Das Projekt "Einfluss von Vergletscherung, Permafrost und tektonischen Bedingungen auf die Ausbreitung von Radionukliden im Fernfeld eines Tiefenlagers nach einem potenziellen Schadensfall" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Bundesamt für die Sicherheit der nuklearen Entsorgung.Die Entsorgung nuklearer Abfälle in geologischen Tiefenlagern muss in Gebieten erfolgen, die vom Grundwasserstrom ausreichend isoliert bleiben. Andernfalls können Fluidströmungsprozesse bei einer gestörten Entwicklung des Endlagers die Migration von Radionukliden in die Biosphäre begünstigen. Nur wenige Studien befassen sich mit den Folgen des weiträumigen Radionuklidtransports in solchen Worst-Case-Szenarien. Die hydrogeologischen Bedingungen des Gesamtsystems in der Nachbetriebsphase werden sich jedoch letztendlich von denen zum Zeitpunkt des Endlagerbaus unterscheiden und werden sowohl von äußeren Faktoren (z.B. Klimawandel) als auch von intrinsischen Beckeneigenschaften stark beeinflusst. Dieses Vorhaben im Bereich der Umweltrisiken zielt darauf ab, die Auswirkungen von (i) Vereisung, (ii) Permafrost und (iii) tektonischen Ereignissen auf die hydrologischen und hydromechanischen Grenzen zu untersuchen, die den großräumigen Grundwasserfluss in der Nähe von hypothetischen Abfalldeponien bestimmen. Zu diesem Zweck dient der Yeniseisky-Standort (YS) in Russland, ein potenzielles geologisches Tiefenlager für radioaktive Abfälle in kristallinem Gestein, als Fallstudie, der auf einzigartige Weise alle drei oben genannten Merkmale der geologischen Umgebung umfasst. Multiphysikalische Simulationen von thermisch-hydraulisch-mechanisch-chemisch gekoppelten Prozessen (THM-C) werden angewendet, um Szenarien der Fernfeld-Radionuklidentwicklung im Extremfall eines Endlagerstörfalls zu liefern. Die Neuartigkeit der THM-C-Modelle und der Zugang zu einer einzigartigen Datenbank der YS werden das klassische Verständnis von anomaler Fluid-, Wärme- und Massentransportvorgänge innerhalb tektonisch aktiver Becken erweitern. Während sich das vorgeschlagene Vorhaben auf die Thematik der nuklearen Entsorgungsforschung bezieht, können die den entwickelten Modellen zugrunde liegenden physikalischen und numerischen Konzepte auf eine Vielzahl von Nutzungsszenarien der Geosphäre (z.B. CO2-Speicherung, Abfallentsorgung, Entstehung seismischer Ereignisse) angewendet werden. Darüber hinaus sind entsprechende Benchmarkstudien in ähnlichen kristallinen geologischen Formationen geplant.
Das Projekt "Nachwuchsgruppen Klima, Umwelt und Gesundheit: Gesetzmäßigkeiten pandemischer Dynamiken im sich wandelnden Klima der Erde, Teilprojekt 1: Anfälligkeit pandemischer Dynamiken gegenüber dem Klimawandel" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Robert Koch-Institut.
Das Projekt "Wechselwirkung der terrestrischen Biosphäre mit dem Klima und atmosphärischem CO2" wird/wurde ausgeführt durch: Max-Planck-Institut für Meteorologie.
Das Projekt "Wechselwirkung der terrestrischen Biosphäre mit dem Klima und atmosphärischem CO2, TP 1: Analyse von Änderungen im Permafrost und im Methan- und Kohlenstoffkreislauf sowie der Vegetation und ihre Einflüsse auf das Klima des letzten glazialen Zyklus" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Max-Planck-Institut für Meteorologie.
Das Projekt "Polarregionen im Wandel 1: SQUEEZE - Schutz der schwindenden Arktischen Tundra - Potential, Planung und Kommunikation, Vorhaben: Erfassung zukünftiger Ökosystemfunktionen und Ermittlung arktischer Schutzgebiete" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Hamburg, Fachbereich Geowissenschaften, Forschungsstelle Nachhaltige Umweltentwicklung.
Das Projekt "Variabilität des Ostasiatischen Monsuns während der letzten 65.000 Jahre - laminierte Seesedimente aus dem Sihailongwan-Maarsee, NE-China" wird/wurde gefördert durch: Chinese Academy of Sciences / Deutsche Forschungsgemeinschaft / GeoForschungsZentrum Potsdam. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum.Laminierte Seesedimente sind unschätzbare Informationsquellen zur Geschichte der Umwelt und des Klimas direkt aus der Lebenssphäre des Menschen. Ein exzellentes Beispiel dafür ist der Sihailongwan-Maarsee aus NE-China. In einem immer noch dicht bewaldeten Vulkangebiet gelegen, bieten seine Sedimente ein ungestörtes Abbild der Monsunvariationen über zehntausende von Jahren. Nur die letzten ca. 200 Jahre zeigen einen deutlichen lokalen anthropogenen Einfluss. Das Monsunklima der Region mit Hauptniederschlägen während des Sommers und extrem kalten Wintern unter dem Einfluss des Sibirischen Hochdrucksystems bildet die Voraussetzung für die Bildung von saisonal deutlich geschichteten Sedimenten (Warven), die in dem tiefen Maarsee dann auch überwiegend ungestört erhalten bleiben. Insbesondere die Auftauphase im Frühjahr bringt einen regelmässigen Sedimenteintrag in den See, der das Gerüst für eine derzeit bis 65.000 Jahre vor heute zurückreichende Warvenchronologie bildet. Für das letzte Glazial zeigen Pollenspektren aus dem Sihailongwan-Profil Vegetationsvariationen im Gleichklang mit bekannten klimatischen Variationen des zirkum-nordatlantischen Raumes (Dansgaard-Oeschger-Zyklen) zu dieser Zeit. Der Einfluss dieser Warmphasen auf das Ökosystem See war jedoch sehr unterschiedlich. So sind die Warven aus den Dansgaard-Oeschger (D/O) Zyklen 14 bis 17 mit extrem dicken Diatomeenlagen (hauptsächlich Stephanodiscus parvus/minutulus) denen vom Beginn der spätglazialen Erwärmung zum Verwechseln ähnlich, während Warven aus dem D/O-Zyklus 8 kaum Unterschiede zu überwiegend klastischen Warven aus kalten Interstadialen aufweisen. Gradierte Ereignislagen mit umgelagertem Bodenmaterial sind deutliche Hinweise auf ein Permafrost-Regime während der Kaltphasen. Auch während des Spätglazials treten deutliche klimatische Schwankungen auf, die der in europäischen Sedimentarchiven definierten Gerzensee-Oszillation und der Jüngeren Dryas zeitlich exakt entsprechen. Das frühe Holozän ist von einer Vielzahl Chinesischer Paläoklima-Archive als Phase mit intensiverem Sommermonsun bekannt. Überraschenderweise sind die minerogenen Fluxraten im Sihailongwan-See während des frühen Holozäns trotz dichter Bewaldung des Einzugsgebietes sehr hoch. Sowohl Mikrofaziesanalysen der Sedimente als auch geochemische Untersuchungen deuten auf remoten Staub als Ursache dieses verstärkten klastischen Eintrags hin. Der insbesondere in den letzten Jahrzehnten zunehmende Einfluss des Menschen zeigt sich in den Sedimenten des Sihailongwan-Maarsees vor allem in einem wiederum zunehmenden Staubeintrag und einer Versauerung im Einzugsgebiet. Der anthropogene Einflusss auf die lokale Vegetation ist immer noch gering.
Das Projekt "Nachwuchsgruppen Klima, Umwelt und Gesundheit: Gesetzmäßigkeiten pandemischer Dynamiken im sich wandelnden Klima der Erde, Teilprojekt 2: Identifikation von Klimamechanismen und-treibern für pandemische Dynamiken" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum.
Das Projekt "Auftauende industrielle Hinterlassenschaften in der Arktis - eine Bedrohung für Permafrost-Ökosysteme, Vorhaben: Charakterisierung und Modellierung permafrostgeprägter Bohrschlammsümpfe" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: RWTH Aachen University, Institut für Geomechanik und Untergrundtechnik, Lehrstuhl für Geotechnik im Bauwesen.
Das Projekt "Forschungsgruppe FOR 2793: Sensitivity of High Alpine Geosystems to Climate Change Since 1850 (SEHAG), Auswirkungen des Klimawandels auf hydrologische Prozesse in hochalpinen Einzugsgebieten" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität München, Institut für Wasser und Umwelt, Lehrstuhl für Hydrologie und Flussgebietsmanagement.Die Häufigkeit und das Ausmaß extremer hydrologischer Ereignisse werden höchstwahrscheinlich durch den Klimawandel verstärkt. Hochalpine Einzugsgebiete sind besonders sensible Räume, da diese Regionen der Hydrosphäre stark durch Veränderungen im Temperatur- und Niederschlagsregime beeinflusst werden. Die starke Kopplung zwischen der Hydrologie und weiteren Komponenten der Geosystem in hoch gelegenen Einzugsgebieten erfordert eine detaillierte Beschreibung der ablaufenden hydrologischen Prozesse. Dieser Umstand rechtfertigt die Einrichtung dieses Teilprojekts der im Rahmen des SEHAG Projektes (Sensitivity of high Alpine geosystems to climate change since 1850) beantragten Forschergruppe. Die Innovation der vorgeschlagenen Forschungsrichtung liegt in der Untersuchung der Veränderungen in der Hydrosphäre zwischen 1850 und 2050 und wie diese mit den übrigen Komponenten der Geosystem in hochalpinen Lagen interagieren. Insbesondere werden wir gründliche Zeitreihenanalysen zur Untersuchung der Korrelation zwischen Klimawandel und den Jährlichkeiten extremer hydrologischer Ereignisse (z.B.: zeitliche Verteilung von Niederschlagsereignissen innerhalb eines Jahres und Einsetzen der Schnee- und Gletscherschmelze) durchführen. Daneben wollen wir verifizieren ob es möglich ist die Qualität der hydrologischen Modelle für hochalpine Einzugsgebiete durch 'multi-objective' Kalibrierungsansätze zu verbessern. Archive spielen dabei eine wichtige Rolle als Datenquelle zur Rekonstruktion der meteorologischen Bedingungen der Vergangenheit. Außerdem ermöglicht die Zusammenarbeit mit anderen Teilprojekten die Kalibrierung des hydrologischen Modells, sowohl gegen den Abfluss, als auch gegen Permafrost- sowie Schnee- und Gletschermessungen. Darüber hinaus werden uns die geplanten experimentellen Messungen erlauben die 'multi-objective' Kalibrierung auf weitere Parameter, wie die elektrische Leitfähigkeit des Abflusses oder die Wassertemperatur der Wildbäche auszuweiten. Das resultierende, kalibrierte Modellergebnis, für das eine intensive Unsicherheitsanalyse durchgeführt werden wird, wird dann von den weitern Teilprojekten genutzt, um die Veränderungen in der Geosystem zu interpretieren.
Das Projekt "Methan-Flüsse und Isotopenzusammensetzung über heterogenen Landschaften im arktischen Permafrost und sibirischen Moorgebieten (MICHAEL)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Arktischer Permafrost und sibirische Feuchtgebiete stellen global wichtige Quellen für das Treibhausgas Methan dar. Bei weiterer Klimaerwärmung werden die Emissionen zunehmen. Da nur sehr wenige kontinuierliche Methan-Messstationen in der russischen Arktis und Sibirien vorhanden sind, dienen sie als Ausgangspunkt für Schätzungen der Emissionen auf regionalen Skalen. Gleichzeitig tragen kleinskalige Heterogenitäten der Landschaft wesentlich an Unsicherheit zur Abschätzung von Methan-Flüssen bei. Zeitlich und räumlich hochaufgelöste Methanflüsse und Wärme- und Feuchtebilanzen sind nur mit einer Kombination von mehreren Messmethoden möglich. Dieser Mangel an hochaufgelösten Datensätzen behindert die Weiterentwicklung und Validierung der Simulation des Zusammenhangs von Landbedeckung und Emissionen.Das Projekt MICHAEL hat als Ziele i) die Erhebung eines zeitlich und räumlich hochaufgelösten Datensatzes von Methan-Emissionen, turbulenten Wärmeflüssen und der Methan-Isotopen-Verteilung mit neuen und traditionellen Beobachtungsmethoden und ii) die Weiterentwicklung von Land-Oberflächen-Modellen und Parametrisierungen zur besseren Berücksichtigung von Landschafts-Inhomogenitäten. Dafür werden an zwei Orten Messkampagnen durchgeführt, nämlich an der Samoylov-Station im Lena-Delta und Mukhrino, zentral in Westsibirien gelegen. Der besondere Fokus liegt auf kleinskaliger Variabilität und dem Einfluss von verschiedenen Landschafts-Strukturen auf die Atmosphäre. Bodengestützte Eddy-Kovarianz (EC)- und Kammer-Messungen werden ergänzt mit zusätzlichen boden- und fluggestützten Messungen mit unbemannten Flugsystemen (UAS) von meteorologischen Parametern und Bodeneigenschaften, Wärme- und Methanflüssen, sowie Profilen der Methankonzentration und –isotopie. Drei UAS werden eingesetzt: Ein Flächenflugzeug für meteorologische Messungen und Strahlung, ein Quadrocopter für Vertikalprofile der Methankonzentration und –isotopie durch Analyse von Luftproben, und ein Kipprotor-System für Methan-Flüsse. Die UAS werden abhängig von Windrichtung, Stabilität und Oberfläche in einem Radius von 10 km um die Observatorien eingesetzt. Damit werden die Genauigkeit von traditionellen EC- und Kammer-Messungen und Ansätze zur Skalierung bewertet.Mit numerischen Simulationen wird die 3D-Variabilität von Methan-Emissionen in die Atmosphäre berechnet. Die zusätzlich entwickelte Land-Oberflächen-Modellierung berücksichtigt Austauschprozesse über inhomogenen Oberflächen. Die Ergebnisse der Simulationen werden mit Messdaten bewertet, und der Einfluss von räumlichen Inhomogenitäten auf die Atmosphäre wird bestimmt.
Origin | Count |
---|---|
Bund | 238 |
Global | 1 |
Land | 15 |
Wissenschaft | 22 |
Type | Count |
---|---|
Ereignis | 12 |
Förderprogramm | 207 |
Text | 17 |
unbekannt | 15 |
License | Count |
---|---|
geschlossen | 26 |
offen | 224 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 178 |
Englisch | 96 |
unbekannt | 1 |
Resource type | Count |
---|---|
Archiv | 2 |
Bild | 2 |
Datei | 12 |
Dokument | 14 |
Keine | 136 |
Webseite | 104 |
Topic | Count |
---|---|
Boden | 251 |
Lebewesen & Lebensräume | 239 |
Luft | 223 |
Mensch & Umwelt | 250 |
Wasser | 225 |
Weitere | 250 |