Bewertung des Kernindikators Lärmbelastung innerhalb des Modellvorhabens "Umweltgerechtigkeit im Land Berlin".
Um die mehrfach belasteten Quartiere in der Hauptstadt identifizieren zu können, hat Berlin bundesweit erstmalig die Grundlagen für ein ressortübergreifendes Umweltgerechtigkeitsmonitoring mit Kern- und Ergänzungsindikatoren entwickelt.
Das Projekt "G 1.1: Assessment of Innovations and Sustainable Strategies" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Landwirtschaftliche Betriebslehre durchgeführt. Farm households, whose living standard largely depend on the successful management of natural resources, have a low per capita income and are in danger of further impoverishment due to unsustainable resource management. Investigations in the first phase confirmed the hypothesis. A great number of farms were analyzed and clustered in representative types in both countries. Sustainability was measured using a sustainability index, which indicates tremendous environmental effects and variation between individual farms and ethnic groups.Sub-project G1.1 will follow three major tasks. The first is to evaluate sustainability strategies on the farm and farming system level, as it was done in the previous phase, but on the basis of a significantly extended data base. The second is to aggregate farm household data to the regional level. For this, a comparative-static approach is chosen. The third is to develop a multi-agent-based simulation model. Multi-agent simulation models (MAS) as well as GIS-tools are gaining increasing importance as tools for simulating future agriculture resource use, since they allow the integration of a wide range of different stakeholder's perceptions. It becomes possible to simulate the dynamic effects of changing land use patterns, environmental policy options, and technical innovation together with environmental constraints and structural change issues. The MAS approach is used to model heterogeneous farm-household and political decision makers perspectives by capturing their socio-economic, environmental, and spatial interactions explicitly. The integration of economic and spatial processes facilitates the consideration of feedback effects and the efficient use of scarce land resources. The simulation runs of the model will be carried out with a socio-economic and GIS data set, which is provided by the previous project phase in the attempt to generate effective ways of land use resource management. Land use efficiency is strongly influenced by the overall land allocation policy analyzed in project F1. Therefore, this is an important area further integrated research using MAS in combination with GIS as modeling tools.To achieve a continuous integration of results in the best possible way, a computer-based discussion/communication platform is developed. This serves as the conceptual basis for the development of the final multi-agent simulation model. Results of the discussion/communication platform and the agent-based simulation model will continuously be passed on to downstream sub-projects to be integrated into the ongoing research activities.
Das Projekt "Small Hydropower Systems Design for Rural Electrification" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Institut für Wasserbau und Technische Hydromechanik durchgeführt. Background: Ethiopia is a country endowed with huge hydropower potential. However, the potential has not been well exploited and the per capita consumption in the country stands as one of the lowest in the world. With this problem in mind, one of the primary objectives of the Energy policy of the government of Ethiopia has been to ensure a reliable supply of energy at the right time and at affordable prices, particularly to support the agricultural development led industrialisation strategy. While the objective is well tailored to the immediate need of rural communities, its implementation lagged much behind expectations. In order to accelerate the energy supply in Ethiopia, the government recently passed the law to allow private power developers to install and operate small to mini-hydropower plants. It is, therefore, hoped that there will be a significant number of independent power produces (IPPs) in the coming decades. While the decision to allow private investment is a good step forward, private investment alone may not produce the necessary break-through in Rural Electrification (RE) in Ethiopia. By its very nature, private investment is mainly profit-oriented which may be guaranteed by RE projects only in the long-run. This is so because the implementation of a self-standing hydropower plant for ruralenergy supply is a challenging task as it is faced by many constraints. There arises, therefore, the fear that the need for an organisation with a clear mandate and responsibility and with a substantial budget to promote RE may be obscured by the assumption that RE largely falls under the domain of private investment. The main objective of this research is, therefore, to find out if such fears are justified. The research bases itself on information on current power supply conditions in Ethiopia by taking an appropriate site for a case study. Objective of the research: The objective of this research is to give a reasonable judgement as to whether RE should be taken as part of the infrastructure development plans of the nation with strong financial support from the government or whether it should be largely left open for private investment. It is sought to find an answer to the question whether the role of RE should be undertaken by a mandated organisation with the necessary budget or whether RE should be dictated by the existing power market structure.
Das Projekt "Europäische Investment Bank - Wasser Management" wird vom Umweltbundesamt gefördert und von Jena-Optronik GmbH durchgeführt. BACKGROUND: The Kingdom of Jordan belongs to the ten water scarcest countries in the world, and climate change is likely to increase the frequency of future droughts. Jordan is considered among the 10 most water impoverished countries in the world, with per capita water availability estimated at 170 m per annum, compared to an average of 1,000 m per annum in other countries. Jordan Government has taken the strategic decision to develop a conveyor system including a 325 km pipe to pump 100 million cubic meters per year of potable water from Disi-Mudawwara close to the Saudi Border in the south, to the Greater Amman area in the north. The construction of the water pipeline has started end of 2009 and shall be finished in 2013. Later on, the pipeline could serve as a major part of a national water carrier in order to convey desalinated water from the Red Sea to the economically most important central region of the country. The conveyor project will not only significantly increase water supplies to the capital, but also provide for the re-allocation of current supplies to other governorates, and for the conservation of aquifers. In the context of the Disi project that is co-funded by EIB two Environmental and Social Management Plans have been prepared: one for the private project partners and one for the Jordan Government. The latter includes the Governments obligation to re-balance water allocations to irrigation and to gradually restore the protected wetlands of Azraq (Ramsar site) east of Amman that has been depleted due to over-abstraction by re-directing discharge of highland aquifers after the Disi pipeline becomes operational. The Water Strategy recognizes that groundwater extraction for irrigation is beyond acceptable limits. Since the source is finite and priority should be given to human consumption it proposes to tackle the demand for irrigation through tariff adjustments, improved irrigation technology and disincentive to water intensive crops. The Disi aquifer is currently used for irrigation by farms producing all kinds of fruits and vegetables on a large scale and exporting most of their products to the Saudi and European markets and it is almost a third of Jordan's total consumption. The licenses for that commercial irrigation were finished by 2011/12. Whilst the licenses will be not renewed the difficulty will be the enforcement and satellite based information become an important supporting tool for monitoring. OUTLOOK: The ESA funded project Water management had the objective to support the South-North conveyor project and the activities of EIB together with the MWI in Jordan to ensure the supply of water for the increasing demand. EO Information provides a baseline for land cover and elevation and support the monitoring of further stages. usw.