Am 28. Mai 2014 beschloss das Bundeskaninett das vom Bundesumweltministerium vorgelegte "Gesetz zur Änderung des Umweltstatistikgesetzes (UStatG)". Mit der Gesetzesänderung schafft die Bundesregierung die notwendigen Voraussetzungen, um ihre Berichtspflichten zu Treibhausgasemissionen zu erfüllen, die sich aus der Klimarahmenkonvention und dem Kyoto-Protokoll ergeben. Die 17. Vertragsstaatenkonferenz der Klimarahmenkonvention im Dezember 2012 in Durban hatte die Richtlinie zur Berichterstattung der Industriestaaten (Annex I-Staaten) geändert und u.a. neue Berichtspflichten zu zwei besonders klimaschädlichen Treibhausgasen - Perfluordekalin und Stickstofftrifluorid - beschlossen. Um über die jährlichen Emissionen dieser Stoffe berichten zu können, musste das Umweltstatistikgesetz geändert werden.
Das Projekt "Inventarermittlung der F Gase 2021/2022 Daten von HF(C)KW FKW SF6 NF3 SF5CF3 H(C)FE und PFPMIE für die nationale Emissionsberichterstattung gemäß Klimarahmenkonvention für die Berichtsjahre 2021 und 2022" wird vom Umweltbundesamt gefördert und von Öko-Recherche. Büro für Umweltforschung und -beratung GmbH durchgeführt. Der Bericht präsentiert die Emissionsdaten der fluorierten Treibhausgase HF(C)KW, FKW, SF6, NF3, SF5CF3, H(C)FE und PFPMIE (F-Gase) für die Jahre 1995-2022 für Deutschland. Die Emissionen bewegten sich in den Jahren 1995 bis 1998 auf hohem, relativ konstantem Niveau. Im Jahr 1999 gab es ein sprunghaftes Absinken. Zwischen den Jahren 2000 und 2017 fand ein leichter Aufwärtstrend statt. Ab 2018 kam es zu einem deutlichen Abwärtstrend. Dieser hat sich fortgesetzt, und so lagen die Emissionen im Jahr 2022 bei 4.805 t, was 9,6 Mio. t in CO2- Äquivalenten entspricht. Damit machen sie etwa 1,2 % der Gesamtemissionen aller Treibhausgase in Deutschland aus, die 2022 bei etwa 746 Mio. t CO2-Äquivalenten lagen (Umweltbundesamt 2023c). „Dieser Bericht ist entsprechend der Strukturierung des Nationalen Inventarberichts (NIR) aufgeteilt. In diesem alle Treibhausgase umfassenden Bericht werden die fluorierten Treibhausgase in den Sektor-Abschnitten 2.B, 2.C, 2.E, 2.F, 2.G und 2.H behandelt. Sektor 2.B befasst sich unter 2.B.9 mit den Emissionen aus der Produktion von halogenierten Kohlenwasserstoffen und SF6. Das folgende Kapitel 2.C behandelt die Metallproduktion. Hier werden unter 2.C.3 und 2.C.4 die Emissionen aus der Aluminium- und Magnesiumproduktion aufgeführt. Der Sektor 2.E beinhaltet die Emissionen aus der Elektronik-Industrie, der folgende Sektor 2.F diejenigen aus Anwendungen als ODS-Ersatz und der Sektor 2.G die „Sonstige Produktherstellung und –verwendung“. Unter dem Abschnitt 2.H.3 werden vertrauliche Emissionen verschiedener Sektoren aggregiert berichtet. Darunter fallen die Emissionen aus der Herstellung von Solarzellen mit FKW (2.E.3), aus der Verwendung als Wärmeüberträger (2.E.4), als Lösemittel (2.F.5), aus der AWACS-Wartung (2.G.2.a), aus Sportschuhen (2.G.2.d), beim Schweißen (2.G.2.e), bei der Herstellung optischer Glasfasern (2.G.2.e) und von Perfluordecalin in medizinischen und kosmetischen Anwendungen (2.G.2.e). Außerdem gibt es Informationen zu freiwillig berichteten fluorierten Treibhausgasen.“ (Warncke und Gschrey 2021b).
Luftwechsel in Innenräumen bestimmen – ein Methodenvergleich Luft in Innenräumen muss regelmäßig ausgetauscht werden, damit sie die Gesundheit nicht belastet. Um den Luftwechsel, besonders in energieeffizienten Gebäuden, beurteilen sowie optimal einstellen zu können und damit eine gute Raumluftqualität zu gewährleisten, können Fachleute die Luftwechselrate bestimmen. Das UBA hat verschiedene Messmethoden miteinander vergleichen und bewerten lassen. Im Zuge der Energieeinsparverordnung werden vom Gesetzgeber energieeffizienten Bauweisen gefordert. Diese führen zu einer immer dichter werdenden Gebäudehülle, was zu gesundheitlichen Belastungen für die Bewohner aber auch zu Schädigungen der Bauwerke führen kann. Häufig liegt der natürliche Luftwechsel energieeffizienter Gebäude wegen der hohen Dichtheit weit unter dem aus innenraumhygienischen Gründen notwendigen Mindestluftwechsel. Als Folge der geringen Luftwechselraten kann Feuchtigkeit im Innenraum, die bei Aktivitäten wie Kochen oder Duschen anfallen, nicht mehr abgeführt werden, was zu Schimmelbefall führen kann. Auch Luftschadstoffe, die etwa aus Baumaterialien, Möbeln und Gegenständen aber auch aus Reinigungs- und Pflegemittel in die Innenraumluft ausgasen, reichern sich im Innenraum an, da sie nicht vollständig abtransportiert werden. Um eine zuverlässige Aussage über eine bestehende Luftwechselrate treffen zu können, ist es wichtig, eine unkomplizierte Methode zur Bestimmung der Luftwechselrate zu entwickeln, die reproduzierbar ist und die Gesundheit der Bewohner nicht belastet, so dass diese während der Luftwechselmessung im Raum anwesend sein können. Die Ergebnisse der Studie „Qualitätssicherung der Bestimmung der Luftwechselrate in Innenräumen“ zeigen, dass zu den in den Richtlinien VDI 4300 Blatt 7 und DIN EN ISO 16000-8 genannten Herangehensweisen zur Bestimmung der Luftwechselrate, es eine Vielzahl an Varianten und Details gibt, die je nach Fragestellung für jede Messung bedacht werden müssen. Eine Übersicht über Faktoren, die hier zu bedenken sind, wäre in den Richtlinien hilfreich. Der Projektverlauf In einem zweijährigen Forschungsvorhaben galt es, die in der VDI 4300 Blatt 7 beschriebene Bestimmungsmethode der Luftwechselrate mit Tracergasen, abzusichern. Im Realraum und in der Prüfkammer sollte untersucht werden, wie sich verschiedene Tracergase unter sonst gleichen Bedingungen verhalten und ob hinsichtlich der abgeleiteten Luftwechselraten Abweichungen existieren. Die Ergebnisse dieses Vorhabens sollten so aufbereitet werden, dass sie bei zukünftigen Raumluftuntersuchungen berücksichtigt werden können. Im ersten Arbeitspaket dieser Studie wurde eine detaillierte Übersicht aus 81 wissenschaftliche Publikationen zum aktuellen Stand der Technik und zur gesundheitlichen Bewertung der verwendeten Tracergase erstellt. Die Veröffentlichungen beschrieben unterschiedlich detailliert die methodischen und messtechnischen Aspekte, sowie die Betrachtung der Messungenauigkeit und Fehlerquellen. Grund sind fehlende einheitliche Referenzpunkte und Parameter, die großen Einfluss auf die Bestimmung der Luftwechselrate haben. Die Recherche zur gesundheitlichen Bewertung der eingesetzten Tracergase zeigt, dass zu Schwefelhexafluorid (SF6), Kohlendioxid (CO2) und Distickstoffmonoxid (N2O) umfangreiche Daten und Erfahrungen vorliegen. SF6 wird in hohen Reinheitsgraden als gering toxisch beschrieben. CO2 wird, bei Einhaltung des MAK Wertes (Maximale Arbeitsplatzgrenzwertkonzentration), als gesundheitlich unbedenklich eingeschätzt. Bezüglich N2O variieren dagegen die gesundheitlichen Einschätzungen. Im zweiten Arbeitspaket wurden Messungen mit zwei unterschiedlichen Methoden zur Bestimmung der Luftwechselrate in einem Realraum durchgeführt und im Hinblick auf die Fragestellung ausgewertet. Zum einen wurde die Konzentrations-Abklingmethode und zum anderen die passive Emissionsmethode ( PFT -Methode) mit sechs verschiedenen Tracergasen (SF6, CO2, N2O, Hexafluorbenzol (HFB), Perfluortoluol, Perfluordecalin (PFD)) eingesetzt. Die Ergebnisse der Messungen zeigen, dass die PFT-Methode tendenziell besser für Langzeitmessungen geeignet ist. Denn zum einen können temporäre Schwankungen der Emissionsraten aus den Quellen durch gemittelte Werte über längere Zeiträume diese Schwankungen zuverlässiger ausgleichen. Zum anderen kann z. B. bei Messungen in dynamisch veränderbaren Lüftungsszenarien, wie etwa bei geöffneten Fenstern, nicht sichergestellt werden, dass sich die Tracergaskonzentration zum Messzeitpunkt im Gleichgewichtszustand befindet. In einem dritten Arbeitspaket wurden Validierungsmessungen für die beiden Methoden mit den verschiedenen Gasen in einer Prüfkammer durchgeführt. Der Variationskoeffizient pro Tracergas und eingestellter Luftwechselrate lag für alle sechs Gase und beiden Methoden bei < 10 %. Die beste Genauigkeit lieferte die Bestimmung der Luftwechselrate mit der Konzentrationsabklingmethode mit SF6 als Tracergas. PFD lieferte hingegen mit dieser Methode das schlechteste Ergebnis.