Das Projekt "Experimentelle Wirt-Parasit Ko-Evolution in einer sich verändernden Umwelt" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Institut für Hydrobiologie, Professur für Limnologie (Gewässerökologie) durchgeführt. Parasiten sind Organismen, die auf Kosten anderer leben und wachsen. Sie vermindern damit unter anderem das Wachstum, die Fortpflanzung oder Lebensdauer ihrer Wirte. Allgemein bezeichnet man diese Verminderung als Virulenz. Parasiten unterliegen wie ihre Wirte einem ständigen Wandel, der durch Anpassungen der Immunabwehr des Wirts und der Infektionsstrategien des Parasiten gekennzeichnet sind und als Koevolution bezeichnet werden. Diese Koevolution kann durch Umweltfaktoren wie Temperatur sowie weitere Organismen beeinflusst werden. Während es schon zahlreiche Untersuchungen zum Einfluss von akutem Hitzestress gibt, sind Studien über den permanenten Einfluss noch rar. Mit meiner Arbeit sollte sowohl der akute als auch der permanente Einfluss von Temperaturanstieg und Hitzestress auf eine Parasit-Wirtsbeziehung untersucht werden. Ich habe die Anpassung des Parasiten und die Virulenz an Hitzestress mit klassisch experimentellen und mathematisch/statistischen wie auch mit molekularen Methoden betrachtet. Ich konnte zeigen, dass ein akuter Hitzestress schädlicher für meinen Parasiten als den Wirt ist. Allerdings kann der Parasit sich an permanenten Hitzestress anpassen, aber auch seinem Wirt weniger Schaden zufügen. Damit sichert der Parasit sein Überleben. In einem zweiten Experimentkomplex habe ich verschiedene Infektionsversuche durchgeführt, um den Einfluss der Wirtsdichte und anderen Parasitenarten auf die Virulenz und damit die Verbreitung des Parasiten zu untersuchen. Dabei konnte ich zeigen, dass unter bestimmten Bedingungen der Parasit weniger Schaden verursachen und die Fähigkeit zu infizieren verlieren kann. Somit ist der Parasit an die Verbreitung des Wirts gebunden. Zum ersten Mal konnten damit bestehende theoretische Daten experimentell belegt werden. Desweiteren beeinflussen verschiedene Parasitenarten in ihrer Infektionsleistung gegenseitig. Diese Untersuchungen tragen zum Verständnis von Beziehungen zwischen Arten bei und ermöglichen uns eine Abschätzung der Änderung von Virulenz und Koevolution von Parasiten und ihren Wirten. Diese Arbeit trägt damit zur Aufklärung der Entwicklung von bestimmten Parasit-Wirtsbeziehungen in unserer heutigen sich ständig wandelnden Umwelt bei.
Das Projekt "Co-Evolution von Paramecium, seinem bakteriellen Symbionten und dessen Phagen: der Killer-Effekt" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Institut für Hydrobiologie, Professur für Limnologie (Gewässerökologie) durchgeführt. Paramecium ist ein ubiquitärer Einzeller, der in nahezu allen Arten von Frischwasserhabitaten vorkommt. Einige Paramecien besitzen den sogenannten Killer-Effekt: Killer-Paramecien geben toxische Partikel in das Medium ab, welche nach ihrer Aufnahme sensitive Paramecien töten. Diese Partikel sind Bakterien der Gattung Caedibacter, Endosymbionten der Killer Stämme. Caedibacter beherbergen eine ungewöhnliche Struktur, die R-Körper (refraktiler Körper) genannt wird. Ein R-Körper besteht aus einem Proteinband, dass von Rbv (R-Körper kodierender Virus) kodiert wird. R-Körper fungieren als Toxin-Transfersystem. Die Killer werden durch einen Resistenzmechanismus davor geschützt. Anscheinend werden alle drei Merkmale (R-Körper, Toxin, Resistenz) von Rbv kodiert. Somit ist diese Drei-Partner-Symbiose ein interessantes Beispiel für Phagen-abgeleitete Toxizität. Dieses Projekt beinhaltet die Charakterisierung der Rbv-Genome verschiedener Isolate und zielt darauf ab, deren Varianz mit der Phylogenie von Caedibacter und Paramecium zu korrelieren. Dadurch soll nicht nur die Evolution von dem ursprünglichen Rbv zu heutigen R-Körper codierenden Plasmiden sondern auch die Auswirkungen des Virus auf die bakterielle Wirtsspezifität nachvollzogen werden.
Das Projekt "Bildung von Anopheles-spezifischen Toxinen durch Paramecium-Symbionten und ihre ökologischen Effekte" wird vom Umweltbundesamt gefördert und von Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Fachbereich Biologie durchgeführt. In dem Projekt wird die Aufnahme und Ausprägung von Bacillus-Toxingenen durch bakterielle Symbionten des 'Pantoffeltieres' Paramecium untersucht. Bestimmte Eiweiße aus Bakterien der Gattung Bacillus sind mit hoher Spezifität toxisch für Larven von Anopheles-Mücken, den Überträgern der Malaria. Die im Vergleich zu chemischen Toxinen ökologisch weitgehend unbedenklichen Bacillus-Toxine werden in Gewässern aber schnell inaktiviert, ihre Anwendung ist daher limitiert. Ein transgenes Paramecium-Symbiosesystem könnte möglicherweise als Toxin-Carrier die Häufigkeit von Anopheles-Larven in Gewässern langfristig reduzieren, da Paramecien zum Nahrungsspektrum von Mückenlarven gehören und weltweit verbreitet sind. Bestimmte Paramecium-Symbionten bilden bereits natürlicherweise ein Eiweißtoxin, das aber statt Mückenlarven andere Paramecien abtötet. Wirkungen entsprechender regulatorischer DNA-Sequenzen der Symbionten auf die Bacillustoxin-Expression sollen untersucht werden. Die ökotoxikologischen Effekte sollen anschließend im Labor untersucht werden. Dazu gehören neben Einflüssen auf Anopheles-Larven als Zielorganismen solche auf die Lebensgemeinschaft, die in dem vorliegenden Fall das Ökosystem Stillgewässer repräsentiert
Das Projekt "Regulation und ökologische Aspekte zur Funktion der Serotypen von Paramecium" wird vom Umweltbundesamt gefördert und von Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Fachbereich Biologie durchgeführt. Die äußere Zellmembran von Paramecium (Ciliata, Protozoa) wird von sogenannten Serotypproteinen bedeckt, die wie Mäntel ('surface coat') gewechselt werden, wenn sich die Umweltbedingungen im Lebensraum dieser einzelligen Tiere ändern. Genetisch identische Paramecien können nachweislich mehr als zehn unterscheidbare Serotypproteine synthetisieren, allerdings selten gleichzeitig, so dass ihr Serotypsystem ein attraktives Modell für Untersuchungen zur direkten Änderung von Genexpressionsmustern durch spezifische Umweltsignale ist. Die molekulare Untersuchung der von uns entdeckten Isogene des Serotyps 51D bietet sich für die Erforschung der Regulationsmechanismen besonders an, weil nicht experimierte Serotypgene vergleichend untersucht werden können und wir bereits mögliche regulatorische Regionen entdeckt haben. Die Arbeiten sollen fortgesetzt werden. Gleichzeitig eröffnen diese Vorkenntnisse und moderne Labortechniken (Immunfluoreszenzmikroskopie und PCR) jetzt die Möglichkeit für experimentell ökologische Experimente zur Serotypexpression im Ökosystem ' Tümpel bzw. Fließgewässer', die sich besonders auf verschiedenen ökologischen Aspekten zur potentiellen Funktion der Serotypen im Freiland konzentrieren sollen.