Das Projekt "Teilvorhaben: Anlagen und Technologieentwicklung für Hocheffizienzzellen und SmartWire Zellverschaltung" wird vom Umweltbundesamt gefördert und von Meyer Burger (Germany) GmbH durchgeführt. Ziel des Forschungsvorhabens NEXTSTEP ist es, kristalline Silizium-Solarzellen mit passiviertem Emitter und passivierter Rückseite (PERC), die gegenwärtig in den Massenmarkt integriert werden, in ihrer Effizienz bei Verwendung von für die Massenproduktion nutzbaren Prozessen bis zu 23% zu steigern. Wege dazu sind die busbarlose Zellkontaktierung (SmartWire-Technologie) zur Verringerung der Reflexions- und Rekombinationsverluste der Zellvorderseite, der Umstieg auf eine bifaziale PERC Zelle (PERC+) und neue Prozesse zur Rückseiten-Passivierung und -Textur zur Effizienzsteigerung und damit verbundener Reduzierung der Stromgestehungskosten. Detallierte Materialanalysen charakterisieren Wachstumsmechanismen und optimieren Abscheideprozesse. Untersuchungen zur UV Stabilität der Passivierung und zur Kompatibilität mit der SMARTWire-Technologie optimieren die Lebensdauer der PV Anlagen. Alternative Zellstrukturen wie Zellen mit passivierten Kontakten werden ebenfalls untersucht, da sie ein sehr hohes Wirkungsgradpotential aufweisen. Jedoch erfordern sie auch den höchsten Aufwand bei der Integration in vorhandene Produktionslinien.
Das Projekt "Teilvorhaben: 23% PERC+ und POLO-Zellen für zuverlässige SmartWire-Module mit Solarzellprozess-basierten Bypassdioden" wird vom Umweltbundesamt gefördert und von Institut für Solarenergieforschung GmbH durchgeführt. Dieses Projekt hat die Entwicklung von Prozessen zur industriellen Fertigung von Solarzellen mit einem Wirkungsgrad größer 23% und deren Einsatz in Modulen mit SmartWire Verbindungstechnik zur Aufgabe. Insbesondere wird die Metallisierung von PERC Solarzellen auf der Zellvorder- und Rückseite für den Einsatz in SmarWire Modulen weiterentwickelt. Der Umstieg auf die SmartWire Verbindungstechnik reduziert den Metallisierungsgrad der Zellen, was sowohl zu einer Reduktion der Ladungsträgerrekombination an der Zellvorderseite als auch zu einer verbesserten Lichteinkopplung führt. Zusätzlich werden die Zellherstellungskosten durch Umstieg auf eine bifaziale PERC Zelle (PERC+) reduziert und der Rückseitenwirkungsgrad durch neue Prozesse zur Rückseitenpassivierung und der Rückseitentextur weiter gesteigert. Zellbedingte Zuverlässigkeitsaspekte, wie z.B. UV Stabilität der Passivierung und Kompatibilität mit der SmartWire-Technologie, werden mitevaluiert. Um die Modulkosten weiter zu senken, werden Zellprozesse zur Herstellung von Bypassdioden im Modul untersucht. Da nicht absehbar ist, ob diese oder alternative Zellstrukturen wie Zellen mit passivierten Kontakten wie z.B. die Polysilizium-Passivierung (POLO) günstiger für den nächsten Zellevolutionsschritt geeignet sind, werden am ISFH auch passivierte Kontakte untersucht. Solarzellen mit passivierten Kontakten haben ein sehr hohes Wirkungsgradpotential, erfordern aber auch den höchsten Aufwand bei der Integration in vorhandene Produktionslinien.
Das Projekt "Teilvorhaben: Optimierung von APCVD-Schichten zur selektiven Laserdotierung von PERL-Solarzellen" wird vom Umweltbundesamt gefördert und von Gebr. Schmid GmbH durchgeführt. Das Vorhaben hat zum Ziel, Bor- und Phosphor dotierte Glasschichten, die mit unterschiedlichen chemical vapour deposition (CVD) - Technologien abgeschieden worden sind, als Dotierquellen für eine Laserdotierung zu nutzen, bevor der thermische Eintreibeschritt appliziert wird. Diese Prozessabfolge soll dazu genutzt werden, kostengünstige Hochleistungssolarzellen der PERL-Bauart zu entwickeln, die einen wirtschaftlich tragfähigen Herstellungsprozess haben.
Das Projekt "Teilvorhaben: Vermeidung mikrostruktureller Defekte und Verfahren zur Qualitätsbewertung" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Solare Energiesysteme durchgeführt. Im geplanten Vorhaben werden im Labor- und Industriemaßstab hochwertige Kristallisationsprozesse für High-Performance-Multi (HPM) und Mono-Cast (MC) Silizium entwickelt, deren verbesserte Materialqualität und Ausbeute an einer hocheffizienten PERC-Solarzellenstruktur demonstriert wird. Der Schlüssel zur zielgerichteten Optimierung der Kristallisationsprozesse und zur Bestimmung der Einflüsse von Feedstock und Keimmaterial auf die Defektentwicklung liegt in der im Projekt zu entwickelnden schnellen Mess- und Analysetechnik, die eine Bestimmung der relevanten Kristalleigenschaften am Brick bzw. Rohwafer erlaubt und damit ein schnelles Feedback in die Kristallisation und eine Vorhersage der erwarteten Solarzellenperformance ermöglicht.
Das Projekt "StrukturSolar II - Innovative Strukturierungskonzepte für Solarzellen der nächsten Generation" wird vom Umweltbundesamt gefördert und von Hochschule Anhalt (FH) Hochschule für angewandte Wissenschaften, Standort Köthen, Fachbereich Elektrotechnik, Maschinenbau und Wirtschaftsingenieurwesen durchgeführt. Der vorliegende Antrag der Hochschule Anhalt (HSA) ist Teil der Anschlussphase des Verbundprojektes StrukturSolar. Die Anwendung innovativer Strukturierungskonzepte in Solarzellen der nächsten Generation soll aufbauend auf den Ergebnissen und der geschaffenen FuE-Infrastruktur der ersten Projektphase weiter erforscht werden. Ziel ist, durch Anwendung innovativer Strukturierungskonzepte verbesserte Wirkungsgrade bei reduziertem technologischen Aufwand zu erreichen. In dem Anschlussprojekt sollen weiterhin die Kompetenzen in der Grundlagenforschung im Fachbereich Naturwissenschaften II der Martin-Luther-Universität Halle-Wittenberg (MLU) und anwendungsorientiertes Know-how im Fachbereich Elektrotechnik, Maschinenbau und Wirtschaftsingenieurwesen der HSA in einem bisher erfolgreich agierendem kooperativen Forschungskolleg weitergeführt werden. Mehrere Promotionsthemen sollen weiterhin jeweils in Teilen an beiden Hochschulen bearbeitet werden, jeweils unter der kooperativen Betreuung eines Professors der MLU und der HSA. Das Gesamtprojekt ist in 7 Hauptarbeitspakete AP1 bis AP7 gegliedert. Charakteristikum des Projektes ist die Beteiligung beider Projektpartner an jedem Hauptarbeitspaket, jedoch mit unterschiedlichen Beiträgen zu den Teilarbeitspaketen. 4 Hauptarbeitspakete koordiniert die HSA, die anderen 3 die MLU. Bei der HSA liegt die Gesamtkoordination.
Das Projekt "StrukturSolar II - Innovative Strukturierungskonzepte für Solarzellen der nächsten Generation" wird vom Umweltbundesamt gefördert und von Universität Halle-Wittenberg, Institut für Physik durchgeführt. Der vorliegende Antrag der MLU ist Teil des Verbundprojektes STRUKTURSOLAR II. Die Anwendung innovativer Strukturierungskonzepte in Solarzellen der nächsten Generation für verbesserte Wirkungsgrade bei reduziertem technologischen Herstellungsaufwand soll erforscht werden. Dabei sollen die vorhandenen Kompetenzen in der Grundlagenforschung der Martin-Luther-Universität Halle-Wittenberg (MLU) und anwendungsorientiertes Know-how der Hochschule Anhalt (HSA) in einem kooperativen Forschungskolleg zusammengeführt werden. Mehrere Promotionsthemen sollen jeweils in Teilen an beiden Hochschulen bearbeitet werden. Das Projekt adressiert Themen der Strukturierung sowohl von Dünnschichtmodulen (Mikrostrukturierte CIGSe Kontakte, Thermische Laser Strukturierung, Perowskitsolarzellen auf Silicium, Strukturierte Substrate) als auch von Siliciumwafer-basierten Solarzellen (Plasmastrukturiertes schwarzes Silicium, Makroporöses Silicium, Defektlokalisierung von PERC-Kontakten). Die Plasmatexturierung zur Präparation von hochabsorbierenden Silicium Oberflächen (schwarzes Silicium) und anschließende Passivierung sollen bis hin zu kompletten Solarzellen weiter optimiert werden. Alternativ soll makroporöses Silicium mittels metall-unterstützter chemischer Ätzung die Absorption erhöhen. Strukturierte Rückkontakte von PERC Zellen sollen mittels abbildender Methoden im Hinblick auf Defekte untersucht werden. Die Zusammenführung der neuartigen Perowskitsolarzellen und Wafer Silicium soll mittels nasschemischer und physikalischer Verfahren erforscht werden. Auch für Dünnschichtsolarzellen ist das Photonenmanagement durch Strukturierung ein vielversprechendes Thema. Hierbei geht es sowohl um die Optimierung eines strukturierten Rückkontaktes z.B. von CIGSe Solarzellen als auch um die Lichteinkopplung durch plasmastrukturierte Substrate. Das Modulthema der integrierten Serienverschaltung soll mit dem neuen Thema der thermischen Laserstrukturierung vorangetrieben werden.
Das Projekt "Teilvorhaben: 'Entwicklung und Demonstration einer Blitzlichtsinterung'" wird vom Umweltbundesamt gefördert und von SOLAYER GmbH durchgeführt. In diesem Projekt sollen neuartige Elektrodenmaterialien entwickelt werden, die sich durch drei wesentliche Materialeigenschaften auszeichnen: Hohe Passivierwirkung, sehr gute optische Eigenschaften (Transmission/Reflexion) und elektrische Leitfähigkeit. Diese Elektroden ermöglichen eine substanzielle Weiterentwicklung kristalliner Hocheffizienzsolarzellen (etwa größer als 20 %). Es werden Elektroden entwickelt, die auf dielektrischen Schichten basieren und mit der PERC Anlagentechnik und Prozessführung kompatibel sind. Ziel ist eine Verringerung der Kontaktverluste und ein verschlankter Prozessfluss durch die Einsparung zweier Kontaktierungs-Prozessschritten in PERC Solarzellen. Weiterhin werden Elektroden mit verbesserter Transparenz und besserer passivierenden Wirkung für a Si:H/c Si Heterokontaktsolarzellen angestrebt. Mit beiden Elektrodensystemen sollen der Solarzellenwirkungsgrad um mindestens 1 % gesteigert werden. Dies wird anhand kompletter Solarzellen demonstriert. Das Projekt gliedert sich in drei Phasen: In der ersten Phase werden neue Prozesse für die Materialabscheidungen entwickelt. Zeitgleich beginnt in der zweiten Phase die eigentliche Materialentwicklung wobei zunächst bestehende Prozesse eingesetzt werden. Sobald die Prozessentwicklung in der ersten Phase abgeschlossen ist, werden die Materialien zur vollen Funktionalität ausentwickelt. In der dritten Phase werden die Elektroden in eine laufende Solarzellenpilotlinie für HJT und PERC Solarzellen integriert und das Einsparungspotential demonstriert. Phase 1: Prozessentwicklung 1.1 Entwicklung Hot-Wire CVD 1.2 Entwicklung Blitzlichtsinterung Phase 2: Materialentwicklung 2.1 Entwicklung dielektrische Nanolaminate 2.2 Entwicklung dielektrische Nanolaminate (low-T) 2.3 a-SiOx, a-SiC und Mikro c-SiOx (VHF PECVD) 2.4 a-SiOx, a-SiC und Mikro c-SiOx (VHF PECVD vs. Hot-Wire CVD) Phase 3: Materialdemonstration in Solarzellen 3.1 Demonstration Prototyp PERC Solarzellen 3.2 Demonstration Prototyp HJT Solarzellen.
Das Projekt "Teilvorhaben: Modellexperimente zur Strömung im Tiegel des Cz-Prozesses" wird vom Umweltbundesamt gefördert und von HZDR Innovation GmbH durchgeführt. Das Fernziel besteht darin, die Strömung im Tiegel bei der Czochralski (Cz)-Kristallzüchtung unter den Parametern des realen Industrieprozesses zu verstehen und numerisch simulieren zu können. Da eine direkte Messung der Strömungsgeschwindigkeiten in der Si-Schmelze nicht verfügbar ist und bestenfalls mit der kontaktlosen Strömungstomographie in einigen Jahren zur Verfügung steht, sind Modellexperimente wesentlich zur Validierung numerischer Simulationen. Diese Modellexperimente sollen möglichst im Bereich der realen Prozessparameter stattfinden und eine umfassende Ausmessung der Strömung erlauben, womit für die Modellschmelze nur Metallschmelzen mit relativ niedriger Schmelztemperatur in Frage kommen. Mit den Arbeiten im Vorhaben sollen systematisch lokale Strömungsgeschwindigkeiten und lokale Temperaturen in Modellexperimenten durchgeführt werden. Die Daten sollen zur Validierung der numerischen Simulationen von Projektpartnern dienen.
Das Projekt "Teilvorhaben: Magnetfeldmessungen an einer industriellen Cz-Züchtungsanlage" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Dresden-Roßendorf, Institut für Fluiddynamik durchgeführt. Die Fertigung von Hochleistungsmodulen bleibt nach wie vor Kern der Entwicklungsstrategie der SolarWorld AG. Dabei soll das Potential der PERC Technologie ausgenutzt werden, die neue Anforderungen an den PV Wafer stellt, dessen Eigenschaften hauptsächlich während des Kristallisationsprozesses bestimmt werden. Daher sind die Verbesserung von Kristallqualität und Ausbeute bei der Czochralski (Cz)-Kristallzüchtung von PV-Silizium ein zentrales Anliegen, wozu ein online Monitoring der mittleren Strömungsgeschwindigkeit extrem wertvoll wäre. Aufgrund der hohen Temperaturen und der geforderten Reinheit der Siliziumschmelze gibt es bisher weltweit keine Strömungsmessungen im Tiegel einer in der Industrie eingesetzten Cz-Kristallzüchtungsanlage. Die kontaktlose induktive Strömungstomographie (CIFT) hat das Potential zur Strömungsmessung der Schmelze im Cz-Tiegel, da sie mit Hilfe von Magnetfeldern die mittlere dreidimensionale Strömung in Schmelzen kontaktlos messen kann. Das Fernziel des Teilvorhabens besteht daher darin, CIFT für eine online-Strömungsmessung in der Cz-Kristallzüchtung zu entwickeln und zum Einsatz zu bringen. Allerdings muss CIFT für diese Anwendung speziell adaptiert werden, wobei die Herausforderung bei dieser Messung in der robusten Detektion der sehr kleinen strömungsinduzierten Verzerrung des angelegten Magnetfeldes liegt. Zusätzlich wird in enger Kooperation mit der HZDR-Innovation GmbH (HZDRI) ein Experiment zur Modellierung der Strömung im Tiegel aufgebaut, da die HZDRI nicht über die nötige Infrastruktur verfügt.
Das Projekt "Teilvorhaben: Experimentelle und numerische Evaluierung von Prozessgrößen zur Herstellung von sauerstoffarmen Silizium-Kristallen" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie durchgeführt. Das Ziel der Arbeiten am Fraunhofer IISB in Erlangen und an seiner Außenstelle am Fraunhofer THM in Freiberg ist es, die Czochralski-Kristallzüchtungstechnologie zur Herstellung von hochqualitativen Siliziumkristallen für die Anwendung in der Photovoltaik im Hinblick auf die Reduktion des Sauerstoffs im Kristallmaterial weiter zu entwickeln und gleichzeitig die Prozesskosten zu senken. Die von Fraunhofer IISB/THM erzielten wissenschaftlich-technischen Erkenntnisse aus der Prozess- und Hardwareentwicklung, der numerischen Modellierung und der Materialcharakterisierung bilden dabei die Grundlage für die Optimierung der bestehenden Czochralski-Technologie beim Industriepartner Solar World Innovations GmbH.
Origin | Count |
---|---|
Bund | 30 |
Type | Count |
---|---|
Förderprogramm | 30 |
License | Count |
---|---|
offen | 30 |
Language | Count |
---|---|
Deutsch | 30 |
Englisch | 2 |
Resource type | Count |
---|---|
Keine | 2 |
Webseite | 28 |
Topic | Count |
---|---|
Boden | 17 |
Lebewesen & Lebensräume | 16 |
Luft | 14 |
Mensch & Umwelt | 30 |
Wasser | 14 |
Weitere | 30 |