtet und gleichzeitig abgekühlt. Dadurch werden Wasser, Kohlendioxid und hochsiedende Kohlenwasserstoffe abgetrennt. Danach wird die abgekühlte Luft in eine Doppelrektifikationssäule geführt, wo eine Zerlegung in Stickstoff und mittelreinen Sauerstoff erfolgt. In der zweiten Säule geschieht dann die Feintrennung in Stickstoff und Sauerstoff. Die Flüchtigkeit des Argons liegt etwa zwischen derjenigen von Stickstoff und Sauerstoff. Es reichert sich deshalb in der Zwischenzone an, wo es entnommen und in einer speziellen Rektifikationskolonne gereinigt wird. Der Trennung der Komponenten schließen sich Verflüssigungs- und Verdichtungsschritte an. Derzeit werden ungefähr 90 % der gesamten Produktion über das hier bilanzierte Niederdruckverfahren hergestellt (Sauerstoff 1996). Andere Verfahren wie PSA (pressure swing adsorption) oder das Membranverfahren werden hier nicht betrachtet. Die Jahresproduktion an Stickstoff (alle Verfahren) betrug 1989 in den USA ca. 27 Mio. t, in der BRD ca. 2,5 Mio. t und in Japan ca. 6,9 Mio. t. Im Durchschnitt werden 1,5 % des Stickstoffs in Stahlflaschen, 50,5 % in flüssiger Form und 48 % über Gasleitungen bereitgestellt (#2). Nach den Angaben in (Produktion 1992) wurden in Deutschland 1991 3,9 Mio. t und 1992 3,2 Mio. t Stickstoff hergestellt. Die Kennziffern in GEMIS stehen für die Produktion in Westeuropa in den 90er Jahren. Allokation: Bei dem Prozeß der Luftzerlegung fallen Stickstoff und Sauerstoff als Produkte an. Für die Herstellung von einer Tonne an Produkten (765 kg Stickstoff und 235 kg Sauerstoff) wird ein Input von 1014 kg atmosphärischer Luft benötigt. Der Prozeß liefert außerdem 13 kg Argon (dieses wird wegen seines geringen Massenanteils bei GEMIS nicht als Produkt gewertet) und ungefähr 0,5 kg CO2. Die den Prozeß der Luftzerlegung beschreibenden Gesamtdaten werden entsprechend dem Massenanteil der beiden Produkte N2 und O2 zu 3,264:1 aufgeteilt. Genese der Kennziffern Massenbilanz: Die Massenbilanz bei der Stickstoffherstellung wurde unter der Annahme eines Wirkungsgrades von 100 % bei der Luftzerlegung berechnet. Entsprechend der Zusammensetzung der Luft (in Massenanteilen) wird für die Herstellung von 1 t N2 eine Menge von 1324 kg Luft benötigt. Dabei fällt als weiteres Produkt 306 kg Sauerstoff (außerdem 17 kg Argon) an (siehe #1). Als nicht verwerteter Bestandteil der atmosphärischen Luft verbleiben 0,61 kg Kohlendioxid. Für GEMIS ergibt sich nach der Allokationsregel ein Wirkungsgrad von 98,66 % (Bedarf an Luft: 1014kg/t N2). Argon und Kohlendioxid werden nicht bilanziert. Energiebedarf: Nach #2 wird für die Luftzerlegung (Anlagenkapazität 10000 m3/h) eine Energiemenge von 0,15 kWh/m3 gasförmigen N2 benötigt. Bei einer kleineren Anlagenkapazität (1500 m3/h) ergibt sich ein Wert von 0,30 kWh/m3. Für die Verflüssigung des gewonnenen Stickstoffs wird zusätzliche Energie benötigt. Es wird ein Wert von 0,5 bis 0,6 kWh/m3 N2 angegeben. Rechnet man diese Werte über die Molmasse von N2 (28,014 g/mol) und das Molvolumen (22,4 l/mol) um, ergeben sich Werte von 0,4 GJ/t (Luftzerlegung, Anlagenkapazität 10000 m3/h) und 1,6 GJ/t N2 (Verflüssigung, Mittelwert aus den beiden Werten: 0,55 kWh/m3 N2). Diese Werte zeigen eine gute Übereinstimmung mit den Daten aus #3, 2 MJ/kg N2, und #1, 1,75 MJ/kg N2 (Werte für Luftzerlegung und Verflüssigung). Bei (DOE 1985) wird nur die Luftzerlegung ohne Verflüssigung bilanziert. Es ergibt sich ein Bedarf an 687,2 btu elektrischer Energie für die Zerlegung von 4,322 lb atmosphärischer Luft. Umgerechnet auf die Herstellung von einer Tonne Stickstoff ergibt sich nach der Allokation in Kapitel 0.1.3 ein Wert von 0,37 GJ/t N2. Die Quellen #2 und #1 geben keine Energiegesamtwerte für die Zerlegung des gesamten Luftinputs, sondern bereits anteilige auf Stickstoff [bzw. #1 bilanziert für 1 kg O2] bezogene Werte an. Da die Angaben aus #2 am besten nachvollziehbar sind, werden diese für GEMIS verwendet. Prozeßbedingte Luftemissionen: Prozeßbedingte Luftemissionen bei der Luftzerlegung sind nicht bekannt. Da das beim Prozeß anfallende CO2 aus der eingesetzten Luft stammt, wird es nicht als Emission gewertet. Wasser: Der Wasserbedarf bei der Sauerstoffherstellung beschränkt sich auf die Verwendung von Kühlwasser. Quantitative Angaben hierüber liegen nicht vor. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1000000t/h Nutzungsgrad: 98,7% Produkt: Grundstoffe-Chemie

Xtra-generisch\O2 (gasförmig)

Gewinnung von gasförmigen Sauerstoff durch Luftzerlegung nach dem Lindeverfahren. In dieser Prozeßeinheit wird die Sauerstoffherstellung durch Luftzerlegung nach dem Niederdruckverfahren (Lindeverfahren) bilanziert. Bei diesem Verfahren werden aus der atmosphärischen Luft gleichzeitig deren drei wesentlichen Komponenten gewonnen: Stickstoff (75,5 Massen-%), Sauerstoff (23,1 Massen-%) und Argon (1,3 Massen-%). Nach der Abtrennung von Staubpartikeln wird die Luft auf ungefähr 6 bis 7 bar verdichtet und gleichzeitig abgekühlt. Dadurch werden Wasser, Kohlendioxid und hochsiedende Kohlenwasserstoffe abgetrennt. Danach wird die abgekühlte Luft in eine Doppelrektifikationssäule geführt, wo eine Zerlegung in Stickstoff und mittelreinen Sauerstoff erfolgt. In der zweiten Säule geschieht dann die Feintrennung in Stickstoff und Sauerstoff. Die Flüchtigkeit des Argons liegt etwa zwischen derjenigen von Stickstoff und Sauerstoff. Es reichert sich deshalb in der Zwischenzone an, wo es entnommen und in einer speziellen Rektifikationskolonne gereinigt wird. Der Trennung der Komponenten schließen sich Verflüssigungs- und Verdichtungsschritte an. Derzeit werden ungefähr 90 % der gesamten Sauerstoffproduktion über das hier bilanzierte Niederdruckverfahren hergestellt (Sauerstoff 1996). Andere Verfahren wie PSA (pressure-swing adsorption) oder das Membranverfahren werden hier nicht betrachtet. Die Kennziffern in GEMIS stehen für die Produktion in Westeuropa in den 90er Jahren. In Deutschland wurden 1991 ca. 7,3 Mio. und 1992 ca. 6,7 Mio. Tonnen Sauerstoff produziert [berechnet aus den Volumenangaben in (Produktion 1992)]. Der weltweite Jahresverbrauch an Sauerstoff im Zeitraum 1990/91 belief sich auf ca. 21,2 Mio. t in Westeuropa, ca. 22,0 Mio. t in den USA und ca. 12,9 Mio. t in Japan (Sauerstoff 1996). Allokation: Bei dem Prozeß der Luftzerlegung fallen Stickstoff und Sauerstoff als Produkte an. Für die Herstellung von einer Tonne an Produkten (765 kg Stickstoff und 235 kg Sauerstoff) wird ein Input von 1014 kg atmosphärischer Luft benötigt. Der Prozeß liefert außerdem 13 kg Argon (dieses wird wegen seines geringen Massenanteils bei GEMIS nicht als Produkt gewertet) und ungefähr 0,5 kg CO2. Die den Prozeß der Luftzerlegung beschreibenden Gesamtdaten werden entsprechend dem Massenanteil der beiden Produkte N2 und O2 zu 3,264:1 aufgeteilt. Genese der Kennziffern Massenbilanz: Die Massenbilanz bei der Sauerstoffherstellung wurde unter der Annahme eines Wirkungsgrades von 100 % bei der Luftzerlegung berechnet. Entsprechend der Zusammensetzung der Luft (in Massenanteilen) wird für die Herstellung von 1 t O2 eine Menge von 4322 kg Luft benötigt. Dabei fällt als weiteres Produkt 3264 kg Stickstoff (außerdem 55 kg Argon) an (#1). Als nicht verwerteter Bestandteil der atmosphärischen Luft verbleiben 2,0 kg Kohlendioxid. Für GEMIS ergibt sich nach der Allokationsregel ein Wirkungsgrad von 98,66 % (Bedarf an Luft: 1014kg/t O2). Argon und Kohlendioxid werden nicht bilanziert. Energiebedarf: Nach #2 wird für die Luftzerlegung (Anlagenkapazität 10000 m3/h) eine Strommenge von 0,15 kWh/m3 gasförmigen N2 benötigt. Bei einer kleineren Anlagenkapazität (1500 m3/h) ergibt sich ein Wert von 0,30 kWh/m3. Für die Verflüssigung des gewonnenen Stickstoffs wird zusätzliche Energie benötigt. Es wird ein Wert von 0,5 bis 0,6 kWh/m3 N2 angegeben. Da für die Bilanzierung von Stickstoff und Sauerstoff eine Luftzerlegungsanlage betrachtet wird bei der gleichzeitig beide genannten Gase entstehen, werden die obigen Energiedaten für die Sauerstoffherstellung übernommen. Man erhält für die Luftzerlegung einen Wert von 0,4 GJ/t O2 und für die Verflüssigung 1,6 GJ/t O2 (vgl. Prozeßeinheit zur Stickstoffherstellung). Diese Werte zeigen eine gute Übereinstimmung mit den Daten aus #3, 2 MJ/kg O2, und #1, 1,75 MJ/kg O2 (Werte für Luftzerlegung und Verflüssigung). Bei (DOE 1985) wird nur die Luftzerlegung ohne Verflüssigung bilanziert. Es ergibt sich ein Bedarf an 687,2 btu elektrischer Energie für die Zerlegung von 4,322 lb atmosphärischer Luft. Umgerechnet auf die Herstellung von einer Tonne Sauerstoff ergibt sich nach der Allokation (siehe oben) ein Wert von 0,37 GJ/t O2. Die Quellen #2 und #1 geben im Unterschied zu (DOE 1985) keine Energiegesamtwerte für die Zerlegung des gesamten Luftinput, sondern bereits anteilige auf Stickstoff [bzw. #1 bilanziert für 1 kg O2] bezogene Werte an. Da die Angaben aus #2 am besten nachvollziehbar sind, werden diese für GEMIS verwendet. Prozeßbedingte Luftemissionen: Prozeßbedingte Luftemissionen bei der Luftzerlegung sind nicht bekannt. Da das beim Prozeß anfallende CO2 aus der eingesetzten Luft stammt, wird es nicht als Emission gewertet. Wasser: Der Wasserbedarf bei der Sauerstoffherstellung beschränkt sich auf die Verwendung von Kühlwasser. Quantitative Angaben hierüber liegen nicht vor. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1000000t/h Nutzungsgrad: 98,7% Produkt: Grundstoffe-Chemie

Herstellung von Mikropartikeln mittels Kristallisation mit hochkomprimierten bis ueberkritischen Fluiden als Antisolventien

Das Projekt "Herstellung von Mikropartikeln mittels Kristallisation mit hochkomprimierten bis ueberkritischen Fluiden als Antisolventien" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT, Bereich Umwelttechnik durchgeführt. Bisher vorliegende Erkenntnisse lassen erwarten, dass die Kristallisation mit komprimierten Fluiden Feststoffeigenschaften mikro- bzw. nanokristalliner Materialien erzeugen kann, die denen aus konventionellen Verfahren resultierenden ueberlegen sind. Dies sind die sehr enge Korngroessenverteilung und die verminderte Agglomerationsneigung der Feststoffe und die Moeglichkeit, anhaftendes Primaerloesemittel rasch und schonend zu entfernen. Im Vergleich zu klassischen Kristallisationsverfahren, die entweder Temperaturgradienten der Loeslichkeit oder spezielle Faellmittel nutzen, werden bei der Kristallisation mit komprimierten Fluiden Verunreinigungen durch Drittkomponenten und thermische Beanspruchungen der Wertkomponenten vollstaendig vermieden. Die Nutzung ausgepraegter Loeslichkeitsunterschiede in ueberkritischen Gasen bzw. Solvens/Gas-Gemischen praedestiniert das Verfahren auch zur Trennung von Feststoffgemischen und zur selektiven Extraktion von Wertstoffen. Besondere Chancen liegen auch in der Moeglichkeit, sogenannte Mikrokomposite herzustellen, feinkristalline, aus zwei oder mehreren chemischen Substanzen zusammengesetzte Feststoffpartikeln mit reproduzierbarer Mikrostruktur, die als Controlled Releasesysteme fuer bioaktive Wirkstoffe, als Trenn- und Traegermaterialien, als Fuellstoffe fuer Werkstoffe und Beschichtungssysteme, als Sinterpulver oder als Grundbausteine makroskopischer Informationstraeger zunehmend technische Bedeutung erlangen. Das PCA-Verfahren (Precipitation with a Compressed Fluid Antisolvent) gehoert zu den neuesten Varianten der Kristallisation mit hochkomprimierten Fluiden. Die Grundidee dieses Verfahrens besteht in der raeumlichen Begrenzung des Kristallisationsvorgangs auf kleine Tropfen der primaeren Feststoffloesung.

Teilvorhaben: Bereitstellung von Biogas und Überwachung des Versuchsbetriebes der Pilotanlage

Das Projekt "Teilvorhaben: Bereitstellung von Biogas und Überwachung des Versuchsbetriebes der Pilotanlage" wird vom Umweltbundesamt gefördert und von Werner Schleupen Stromerzeugung durchgeführt. In diesem Projektvorhaben wird eine Pilotanlage zur Wasserstoffherstellung aus Biogas aufgebaut und betrieben. Das Gesamtziel dieses Vorhaben ist diesen Prozess zur Technologiereife zu führen. Der Prozess besteht aus einer minimalen Rohbiogasaufbereitung mit anschließender direkter Dampfreformierung. Der Wasserstoff wird schließlich mittels Druckwechseladsorption aus dem Reformerprodukt abgeschieden und gespeichert. Das Verfahren ist bereits wissenschaftlich untersucht und grundsätzlich bestehen an der technischen Machbarkeit kaum Zweifel. Allerdings ist es aufgrund der alternativen Umwandlungsrouten von Biogas bisher nicht zur technologischen Reife geführt wurden. Unter den aktuellen klima- und wirtschaftspolitischen Rahmenbedingungen kann diesem Prozess eine neue Bedeutung zukommen. Biogasanlagen laufen in den nächsten Jahren aus der EEG-Anfangsförderung und suchen nach wirtschaftlichen Anschlusskonzepten. Deutschland benötigt eine Sektorenkopplung und hat Wasserstoff als den Rohstoff, der eine nachhaltige Energiewende ermöglicht identifiziert. Anders als bei der Elektrolyseroute wird hier, da Biogas und nicht Strom als Primärenergieträger verwendet wird, die nutzbare Energie durch die Wasserstoffaufbereitung nicht reduziert. Grüner Wasserstoff aus Biogas ist also der ideale Rohstoff, um eine Wasserstoffinfrastruktur aufzubauen, solange erneuerbarer Strom nicht im Überfluss zur Verfügung steht. Das Vorhaben untersucht auf der technischen Seite den Einfluss der Rohbiogasqualität auf die Wasserstoffqualität, die real zu erreichenden Wirkungsgrade des Prozesses, die Abwärme Integration der Wasserstoffaufbereitung in die Gesamtanlage, sowie die konstruktiven und verfahrenstechnischen Optimierungen der Rohbiogasaufbereitung und Reformerdimensionierung. Außerdem wird eine ganzheitliche Betrachtung der THG-Emissionen durchgeführt. Es wird die Wirtschaftlichkeit des Gesamtkonzeptes bewertet und damit Empfehlungen für eine weitere Verbreitung der Technologie erarbeitet.

Teilvorhaben: Aufstellung und Versuchsbetrieb einer Pilotanlage

Das Projekt "Teilvorhaben: Aufstellung und Versuchsbetrieb einer Pilotanlage" wird vom Umweltbundesamt gefördert und von BtX energy GmbH durchgeführt. In diesem Projektvorhaben wird eine Pilotanlage zur Wasserstoffherstellung aus Biogas aufgebaut und betrieben. Das Gesamtziel dieses Vorhaben ist diesen Prozess zur Technologiereife zu führen. Der Prozess besteht aus einer minimalen Rohbiogasaufbereitung mit anschließender direkter Dampfreformierung. Der Wasserstoff wird schließlich mittels Druckwechseladsorption aus dem Reformerprodukt abgeschieden und gespeichert. Das Verfahren ist bereits wissenschaftlich untersucht und grundsätzlich bestehen an der technischen Machbarkeit kaum Zweifel. Allerdings ist es aufgrund der alternativen Umwandlungsrouten von Biogas bisher nicht zur technologischen Reife geführt wurden. Unter den aktuellen klima- und wirtschaftspolitischen Rahmenbedingungen kann diesem Prozess eine neue Bedeutung zukommen. Biogasanlagen laufen in den nächsten Jahren aus der EEG-Anfangsförderung und suchen nach wirtschaftlichen Anschlusskonzepten. Deutschland benötigt eine Sektorenkopplung und hat Wasserstoff als den Rohstoff, der eine nachhaltige Energiewende ermöglicht identifiziert. Anders als bei der Elektrolyseroute wird hier, da Biogas und nicht Strom als Primärenergieträger verwendet wird, die nutzbare Energie durch die Wasserstoffaufbereitung nicht reduziert. Grüner Wasserstoff aus Biogas ist also der ideale Rohstoff, um eine Wasserstoffinfrastruktur aufzubauen, solange erneuerbarer Strom nicht im Überfluss zur Verfügung steht. Das Vorhaben untersucht auf der technischen Seite den Einfluss der Rohbiogasqualität auf die Wasserstoffqualität, die real zu erreichenden Wirkungsgrade des Prozesses, die Abwärme Integration der Wasserstoffaufbereitung in die Gesamtanlage, sowie die konstruktiven und verfahrenstechnischen Optimierungen der Rohbiogasaufbereitung und Reformerdimensionierung. Außerdem wird eine ganzheitliche Betrachtung der THG-Emissionen durchgeführt. Es wird die Wirtschaftlichkeit des Gesamtkonzeptes bewertet und damit Empfehlungen für eine weitere Verbreitung der Technologie erarbeitet.

Teilvorhaben: Prozessanalyse und Treibhausgas- /Ökobilanzierung der Wasserstoffaufbereitung

Das Projekt "Teilvorhaben: Prozessanalyse und Treibhausgas- /Ökobilanzierung der Wasserstoffaufbereitung" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Industrieofenbau und Wärmetechnik durchgeführt. In diesem Projektvorhaben wird eine Pilotanlage zur Wasserstoffherstellung aus Biogas aufgebaut und betrieben. Das Gesamtziel dieses Vorhaben ist diesen Prozess zur Technologiereife zu führen. Der Prozess besteht aus einer minimalen Rohbiogasaufbereitung mit anschließender direkter Dampfreformierung. Der Wasserstoff wird schließlich mittels Druckwechseladsorption aus dem Reformerprodukt abgeschieden und gespeichert. Das Verfahren ist bereits wissenschaftlich untersucht und grundsätzlich bestehen an der technischen Machbarkeit kaum Zweifel. Allerdings ist es aufgrund der alternativen Umwandlungsrouten von Biogas bisher nicht zur technologischen Reife geführt wurden. Unter den aktuellen klima- und wirtschaftspolitischen Rahmenbedingungen kann diesem Prozess eine neue Bedeutung zukommen. Biogasanlagen laufen in den nächsten Jahren aus der EEG-Anfangsförderung und suchen nach wirtschaftlichen Anschlusskonzepten. Deutschland benötigt eine Sektorenkopplung und hat Wasserstoff als den Rohstoff, der eine nachhaltige Energiewende ermöglicht identifiziert. Anders als bei der Elektrolyseroute wird hier, da Biogas und nicht Strom als Primärenergieträger verwendet wird, die nutzbare Energie durch die Wasserstoffaufbereitung nicht reduziert. Grüner Wasserstoff aus Biogas ist also der ideale Rohstoff, um eine Wasserstoffinfrastruktur aufzubauen, solange erneuerbarer Strom nicht im Überfluss zur Verfügung steht. Das Vorhaben untersucht auf der technischen Seite den Einfluss der Rohbiogasqualität auf die Wasserstoffqualität, die real zu erreichenden Wirkungsgrade des Prozesses, die Abwärme Integration der Wasserstoffaufbereitung in die Gesamtanlage, sowie die konstruktiven und verfahrenstechnischen Optimierungen der Rohbiogasaufbereitung und Reformerdimensionierung. Außerdem wird eine ganzheitliche Betrachtung der THG-Emissionen durchgeführt. Es wird die Wirtschaftlichkeit des Gesamtkonzeptes bewertet und damit Empfehlungen für eine weitere Verbreitung der Technologie erarbeitet.

Dezentrale Wasserstoffaufbereitung von Biogas durch Dampfreformierung

Das Projekt "Dezentrale Wasserstoffaufbereitung von Biogas durch Dampfreformierung" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Industrieofenbau und Wärmetechnik durchgeführt. In diesem Projektvorhaben wird eine Pilotanlage zur Wasserstoffherstellung aus Biogas aufgebaut und betrieben. Das Gesamtziel dieses Vorhaben ist diesen Prozess zur Technologiereife zu führen. Der Prozess besteht aus einer minimalen Rohbiogasaufbereitung mit anschließender direkter Dampfreformierung. Der Wasserstoff wird schließlich mittels Druckwechseladsorption aus dem Reformerprodukt abgeschieden und gespeichert. Das Verfahren ist bereits wissenschaftlich untersucht und grundsätzlich bestehen an der technischen Machbarkeit kaum Zweifel. Allerdings ist es aufgrund der alternativen Umwandlungsrouten von Biogas bisher nicht zur technologischen Reife geführt wurden. Unter den aktuellen klima- und wirtschaftspolitischen Rahmenbedingungen kann diesem Prozess eine neue Bedeutung zukommen. Biogasanlagen laufen in den nächsten Jahren aus der EEG-Anfangsförderung und suchen nach wirtschaftlichen Anschlusskonzepten. Deutschland benötigt eine Sektorenkopplung und hat Wasserstoff als den Rohstoff, der eine nachhaltige Energiewende ermöglicht identifiziert. Anders als bei der Elektrolyseroute wird hier, da Biogas und nicht Strom als Primärenergieträger verwendet wird, die nutzbare Energie durch die Wasserstoffaufbereitung nicht reduziert. Grüner Wasserstoff aus Biogas ist also der ideale Rohstoff, um eine Wasserstoffinfrastruktur aufzubauen, solange erneuerbarer Strom nicht im Überfluss zur Verfügung steht. Das Vorhaben untersucht auf der technischen Seite den Einfluss der Rohbiogasqualität auf die Wasserstoffqualität, die real zu erreichenden Wirkungsgrade des Prozesses, die Abwärme Integration der Wasserstoffaufbereitung in die Gesamtanlage, sowie die konstruktiven und verfahrenstechnischen Optimierungen der Rohbiogasaufbereitung und Reformerdimensionierung. Außerdem wird eine ganzheitliche Betrachtung der THG-Emissionen durchgeführt. Es wird die Wirtschaftlichkeit des Gesamtkonzeptes bewertet und damit Empfehlungen für eine weitere Verbreitung der Technologie erarbeitet.

Teilprojekt: Einsatz von nicht-thermischen Plasma zur Gasreinigung

Das Projekt "Teilprojekt: Einsatz von nicht-thermischen Plasma zur Gasreinigung" wird vom Umweltbundesamt gefördert und von Universität Bochum, Fakultät für Elektrotechnik und Informationstechnik (EI), Lehrstuhl Allgemeine Elektrotechnik und Plasmatechnik (AEPT) durchgeführt. Im Projekt Carbon2Chem soll die nachhaltige Nutzung von Hüttenabgasen zur Synthese von Wertstoffen untersucht werden. Bevor das Hüttengas chemisch genutzt wird müssen allerdings Verunreinigungen wie Katalysatorgifte entfernt werden. Das Ziel des Teilprojektes L3 liegt in der Bereitstellung von Synthesegas in einer passende Qualität für die nachgeschalteten Prozesse, welche in den anderen Teilprojekten von Carbon2Chem näher untersucht werden. Das Ziel des Arbeitspaketes ist die Entwicklung eines plasma-katalytischen Prozesses zur Entfernung von Sauerstoffspuren aus Koksofengas. Hierzu wird ein mehrstufiger Ansatz verfolgt. Im Rahmen des Teilprojektes wird dabei die Aufbereitung des Gasstroms vor der Druckwechseladsorption untersucht. Neben Grundlagenuntersuchungen soll ein Konzept zur Skalierung des Plasma-DeOxo-Prozesses auf den Technikumsmaßstab erstellt werden.

1 2 3