API src

Found 667 results.

Related terms

Öle und Fette

Pflanzliche Öle werden als energiereiche Reservestoffe in Speicherorgane von Pflanzen eingelagert. Sie sind chemisch gesehen Ester aus Glycerin und drei Fettsäuren. In Deutschland konzentriert sich der Ölsaatenanbau auf Raps, Sonnenblume und Lein. Im Freistaat Sachsen dominiert auf Grund der Standortbedingungen und vor allem der Wirtschaftlichkeit eindeutig der Raps. Der maximal mögliche Anbauumfang von Raps liegt aus anbautechnischer Sicht bei 25 % der Ackerfläche und ist noch nicht ausgeschöpft (Sachsen 2004: 17 %). Für den landwirtschaftlichen Anbau kommen eine Reihe weiterer ölliefernder Pflanzenarten oder spezieller Sorten in Betracht. Interessant sind sie aus der Sicht der Verwertung insbesondere, wenn sie hohe Gehalte einzelner spezieller Fettsäuren aufweisen. Bei der Verarbeitung können dann aufwändige Aufbereitungs- und Trennprozesse eingespart und die Synthesevorleistung der Natur optimal genutzt werden. Der Anbauumfang ist jedoch meist noch sehr gering. Beispiele sind Nachtkerze und Iberischer Drachenkopf, aber auch Erucaraps und ölsäurereiche Sonnenblumensorten. a) stoffliche Verwertung In der stofflichen Verwertung reichen die Einsatzfelder pflanzlicher Öle von biologisch schnell abbaubaren Schmierstoffen, Lacken und Farben, über Tenside, Kosmetika, Wachse bis zu Grundchemikalien, aber auch Bitumen. b) energetische Verwertung Desweiteren können Pflanzenöle in Fahrzeugen, stationären oder mobilen Anlagen energetisch verwertet werden. Für den breiten Einsatz ist derzeit vor allem Biodiesel geeignet. Dieser kommt als reiner Kraftstoff zum Einsatz, seit 2004 auch in Beimischung zu Dieselkraftstoff. Eine weitere Möglichkeit eröffnet sich durch die Verwendung von reinem Rapsöl.

Biokraftstoffe

Biokraftstoffe werden aus Biomasse hergestellt und dienen als Kraftstoffe (Treibstoffe) für Verbrennungsmotoren. Der Kraftstoffsektor als Bereich nachwachsender Rohstoffe wurde bis 2005 fast ausschließlich von Biodiesel bestritten. Im Rahmen des EU-Aktionsprogramms Biotreibstoffe mit Richtwerten für Mindestanteile von Biokraftstoffen sowie der Richtlinie zur Steuerbefreiung/-reduzierung von biogenen Treibstoffen und -komponenten wird 2010 ein Absatz von 3,2 Mio. t in Deutschland angestrebt (5,75 % des Kraftstoffmarktes). Ziel des Aktionsprogramms ist die Minderung der Abhängigkeit von Rohstoffimporten für die Kraftstoffproduktion. Zusätzlich wird eine Minderung der CO2-Belastung angestrebt. Mit den Steigerungsraten im Verkehrsaufkommen besteht die Gefahr, dass die CO2-Einsparungen anderer Wirtschaftsbereiche überdeckt und die gestellten Ziele insgesamt nicht erreicht werden. Neben Kraftstoffen in reiner Form wurden mit Inkrafttreten des neuen Mineralölsteuergesetzes in Deutschland auch Anteile biogener Kraftstoffe in Mischungen mit fossilen Kraftstoffen von der Mineralölsteuer befreit. Damit sind auch Mischungen wirtschaftlich. Als Alternative zu fossilen Kraftstoffen kommen u. a. Pflanzenölmethylester, Pflanzenöl, Alkohol, Biogas und synthetische Kraftstoffe auf Biomassebasis in Frage, wobei reine Kraftstoffe oder Mischungen mit fossilen Kraftstoffen möglich sind.

Haushaltsgeräteservice

Die industrielle Nutzung des Grundstücks ist seit 1911 als Betriebsfläche zur Herstellung von nummerierten Spezial-Kontrolldruckerzeugnissen (Paragon Kassenblock AG) und Lager für Beleuchtungsköpern (R. Frister AG) dokumentiert. Von 1940 bis 1945 erfolgte die Produktion von Farben durch die Lackfabrik Dr. Werner. Von 1945 bis 1995 diente der Standort der Endmontage und Reparatur von Haushaltsgeräten (VEB Haushaltsgeräteservice später Haushaltsgeräte-Service GmbH). Danach (bis etwa 2006) wurden die Flächen an Unternehmen des Klein- und Mittelgewerbes vermietet. Aus der Nutzung des Grundstücks zur Herstellung und Verarbeitung von Lackfarben wurde ein unterirdisches Tanklager mit ca. 20 Einzelbehältern betrieben. Zur Herstellung der Produkte wurden auf der Fläche die aromatischen Kohlenwasserstoffe Benzol, Toluol und Xylol, Naphthalin, Petroleum, Schwerbenzin, Vergaserkraftstoffe, Terpentinöl sowie diverse alkoholische Verbindungen eingesetzt, gelagert und umgeschlagen. In Vorbereitung einer Erweiterung des Gebäudebestandes an der Freifläche zur Fuststraße erfolgte 1980 die Bergung des Tanklagers, wodurch es zu nachweisbaren Schadstoffaustritten kam. Es ist davon auszugehen, dass es auch durch den unsachgemäßen Umgang mit den für die Lackfarbenproduktion verwendeten Gefahrstoffen zu Schadstoffeinträgen in den Untergrund kam. Als Folge der Schadstoffeinträge in den Boden wurden durch die nachstehend beschriebenen Erkundungen massive Kontaminationen des Bodens durch BTEX (untergeordnet PAK und MKW) nachgewiesen. Die höchsten Belastungen wurden mit über 5.000 mg/kg BTEX bei 6 – 9 m unter Geländeoberkante (uGOK) unterhalb des ehem. Druckereigebäudes angetroffen. Die besondere Gefährdungssituation ergibt sich aus der Lage des Standortes innerhalb der Trinkwasserschutzzone II des Wasserwerks Wuhlheide . In einer frühen Phase der Altlastensanierung konzentrierten sich die In einer frühen Phase der Altlastensanierung konzentrierten sich die Erkundungen auf die Eingrenzung der Schadensherde für die Planung und Umsetzung von hydraulischen Sicherungsmaßnahmen zur Verhinderung der Verlagerung der Kontamination zu den Fassungen des Wasserwerks Wuhlheide (Abstromsicherung). Mit fortschreitender Bearbeitungsdauer zielten die Arbeiten zunehmend auf die Vorbereitungen zur Sanierung der Belastungen in den Eintragsbereichen/ Schadensherden. Zur Bewertung und Beobachtung der Grundwasserbeschaffenheit sowie der Steuerung der hydraulischen Sicherungs-/ Sanierungsmaßnahmen wurde zwischen 1995 und 2004 ein Netz von Messpegeln geschaffen, welches regelmäßig auf die standortspezifischen Parameter hin analysiert wurde. In 2005/2006 wurde das Messnetz auf der Basis der Ergebnisse einer teufenorientierten Beprobung des Grundwassers erweitert. Im Zuge der Baufeldfreimachung zur Bodensanierung ist baubedingt eine Reduzierung des Bestandes erfolgt. Derzeit liegt der Fokus des Grundwassermonitorings als Nachsorgemaßnahme auf der Überwachung der Grundwasserqualität an der Grundstücksgrenze im unmittelbaren Zustrom zu den Förderbrunnen des Wasserwerks Wuhlheide. Seit 1995 wurde zum Schutz der nahe gelegenen Förderbrunnen des Wasserwerks eine hydraulische Sicherungs-/ Sanierungsmaßnahme durchgeführt. Die Technologie der Reinigung des geförderten Grundwassers wurde im Zeitraum von 2002 bis 2006 entsprechend dem Stand der Technik, der Schadstoffzusammensetzung sowie anderen speziellen Problematiken mehrfach angepasst. Zur Optimierung des Schadstoffaustrags wurde die Brunnenanzahl erhöht und ein hydraulischer Kreislauf für eine bessere Durchspülung des Aquifers erzeugt. Im Ergebnis der durchgeführten Sanierungsuntersuchungen zeigte sich, dass allein durch hydraulische Maßnahmen keine ausreichende Schadstoffreduzierung erzielt werden konnte. Daher wurde die Beseitigung der Schadstoffquellen mittels Bodenaustausch festgelegt, die 2007/2008 begonnen und 2011 abgeschlossen wurde. Einen chronologischen Abriss der einzelnen Sanierungsetappen zeigt die folgende Abbildung. 1995 – 2002: Sicherungs-/Sanierungsmaßnahme durch Förderung aus 2 Sicherungsbrunnen an derabstromigen Grundstücksgrenze und später zusätzlich aus 2 Sanierungsbrunnen in den damals bekannten Hauptschadensbereichen. 06/2002 – 12/2006: Umstellung der Reinigungstechnologie auf einen biologischen Wirbelschichtreaktor als Hauptreinigungsstufe, in dem Aktivkohle als Trägermaterial für Biomasse umlaufartig oszilliert, mit Erhöhung der Förderrate. Abschließende Adsorption mittels Wasseraktivkohle. 01/2007 – 08/2008: Außerbetriebnahme eines Teils der Brunnen im Hauptschadensbereich infolge der vorbereitenden Arbeiten zur Bodensanierung. 09/2008 – 12/2008: Abschluss der hydraulischen Sanierung im Bereich der Bodensanierung. Reinigung des abgepumpten Grundwassers über einstufige Stripanlage mit Abluftadsorption mit nachgeschalteten Wasseraktivkohlefiltern. 2009 – 2012: Sukzessive Außerbetriebnahme der Förderbrunnen (hydraulische Sicherung) nach dem Erreichen des Sanierungszielwertes von 20 µg/L BTEX. Im Jahr 2007 wurde mit dem Beginn des Teilabrisses der vorhandenen Gebäudesubstanz sowie einem Industrieschornstein aus Betonfertigteilen (einschl. vorlaufender Entkernung und nachlaufender Tiefenenttrümmerung) die Bodensanierung eingeleitet. In einem 1. Bauabschnitt (2008 – 2009) wurde der Bodenaustausch in der gesättigten Zone auf einer Fläche von ca. 2.100 m² in dem zentralen Grundstücksbereich bis in eine Tiefe von 11 m uGOK mittels Rüttelsenkkästen (Wabenverfahren) durchgeführt. Der vorlaufende Bodenaushub zur Beseitigung gering belasteter Bodenhorizonte bis ca. 0,5 m oberhalb des anstehenden Grundwasseranschnittes wurde mit einer Trägerbohlwand gesichert. In einem Teilbereich der Sanierungsfläche wurde dem sauberen Boden ein sauerstoffhaltiges Substrat beigefügt, das durch die Schaffung eines oxidativen Milieus zu einer Verringerung der verbliebenen Restbelastungen durch mikrobielle Abbauprozesse im Grundwasser beitragen sollte. In einem 2. Bauabschnitt (2010) erfolgte der Bodenaustausch im nördlichen Randbereich des Standortes mittels Großlochbohrungen bis zu einer Tiefe von 9 m uGOK an 757 Bohransatzpunkten (DN 1200). Nachfolgend finden sich die mit der Bodensanierung angefallenen Entsorgungsmengen zusammengefasst: Zur weiteren Überwachung des Sanierungserfolgs und zum Schutz der nahe gelegenen Fassungen des Wasserwerks Wuhlheide ist die Fortsetzung des Grundwassermonitorings mit viertel- oder halbjährlichen Beprobungskampagnen als Nachsorgemaßnahme vorgesehen. Die Beobachtung von Verlagerungen aus verbliebenen lokalen Belastungsschwerpunkten erfolgt mittels Modellrechnungen (Stofftransportmodellierungen) und bei Bedarf durch Errichtung zusätzlicher Grundwassermessstellen. Die Gesamtkosten aller Maßnahmen belaufen sich bis Ende 2018 auf ca. 8,77 Mio. €. Bedingt durch die Lage des Standortes in der Trinkwasserschutzzone II des Wasserwerks Wuhlheide, die eine Neubebauung der sanierten Flächen derzeit ausschließt, ist die zukünftige Nutzung noch offen.

Erneuerbare Energien im Verkehr

Erneuerbare Energien im Verkehr Im Vergleich zu den Sektoren Strom und Wärme ist der Anteil erneuerbarer Energien im Verkehr bislang deutlich geringer. Nach langer Stagnation liegt er inzwischen wieder fast beim bisherigen Höchstwert des Jahres 2007. Die Beiträge der verschiedenen erneuerbaren Energieträger im Verkehr haben sich im Laufe der Zeit deutlich verändert. Erneuerbare Energien im Verkehr Der Verkehrssektor ist der Sektor mit dem geringsten Anteil an erneuerbaren Energiequellen. Einschließlich des Stromverbrauchs aus erneuerbaren Energien im Schienen- und Straßenverkehr betrug der Anteil seit dem Jahr 2008 bis zum Jahr 2019 kontinuierlich zwischen fünf und sieben Prozent (siehe Abb. „Anteil erneuerbarer Energien am ⁠ Endenergieverbrauch ⁠ für Verkehr“). Im Jahr 2020 stieg der Anteil der erneuerbaren Energien im Verkehrssektor deutlich von 5,5 % (2019) auf 7,5 %. Ursache für den verhältnismäßig starken Anstieg waren verschiedene Faktoren, insbesondere die Anhebung der ⁠ Treibhausgas ⁠-Minderungsquote von 4 % auf 6 % im Jahr 2020. Im Jahr 2021 sank – trotz gleichbleibender THG-Quote von 6 % – der Anteil der Erneuerbaren am Energieverbrauch wieder deutlich unter den relativ hohen Wert von 2020. Dies lag vor allem an Mechanismen der Erfüllung der Treibhausgas-Minderungsquote (Übertragungsregelungen im Zuge der der THG-Quote in den Jahren 2019 bis 2021, verstärkte Anrechnungen sogenannter Upstream-Emissionsminderungen bei der Kraftstoffherstellung zur Erfüllung der THG-Quote). Im Jahr 2022 lag der Absatz von Biokraftstoffen trotz der Erhöhung der THG-Quote von 6 % auf 7 % in etwa auf dem Niveau des Vorjahres. Zwar sank der Absatz von Biodiesel. Dies wurde aber durch einen Mehrverbrauch von Bioethanol ausgeglichen. Die Nutzung von erneuerbarem Strom im Verkehr stieg um 7 % verglichen mit dem Vorjahr. Weil jedoch auch mehr fossiler Kraftstoff genutzt wurde, verblieb der Anteil erneuerbarer Energien im Verkehr ungefähr auf dem Niveau des Vorjahres. Im Jahr 2023 stieg der Anteil der Erneuerbaren am Energieverbrauch im Verkehr bei leicht abnehmenden Energieverbrauch im Verkehr wieder an und lag bei 7,5 %. Wichtigster Treiber war vor allem der erneuerbare Strom, dessen Verbrauch um 22 % anstieg. Dies bildet einerseits den höheren Erneuerbaren-Anteil am deutschen Stromverbrauch ab (siehe Artikel Stromverbrauch ), andererseits die steigende Nutzung von Elektrofahrzeugen. Anteile verschiedener erneuerbarer Energieträger Den größten Anteil am Verbrauch erneuerbarer Energieträger im Verkehr hatte im Jahr 2023 mit 58 % Biodiesel , gefolgt von Bioethanol (21 %; siehe Abb. „Verbrauch erneuerbaren Energien im Verkehrssektor im Jahr 2023“). Der Anteil von Biomethan betrug 3 %. Der Kraftstoff kommt erst seit 2011 in relevantem Umfang zum Einsatz, wächst seitdem aber kontinuierlich. Pflanzenöl wurde im Jahr 2007 im Verkehr noch im Umfang von 8,5 ⁠ TWh ⁠ verbraucht. Heute kommt es als Kraftstoff mit einem Verbrauch von 0,03 TWh praktisch nicht mehr zum Einsatz. Entwicklung erneuerbarer Energieträger Durch die zunehmende Elektromobilität steigt der Stromverbrauch im Verkehr. Der Anteil der erneuerbaren Energien am Stromverbrauch ist in den vergangenen Jahren deutlich angewachsen (vgl. Artikel „ Stromverbrauch “). Damit stieg auch der rechnerisch ermittelte Verbrauch von Strom aus erneuerbaren Energiequellen im Verkehr. Den größten Anteil daran hält der Schienenverkehr (siehe Abb. „Verbrauch erneuerbarer Energien im Verkehrssektor“).

Erneuerbare Energien – Vermiedene Treibhausgase

Erneuerbare Energien – Vermiedene Treibhausgase Erneuerbare Energien vermeiden Treibhausgase. In vielen Bereichen verdrängen sie fossile Energieträger und vermeiden damit Emissionen. Die meisten Emissionen werden durch die erneuerbare Stromerzeugung eingespart, aber auch im Wärme- und Verkehrssektor tragen erneuerbare Energien zum Klimaschutz bei. 2023 wurden so 249 Millionen Tonnen Kohlendioxid-Äquivalente vermieden. Die verstärkte Nutzung erneuerbarer Energieträger führt zu einer Verdrängung fossiler Energien und somit zu einer zunehmenden Vermeidung klimaschädlicher Treibhausgase. Berechnungen des Umweltbundesamtes zeigen, dass der Einsatz erneuerbarer Energien in den letzten Jahrzehnten so einen wichtigen Beitrag zum ⁠ Klimaschutz ⁠ leisten konnte. Im Jahr 2023 vermieden erneuerbare Energien 249 Millionen Tonnen CO 2 -Äquivalente. Seit dem Jahr 2000 ist dieser Wert auf mehr als das Fünffache gestiegen (siehe Abb. „Vermiedene ⁠ Treibhausgas ⁠-Emissionen durch die Nutzung erneuerbarer Energien“). Beiträge der verschiedenen Erneuerbaren Energieträger zur Treibhausgasvermeidung Wichtigster Energieträger bei der Vermeidung von ⁠ Treibhausgas ⁠-Emissionen ist die Windenergie. Sie kommt ausschließlich in der Stromerzeugung zum Einsatz. Zweitwichtigster Energieträger ist die ⁠ Biomasse ⁠: Vor allem die erneuerbare Wärmeversorgung, aber auch erneuerbare Kraftstoffe basieren bislang überwiegend auf Bioenergieträgern. Auch in Kraftwerken wird mit Biomasse Strom bzw. mit Kraft-Wärme-Kopplung (KWK) zusätzlich Wärme erzeugt (siehe Abb. „Vermiedene Treibhausgas-Emissionen durch die Nutzung erneuerbarer Energien im Jahr 2023“). Stromerzeugung Die erneuerbaren Energien in der Stromerzeugung leisten mit Abstand den wichtigsten Beitrag bei der Vermeidung von Treibhausgasen. Ihr Anteil beträgt fast 80%. Der Umfang der vermiedenen Emissionen ist in den vergangenen Jahrzehnten fast kontinuierlich gewachsen. Insgesamt zeigt die Entwicklung seit dem Jahr 2010, dass sich der erfolgreiche Ausbau der erneuerbaren Energien besonders im Stromsektor positiv auf die Vermeidung von Treibhausgasen auswirkt: Insbesondere durch die Entwicklung bei der Windenergie und der Photovoltaik werden mittlerweile mehr als 2,5-mal so viele Treibhausgase vermieden wie noch 2010 (siehe Abb. „Stromsektor: Vermiedene ⁠ Treibhausgas ⁠-Emissionen durch die Nutzung erneuerbarer Energien“). Wärmeerzeugung Im Wärmesektor trägt vor allem die Nutzung fester ⁠ Biomasse ⁠ (also vor allem Holz) zur Vermeidung von Treibhausgasen bei (siehe Abb. „Wärmesektor: Vermiedene ⁠ Treibhausgas ⁠-Emissionen durch die Nutzung erneuerbarer Energien“). Allerdings ist die Bedeutung von fester Biomasse zur Emissionsreduktion zwischen 2010 und 2023 nur leicht angestiegen. Zugenommen hat vor allem die Bedeutung anderer Energieträger wie Solarthermie, Geothermie und insbesondere mittels Wärmepumpen nutzbar gemachte Umweltwärme. Sie machen nun fast 20% der Emissionsvermeidung im Wärmesektor aus. Ausführlichere Informationen zum Einsatz erneuerbarer Energien im Wärmesektor finden Sie auch im Artikel „ Energieverbrauch für fossile und erneuerbare Wärme “. Verkehr Biokraftstoffe vermeiden ebenfalls Emissionen im Umfang von mehreren Millionen Tonnen ⁠ Kohlendioxid-Äquivalente ⁠ (siehe Abb. „Verkehrssektor: Vermiedene ⁠ Treibhausgas ⁠-Emissionen durch die Nutzung biogener Kraftstoffe“). Allerdings bleibt der Verkehrssektor der Bereich mit dem geringsten Anteil an erneuerbaren Energien – und damit auch der Sektor mit der geringsten Emissionsvermeidung. Die Menge vermiedener Treibhausgas-Emissionen geht im Wesentlichen einher mit der Entwicklung des Einsatzes Erneuerbarer Energien im Verkehrssektor (siehe Artikel „Erneuerbare Energie im Verkehr“). Im Jahr 2023 wie schon im Jahr 2010 wird die Vermeidung von Treibhausgasemissionen vor allem Biodiesel und Hydriertem Pflanzenöl (HVO) sowie Bioethanol getragen. Der im Verkehr verwendete Strom aus erneuerbaren Energiequellen wird hier nicht ausgewiesen, da dieser bereits im Stromsektor erfasst wurde (siehe oben). Methodische Hinweise Die Berechnungen zur Emissionsvermeidung durch die Nutzung erneuerbarer Energien basieren auf einer Netto-Betrachtung (Netto-Bilanz). Dabei werden die durch die Endenergiebereitstellung aus erneuerbaren Energien verursachten Emissionen mit denen verrechnet, die durch die Substitution fossiler Energieträger brutto vermieden werden. Vorgelagerte Prozessketten zur Gewinnung und Bereitstellung der Energieträger sowie für die Herstellung und den Betrieb der Anlagen werden dabei weitestgehend mit einbezogen. Die detaillierte Methodik zur Berechnung des Indikators wird in der Publikation „ Emissionsbilanz erneuerbarer Energieträger 2023" beschrieben.

Fragen und Antworten zu Tierhaltung und Ernährung

Fragen und Antworten zu Tierhaltung und Ernährung Die intensive Nutztierhaltung und der hohe Konsum tierischer Lebensmittel sind mit negativen Auswirkungen auf Umwelt und Klima verbunden. Änderungen in der Produktion und beim Konsum können die Umwelt und das Klima entlasten. 1 Umwelt- und Klimawirkungen der Nutztierhaltung 1.1 Welche Auswirkungen hat die Tierhaltung auf die Umwelt und das Klima? Durch die Nutztierhaltung entstehen Treibhausgasemissionen , die zur Klimaerwärmung beitragen. Zusätzlich hat der Verlust von Nährstoffen wie Stickstoff und Phosphor in die Umwelt negative Folgen, vor allem für die ⁠ Biodiversität ⁠, die Luftqualität und die Qualität von Grund- und Oberflächengewässern. Wenn die in der Tierhaltung eingesetzten Tierarzneimittel und Biozide in die Umwelt gelangen, können sie Wildtiere, Pflanzen und Mikroorganismen im Boden und im Wasser gefährden. Indirekte Umweltwirkungen der Tierhaltung entstehen nicht unmittelbar in der Tierhaltung, stehen aber in einem kausalen Zusammenhang: So benötigen die Tiere große Mengen an Futtermitteln, um tierische Produkte wie Fleisch, Milch und Eier zu erzeugen. Die intensive Nutztierhaltung ist dadurch global Mitverursacherin für den intensiven Ackerbau mit engen Fruchtfolgen, hohem Düngemittel- und Pflanzenschutzmitteleinsatz und einem hohen Flächenbedarf – die Folgen: zusätzliche Treibhausgasemissionen, belastete Böden und Gewässer und negative Folgen für die Biodiversität. Der hohe Bedarf an Landwirtschaftsflächen für den Futteranbau trägt im internationalen Kontext auch dazu bei, dass ökologisch wertvolle Flächen wie Wälder oder Moore einer landwirtschaftlichen Nutzung geopfert werden. Die landwirtschaftliche Nutzierhaltung kann – sofern sie im ökologisch verträglichen Maß betrieben wird – auch positive Umweltwirkungen etwa für den Bodenschutz und den Erhalt wertvoller Lebensräume haben. Dies gilt insbesondere für die grünlandbasierte Wiederkäuerhaltung. 1.2 Wieso ist es von Nachteil, wenn landwirtschaftliche Flächen für die Tierernährung belegt werden? Es macht einen Unterschied, ob Menschen sich in Form von pflanzlichen Nahrungsmitteln direkt von den landwirtschaftlichen Flächen ernähren oder ob diese Flächen genutzt werden um zuerst Futtermittel zu erzeugen, die dann für die Produktion von Nahrungsmitteln tierischen Ursprungs eingesetzt werden. Das liegt daran, dass 75 Prozent und mehr der an die Tiere verfütterten Nährstoffe von den Tieren selbst verbraucht und wieder ausgeschieden werden. Nur etwa ein Viertel der verfütterten Nährstoffe werden tatsächlich von den Tieren in Nahrungsmittel (Milch, Eier, Fleisch) umgewandelt. Damit geht ein Großteil der an die Tiere verfütterten Energie und Eiweiße für die menschliche Ernährung verloren. Der Flächenbedarf für die Produktion von tierischen Nahrungsmitteln ist entsprechend höher, als wenn wir uns direkt auf Basis pflanzlicher Nahrungsmittel ernähren würden. Nachteilig ist der Futtermittelanbau, wenn die Tiere von Ackerflächen gefüttert werden, auf denen ebenso gut direkt Nahrungsmittel angebaut werden könnten. In Deutschland werden knapp 40 Prozent, weltweit rund ein Drittel des Ackerlandes für die Futtermittelproduktion verwendet. Häufig werden Ackerfrüchte ausschließlich für Futterzwecke angebaut, zum Beispiel bei Silomais und Futtergetreide. So wird in Deutschland knapp 60 Prozent des verfügbaren Getreides als Futtermittel genutzt. Nur bei einigen Ackerfrüchten gibt es die Möglichkeit, Koppelprodukte zu erzielen. Das bedeutet, dass eine Ackerfrucht gleichzeitig Futtermittel und Nahrungsmittel oder nachwachsende Rohstoffe produziert. Dies gilt beispielsweise für Raps und Soja, bei deren Verarbeitung sowohl Pflanzenöle als auch Futtermittel (als Raps- und Sojaschrot) produziert werden. Weitere Informationen: UBA-Hintergrundpapier „Perspektiven für eine umweltverträgliche Nutztierhaltung in Deutschland“ | UBA-Daten zur Umwelt „Umwelt und Landwirtschaft“ | UBA-Seite „Landwirtschaft heute“ | UBA-Seite „Umweltbelastungen der Landwirtschaft” 1.3 Wie entstehen die Treibhausgase in der Tierhaltung? Die Tierhaltung trägt maßgeblich zu den direkten Treibhausgasemissionen der Landwirtschaft bei. Rund 35,5 Millionen Tonnen CO ₂ -Äquivalente, das sind gut 68 Prozent der Emissionen der Landwirtschaft und knapp 5,3 Prozent der Treibhausgasemission Deutschlands, sind direkt auf die Tierhaltung zurückzuführen. Bei der Verdauung und in der Gülle von Wiederkäuern wie Rindern, Schafen und Ziegen wird das ⁠ Treibhausgas ⁠ Methan (CH ₄ ) gebildet. Zwar wird Methan nach etwa zwölf Jahren in der ⁠ Atmosphäre ⁠ abgebaut, doch während dieser Zeit wirkt es um ein Vielfaches stärker klimaerwärmend als Kohlendioxid (CO ₂ ). Bei der Lagerung von und der Düngung mit Wirtschaftsdüngern wie Gülle, Mist und Gärresten entsteht zudem Lachgas (N ₂ O). Dieses Treibhausgas ist sogar rund 265-mal so klimawirksam wie CO ₂ . Zu den direkten Klimawirkungen der Nutztierhaltung kommen indirekte Treibhausgasemissionen hinzu: Beim Anbau von Futtermitteln entstehen durch die Düngung Lachgasemissionen. Die Herstellung von Mineraldüngern ist sehr energieintensiv und auch die Landwirtschaftsbetriebe benötigen Energie, beispielsweise in Form von Treibstoff. Eine wichtige Rolle spielen auch Emissionen durch landwirtschaftliche Landnutzungsänderungen, zum Beispiel durch die Rodung von Wäldern oder die Entwässerung von Mooren. So gerechnet ist die Nutztierhaltung insgesamt weltweit für knapp 15 Prozent der vom Menschen verursachten Treibhausgasemissionen verantwortlich. Weitere Informationen: UBA-Seite „Klimagase aus der Viehhaltung“ 1.4 Von Rindern produziertes Methan wird doch schnell wieder abgebaut. Wieso ist es dennoch wichtig diese Emissionen zu senken? Bei gleichbleibenden Rinderbeständen mit gleichbleibenden Methanemissionen ist die Bilanz der Emissionen langfristig ausgeglichen. Die über Fotosynthese aus der ⁠ Atmosphäre ⁠ entnommene und in den Futterpflanzen gespeicherte Menge an CO ₂ entspricht der CO ₂ -Menge, die entsteht, nachdem die Methanemissionen der Rinder abgebaut wurden. Der Abbau des Methans verläuft im Vergleich zu anderen Klimagasen rasch – die Verweilzeit von Methan in der Atmosphäre beläuft sich nur auf etwa 12 Jahre. Doch innerhalb dieser Zeit ist das von den Rindern gebildete Methan ausgesprochen klimawirksam. So ist die Klimawirksamkeit von Methan auf einen Zeitraum von 100 Jahren gesehen 28-mal größer als die von Kohlendioxid. Über einen Zeitraum von 20 Jahren gesehen ist Methan sogar 84-mal klimawirksamer als Kohlendioxid. Methan ist also ein kurzlebiges, aber in dieser Zeit sehr klimawirksames ⁠ Treibhausgas ⁠. Bleiben Rinderbestände und deren Methanemissionen konstant, kommt es langfristig zu keinem zusätzlichen Erwärmungseffekt, weil sich Aufbau und Abbau von Methan die Waage halten. Werden jedoch die Rinderbestände reduziert, wird dem Kreislauf mehr Methan entzogen als neu gebildet wird. Dies wiederum bedeutet eine geringere Erderwärmung. Daher ist eine Reduktion der Rinderbestände eine schnell wirksame Maßnahme, um die weitere Erderwärmung einzugrenzen. Das Gegenteil ist der Fall, wenn Rinderbestände und Methanemissionen steigen. In Deutschland machen die Methanemissionen mit gut 33 Mio. Tonnen CO ₂ -Äquivalente knapp 65 Prozent der direkten landwirtschaftlichen Treibhausgas-Emissionen aus. 76 Prozent davon stammen aus der Verdauung und sind nahezu vollständig auf die Rinder- und Milchkuhhaltung zurückzuführen. Weitere Informationen: Stellungnahme des Thünen-Instituts „Landwirtschaft und Klimawandel“ 1.5 Welche Umweltprobleme entstehen durch Nährstoffverluste in der Tierhaltung? Nährstoffverluste entstehen, wenn auf landwirtschaftlichen Betrieben Nährstoffe – meist unbeabsichtigt – in die Umwelt entweichen. Sie entstehen beispielsweise im Stall, bei der Lagerung von Wirtschaftsdüngern und bei der Düngung selbst. Von dort gelangen sie auf unterschiedlichen Wegen in die Umwelt und wirken negativ auf das ⁠ Klima ⁠ und die Ökosysteme. Diese Nährstoffverluste in die Umwelt sind in Regionen mit intensiver Tierhaltung besonders hoch, da hier besonders große Mengen an Wirtschaftsdüngern wie Gülle und Gärreste anfallen. Ein wichtiger Nährstoff ist Stickstoff (N). Er kann als Gas in Form von Ammoniak oder Lachgas und in gelöster Form als Nitrat in die Umwelt gelangen. Ammoniak (NH ₃ ) breitet sich mit vielfältigen Umweltwirkungen in der ⁠ Atmosphäre ⁠ aus. Es kann sich in empfindlichen Ökosystemen ablagern und diese unbeabsichtigt düngen. Ammoniak kann dadurch die Zusammensetzung von Tier- und Pflanzenarten in Ökosystemen verändern und zum Absterben einzelner Arten führen. Über 70 Prozent der Ammoniakemissionen in Deutschland sind auf die Tierhaltung zurückzuführen. Lachgas (N ₂ O) ist ein sehr starkes, langlebiges ⁠ Treibhausgas ⁠ und hat einen bedeutenden Anteil an der Klimaerwärmung. Die Tierhaltung trägt mit rund 14 Prozent zu den Lachgas-Emissionen der Landwirtschaft bei. Wenn Pflanzen gedüngt werden und sie nicht alle Nährstoffe aus dem Dünger aufnehmen können, gelangt der überschüssige Stickstoff in Form von Nitrat mit dem Sickerwasser in Grundwasser und Oberflächengewässer. Eine zu hohe Nitratkonzentration im Trinkwasser kann sich negativ auf die Gesundheit von Säuglingen auswirken. Daher gibt es einen Grenzwert für Nitrat im Trinkwasser, der auch für das Grundwasser gilt. In den Oberflächengewässern wirken die ungewollten Nitratverluste wie eine Düngung und sind nachteilig für die ⁠ Biodiversität ⁠, da sie beispielsweise das Algenwachstum fördern. Ähnliches gilt für den Nährstoff Phosphor (P), der sich bei übermäßiger Düngung im Boden anreichert. Durch ⁠ Erosion ⁠ gelangt der Phosphor zusammen mit Bodenpartikeln in die Gewässer und düngt diese ebenfalls unbeabsichtigt. Weitere Informationen: UBA-Seite „Stickstoff“ | Häufig gestellte Fragen (FAQ) zu „Nitrat im Grund- und Trinkwasser“ | Interview zu Stickstoff in der Landwirtschaft | UBA-Seite „Lachgas und Methan“ und „Ammoniak“ 1.6 Welchen Einfluss haben Einträge von Tierarzneimitteln, Bioziden und Pflanzenschutzmitteln auf die Umwelt? Tierarzneimittel und Biozide gelangen über Gülle, Reinigungswasser, Weidetiere, Fahrzeuge oder Ausrüstung in die Umwelt. Dort sind sie giftig für Tiere, Pflanzen und Mikroorganismen wie Bakterien und Pilze und können deren Wachstum hemmen. Auch Resistenzen von Mikroorganismen, besonders gegen Antibiotika, werden gefördert. Über den Anbau von Futtermitteln auf dem Acker trägt auch die Tierhaltung zu den Einträgen von Pflanzenschutzmitteln in die Umwelt bei. ⁠ Pflanzenschutzmittel ⁠ verringern die Zahl und Artenvielfalt von Pflanzen und Insekten, die die Nahrungsgrundlage von wildlebenden Vögeln, Säugern und anderen Tieren darstellen, und hemmen wichtige Mikroorgansimen im Boden. Darüber hinaus können sie in Form von ⁠ Abdrift ⁠ oder Abschwemmung nicht nur die Ackerflächen selbst, sondern auch benachbarte Flächen und Gewässer belasten. Weitere Informationen: UBA-Seite „Tierarzneimittel in der Umwelt“ | UBA-Biozid-Portal | UBA-Seite „Biozide in der Umwelt“ | UBA-Seite „Pflanzenschutzmittel in der Umwelt“ 1.7 Ist die Haltung von Schweinen und Geflügel umweltfreundlicher als die von Rindern? Grundsätzlich hat die Produktion von allen tierischen Lebensmitteln negative Auswirkungen auf die Umwelt und das ⁠ Klima ⁠, auch wenn diese sich je nach Tierart und Haltungsform unterscheiden. Daher ist eine Ernährung, die stärker auf pflanzlichen Lebensmitteln basiert, aus Umweltsicht am besten. Die Treibhausgasemissionen von Schweine- und Geflügelfleisch sind pro Kilogramm Produkt deutlich geringer als die von Rindfleisch. Die Rinderhaltung dient aber meist nicht nur der Fleischproduktion, sondern gleichzeitig der Milchproduktion. Darüber hinaus können Rinder im Gegensatz zu Schweinen oder Geflügel vom Grünland ernährt werden, was zum einen eine direkte Nahrungskonkurrenz zum Menschen verhindert und zum anderen durchaus Vorteile für die Umwelt haben kann. Weitere Informationen: ifeu-Studie „Ökologische Fußabdrücke von Lebensmitteln und Gerichten in Deutschland“ 1.8 Ist Weidehaltung von Rindern besser für die Umwelt und das Klima als eine reine Haltung im Stall? Dass Rinder sich von Grünland ernähren können, ist ihre große Stärke. Während für Geflügel- und Schweinefutter Ackerflächen benötigt werden, können Rinder auch auf Grünlandstandorten ernährt werden, die sich nicht für den Ackerbau eignen. Dies ermöglicht eine Rinderhaltung, die nicht in Nahrungs- und Futtermittelkonkurrenz zu Menschen, Geflügel und Schweinen steht. Darüber hinaus haben Wiesen und Weiden als Futtergrundlage zahlreiche ökologische Vorteile: Sie können die biologische Vielfalt fördern – besonders bei extensiver Nutzung, binden mehr Kohlenstoff im Boden als Ackerland und schützen den Boden vor ⁠ Erosion ⁠. Rinder können ähnlich wie Ziegen, Schafe und Pferde zum Erhalt einer attraktiven und vielfältigen Kulturlandschaft beitragen. Auch wenn die Tiere selbst nicht auf der Weide stehen, sondern Heu und Gras im Stall fressen, kommen viele dieser ökologischen Vorteile zum Tragen. Für das Tierwohl und die Tiergesundheit dagegen ist der Auslauf auf der Weide positiv. Die ⁠ UBA ⁠-Studie „Sichtbarmachung versteckter Umweltkosten der Landwirtschaft am Beispiel von Milchproduktionssystemen“ zeigt, dass Milch von Weidebetrieben im Vergleich zur Stallhaltung geringere negative Umweltwirkungen haben kann. So sinnvoll eine Grünlandnutzung durch Nutztiere ist: Eine Einschränkung besteht bei ehemaligen Moorflächen, die für die Landwirtschaft trockengelegt wurden. Die Nutzung dieser Flächen als Acker oder Grünland verursacht hohe Kohlendioxidemissionen. Solche Flächen sollten daher wiedervernässt werden und vor allem dem ⁠ Klimaschutz ⁠ dienen. Dies schließt eine intensive landwirtschaftliche Nutzung – auch als Grünland – aus. Weitere Informationen: UBA-Studie „Sichtbarmachung versteckter Umweltkosten der Landwirtschaft am Beispiel von Milchproduktionssystemen“ | UBA-Seite „Umweltbilanz von Milch - Weidehaltung schlägt Stallhaltung“ 1.9 Brauchen wir die Rinder, um das Grünland zu erhalten? Rinder spielen bei der Erhaltung und produktiven Nutzung des Grünlandes eine wichtige Rolle. Damit die hohen Tierleistungen beispielsweise bei der Milchmenge möglich sind, werden Rinder jedoch in bedeutendem Maße vom Acker (Futtermais, Getreide) statt vom Grünland (Gras, Heu) ernährt. Nur knapp ein Drittel der Rinder hat überhaupt Zugang zu Weiden. Das vorhandene Grünland würde nicht ausreichen, um die aktuell knapp vier Millionen Milchkühe und acht Millionen weiteren Rinder hauptsächlich mit Gras zu ernähren. Dies wäre nur mit einer deutlich reduzierten Tierleistung und reduzierten Rinderbeständen möglich. Darüber hinaus tragen auch andere Tierarten wie Schafe, Ziegen oder Pferde zum Grünlanderhalt bei. Weitere Informationen: UBA-Seite „Indikator: Grünlandfläche“ | UBA-Seite „Grünlandumbruch“ 1.10 Gibt es einen Konflikt zwischen Tierwohl und Umweltschutz? Nicht generell, denn Tierwohl und Umweltschutz gehen oftmals Hand in Hand. Tiergerechtere Haltungsbedingungen können die Gesundheit der Tiere verbessern, so dass weniger Tierarzneimittel und Biozide benötigt werden. Darüber hinaus leben gesündere Tiere länger und sind produktiver. Dies verbessert die Ökobilanz pro Kilogramm Milch oder Fleisch. Es gibt jedoch auch Zielkonflikte. So sind Filteranlagen zur Reduktion der Ammoniakemissionen bei geschlossenen Ställen besonders praktikabel, während große Offenställe mit ⁠ Außenbereich ⁠ dem Tierwohl dienlicher sind. Durch die größere verschmutzte Fläche können sie jedoch zu höheren Ammoniakemissionen führen. Dieser Zielkonflikt könnte zumindest teilweise durch verfahrenstechnische Maßnahmen aufgelöst werden. Berücksichtigt man hier zum Beispiel das natürliche Verhalten von Schweinen und bietet ihnen genügend Platz und einen gut strukturierten Stall an, nutzen sie unterschiedliche Bereiche zum Koten, Liegen und Fressen. So wird nur ein kleiner Teil der Stallfläche mit Kot und Harn verschmutzt und die Emissionen sinken. Weitere Informationen: UBA-Seite „Gesunde Tiere“ | UBA-Studie: „Tierwohl und Umweltschutz – Zielkonflikt oder Win-Win-Situation“ | UBA-Hintergrundpapier „Perspektiven für eine umweltverträgliche Nutztierhaltung in Deutschland“ 1.11 Müssen wir aus Umweltsicht vollständig auf Nutztiere verzichten? Nein, denn neben der Nahrungsmittelproduktion hat die Nutztierhaltung unter bestimmten Voraussetzungen auch Vorteile für die Umwelt. Dafür muss sie in einem verträglichen Maße erfolgen und umweltverträglich gestaltet sein. Wichtig ist hierfür, dass in einer Region nur so viele Nutztiere gehalten werden, wie die Region auch ernähren kann. Eine solche flächengebundene Tierhaltung ermöglicht es, landwirtschaftliche Kreisläufe weitgehend zu schließen und negative Umweltwirkungen wie Nährstoffverluste zu reduzieren. Sinnvoll ist außerdem eine grünlandbasierte Rinderhaltung . Um die gesamte Tierhaltung in Deutschland hin zu einer solchen multifunktionalen Tierhaltung mit höheren Standards bezüglich Tierwohl, Umwelt- und ⁠ Klimaschutz ⁠ zu entwickeln, wäre eine Reduktion der Tierbestände und ein Umbau der Tierhaltung notwendig. Dieser Umbau muss jedoch auf längere Zeit geplant und mit ausreichend Geldern finanziert werden. Bislang scheitert der Prozess an der Frage, wer welche Kosten trägt. 1.12 Lassen sich die Umweltprobleme der Tierhaltung durch eine Umstellung auf Ökolandbau vermeiden? Konventionelle tierische Lebensmittel durch dieselbe Menge ökologischer Produkte zu ersetzen, bringt nicht die notwendige Entlastung für die Umwelt und das ⁠ Klima ⁠. Auch die ökologische Nutztierhaltung trägt zu den negativen Umwelteffekten der Tierhaltung bei. Nachteil des Ökolandbaus ist insbesondere der in der Regel deutlich höhere Flächenbedarf. Im Vergleich zur konventionellen Landwirtschaft benötigt der Ökolandbau für die gleiche Menge eines Produktes mehr Fläche. Daher sollten auch Bio-Milch, Bio-Fleisch und Bio-Eier nur in Maßen konsumiert werden. Im Zusammenspiel mit einem insgesamt reduzierten Konsum tierischer Produkte kann der Ökolandbau jedoch wesentlich zur Lösung vieler Probleme beitragen, denn er ist gegenüber der konventionellen Landwirtschaft ökologisch vorteilhaft – etwa indem er weniger Pflanzenschutzmittel, Tierarzneimittel und Biozide verwendet und auf geschlossene Nährstoffkreisläufe und eine flächengebundene Tierhaltung setzt. Darüber hinaus wird im Ökolandbau landwirtschaftliches Wissen geschaffen und erhalten. Dieses Wissen kann auch dazu beitragen, die konventionelle Landwirtschaft umweltverträglicher zu gestalten. Weitere Informationen: UBA-Studie „Entwicklungsperspektiven der ökologischen Landwirtschaft in Deutschland“ | UBA-Seite „Ökologischer Landbau“ | UBA-Seite „Umweltleistungen des Ökolandbaus“ 1.13 Wie kann die Tierhaltung umwelt- und klimaverträglich werden? Verfahrenstechnische Maßnahmen und Managementmaßnahmen können die Ökoeffizienz der Tierhaltung verbessern, also die Umwelt- und ⁠ Klimawirkung ⁠ pro Produkteinheit (Liter Milch oder Kilogramm Fleisch) verringern. Hierzu gehören: Tierwohl und Tiergesundheit verbessern Emissionsärmere Stallsysteme nutzen Lagerung und Ausbringung von Wirtschaftsdüngern (inklusive Biogaserzeugung) optimieren, z.B. durch besonders emissionsarme Ausbringungstechnik Nährstoffverluste in die Umwelt verringern und Nährstoffeffizienz erhöhen, z.B. durch eine flächengebundene Tierhaltung Treibhausgasemissionen durch Zucht und ggf. Futterzusätze senken Doch eine Steigerung der Ökoeffizienz allein wird vermutlich nicht ausreichen, um Umwelt- und Klimaziele zu erreichen, zumal dadurch das Problem der Nutzung von Ackerflächen für den Futtermittelanbau und den damit einhergehenden Umweltwirkungen nicht gelöst wird. Daher sollte die Nutztierhaltung nicht nur hinsichtlich des „Wie“ sondern auch des „Wieviel“ umgebaut werden. Hierfür sollte der maximal mögliche Tierbestand aus Umwelt- und Klimazielen abgeleitet werden und an die Tragfähigkeit der Ökosysteme angepasst werden. Die Verkleinerung der Tierbestände funktioniert aber nur, wenn auf der anderen Seite der Konsum angepasst wird und mehr pflanzliche und weniger tierische Lebensmittel verzehrt werden. Bleiben aktuelle Konsumgewohnheiten bestehen, werden tierische Produkte vermehrt importiert und Umweltprobleme lediglich verlagert. Weitere Informationen: UBA-Hintergrundpapier „Perspektiven für eine umweltverträgliche Nutztierhaltung in Deutschland“ 2 Umwelt- und Klimawirkung der Ernährung 2.1 Wie groß ist der Anteil der Ernährung an den konsumbedingten Umweltbelastungen? Jede Person in Deutschland emittiert durch ihren Lebensstil im Durchschnitt 10,78 Tonnen CO ₂ -Äquivalente im Jahr. Davon gehen 1,7 Tonnen CO ₂ -Äquivalente beziehungsweise 15 Prozent auf die Ernährung zurück – und damit fast gleich viel wie für die Mobilität ohne Flugreisen. Den Großteil der ernährungsbedingten Treibhausgasemissionen, knapp 70 Prozent, machen die tierischen Lebensmittel aus. Mehr als die Hälfte der Emissionen entstehen dabei außerhalb Deutschlands. Auch bei anderen problematischen Umweltwirkungen wie zum Beispiel ⁠ Versauerung ⁠, ⁠ Eutrophierung ⁠ oder Feinstaub-Belastung hat die Ernährung einen großen Anteil an der Entstehung. Darüber hinaus werden enorme Mengen an Ressourcen wie Wasser oder Fläche für die Ernährung verwendet. So werden rund 83 Prozent des Pro-Kopf-Wasserverbrauchs für die Herstellung der Lebensmittel benötigt. Zudem werden für den Lebensmittelkonsum hierzulande zusätzlich zu den 6,6 Millionen Hektar Anbaufläche in Deutschland weitere 11,7 Millionen Hektar im Ausland belegt. Ein Großteil, 61 Prozent, der gesamten Anbauflächen werden dabei zur Produktion tierischer Lebensmittel – größtenteils zum Zwecke des Futtermittelanbaus – genutzt. Weitere Informationen: UBA-CO ₂ -Rechner | UBA-Studie „Von der Welt auf den Teller“ | UBA-Studie „KonsUmwelt“ | EU-Kommission „Consumption Footprint Platform“ 2.2 Wie viel tierische Lebensmittel können aus Nachhaltigkeitsperspektive konsumiert werden? Als nachhaltig kann die Menge tierischer Lebensmittel gelten, die für alle Menschen produziert werden kann, ohne die planetaren Belastbarkeitsgrenzen zu überschreiten. Eine Ernährung, die gesund ist und diese Nachhaltigkeitsanforderung erfüllt, ist die von der EAT-Lancet-Kommission erarbeitete Planetary Health Diet. Die Wissenschaftler*innen der Kommission errechneten, dass eine Ernährung mit etwa 43 Gramm Fleisch pro Tag gesund und nachhaltig ist. Das liegt weit unter dem gegenwärtigen Verzehr in Deutschland von rund 142 Gramm Fleisch pro Tag (Stand: 2022). Auch bei Milchprodukten und Eiern liegt der aktuelle Verzehr deutlich über den Werten der nachhaltigen Planetary Health Diet. Inwiefern die im März dieses Jahres aktualisierten Empfehlungen der Deutschen Gesellschaft für Ernährung (DGE) diese Nachhaltigkeitsbedingung ebenfalls erfüllen, wird derzeit in einem Forschungsvorhaben des ⁠ UBA ⁠ ermittelt. Weitere Informationen: Bericht der EAT-Lancet Kommission | BZfE-Seite „Planetary Health Diet“ | DGE-Seite: „DGE-Empfehlungen“ 2.3 Wieviel klima- und umweltfreundlicher sind pflanzliche Lebensmittel gegenüber den tierischen? Bei der Erzeugung eines Kilogramms tierischer Lebensmittel werden deutlich mehr Treibhausgase freigesetzt und mehr Fläche belegt, als für dieselbe Menge pflanzlicher Lebensmittel. Auch das Potenzial zur ⁠ Versauerung ⁠ und ⁠ Eutrophierung ⁠ (Anreicherung von Nährstoffen) von Ökosystemen ist bei Fleisch, Milchprodukten und Eiern in den meisten Fällen höher als bei pflanzlichen Lebensmitteln. Weitere Informationen: UBA-Studie „Von der Welt auf den Teller“ | Studie „Multiple health and environmental impacts of foods“ | Studie „ Ökologische Fußabdrücke von Lebensmitteln und Gerichten in Deutschland “ 2.4 Wie viele Treibhausgase und wie viele Flächen lassen sich durch eine vegetarische oder vegane Ernährung einsparen? Mit einer Umstellung von der durchschnittlichen Ernährungsweise in Deutschland auf eine vegetarische Ernährung ließen sich zwischen 20 und 47 Prozent der ernährungsbedingten Treibhausgasemissionen einsparen. Bei einer veganen Ernährung sind es zwischen 38 und 52 Prozent. Auch der Flächenfußabdruck lässt sich deutlich verringern: um 46 Prozent mit vegetarischer Ernährung und um 49 Prozent mit veganer Ernährung. Aber auch eine Ernährung mit geringeren Mengen tierischer Lebensmittel trägt zur Reduzierung der Treibhausgasemissionen bei. Beispielsweise kann eine Ernährung nach den Empfehlungen der Deutschen Gesellschaft für Ernährung (DGE) mit rund 31 Kilogramm Fleisch pro Jahr, also rund 40 Prozent weniger als die derzeitige Durchschnittsmenge, zur Reduktion der Treibhausgasemissionen durch Ernährung um 9 bis 19 Prozent führen. Weitere Informationen: DGE-Seite „DGE-Empfehlungen“ 2.5 Was kann ich konkret tun, um mich umwelt- und klimafreundlicher zu ernähren? Pflanzliche Lebensmittel haben deutlich weniger negative ⁠ Klima ⁠- und Umweltwirkungen als tierische und die Ökolandwirtschaft ist unterm Strich umweltfreundlicher als die konventionelle. Insofern kann man sich nach der einfachen Faustregel richten: Pflanzliche Lebensmittel in den Vordergrund stellen und tierische Lebensmittel verringern, öfter Bio-Lebensmittel kaufen, Lebensmittelabfälle reduzieren. Dies ist auch aus gesundheitlicher Sicht vorteilhaft. Weitere Informationen: UBA-Denkwerkstatt Konsum | UBA-Seite „Bio-Lebensmittel“

Kraftstoffe und Antriebe

Kraftstoffe und Antriebe Im Straßen-, Schiffs- und Flugverkehr dominieren immer noch klimaschädliche fossile Kraftstoffe. Zunehmend kommen jedoch auch klimafreundlichere alternative Kraftstoffe und Antriebe zum Einsatz. Im Bereich der Treibhausgasminderung bei Kraftstoffen ist das UBA im Rahmen der 37. und 38. Bundes-Immissionsschutzverordnung (BImSchV) auch für den Vollzug zuständig. Unsere Mobilität basiert zurzeit zu großen Teilen auf der Verbrennung flüssiger Kraftstoffe in Verbrennungskraftmaschinen. Da das ⁠ Verkehrsaufkommen ⁠ in Deutschland stetig wächst, stagnieren trotz vorhandener Effizienzgewinne durch den Einsatz von moderneren Motoren und Flugzeugturbinen die absoluten Treibhausgasemissionen des Verkehrs auf einem hohen Niveau. Für die notwendige deutliche Reduktion der Treibhausgasemissionen des Verkehrs für einen ausreichenden Klimaschutzbeitrag des Verkehrs sind neben weiteren Effizienzverbesserungen bei Motoren und einer weitreichenden Elektrifizierung des Straßenverkehrs auch ein Umstieg auf nachhaltige alternative Kraftstoffe in der Schifffahrt und der Luftfahrt notwendig. Konventionelle Kraftstoffe Bei konventionellen Kraftstoffen handelt es sich um Mineralölprodukte. Im Jahr 2019 entfielen ca. 94 Prozent des Endenergieverbrauchs im Verkehrssektor auf diese Kraftstoffe. Die dominierenden Kraftstoffe im deutschen Verkehrssektor sind die im Straßenverkehr eingesetzten Diesel- und Ottokraftstoffe. Ottokraftstoff wird unter dem Namen E5 oder E10 vermarktet und bezeichnet Benzin, das einen bestimmten Anteil an Ethanol enthalten darf. Während "E" für Ethanol steht, gibt die Zahl "5", beziehungsweise "10" an, wieviel Prozent Ethanol das Benzin maximal enthalten kann. Bei dem im Benzin typischerweise enthaltenen Ethanol handelt es sich um biogen bereitgestelltes Ethanol – kurz Bioethanol – das hauptsächlich aus zucker- und stärkehaltigen Pflanzen wie Zuckerrohr, Zuckerrübe, Getreide und Mais Pflanzen gewonnen wird. Die Mindestanforderungen für Ottokraftstoffe sind in der Norm DIN EN 228 festgeschrieben. Im weiteren Sinne sind alle Kraftstoffe, die in Ottomotoren genutzt werden können, Ottokraftstoffe, also unter anderem auch Flüssiggas (LPG) bzw. Erdgas (CNG). Bei diesen handelt es sich zwar nicht um Mineralölprodukte, jedoch werden sie hauptsächlich fossil hergestellt. Da beide keine typischen Kraftstoffe sind, werden diese oft den „alternativen Kraftstoffen“ zugeordnet. Dieselkraftstoff – auch vereinfacht Diesel genannt – wird nach den in der Norm DIN EN 590 definierten Mindestanforderungen an Tankstellen unter dem Namen B7 geführt und bezeichnet Diesel aus Mineralöl mit einer Beimischung von maximal sieben Prozent Biodiesel. In Deutschland wird Biodiesel vorwiegend aus Rapsöl hergestellt. Der Großteil des Biodiesels wird jedoch importiert und aus Abfall- und Reststoffen sowie aus Palmöl sowie Rapsöl hergestellt. Palmöl als Ausgangstoff für hydrierte Pflanzenöle (HVO - Hydrogenated Vegetable Oils) spielt im Bereich des Dieselkraftstoffes zumindest für das Jahr 2020 auch eine entscheidende Rolle. Durch die Überarbeitung der Treibhausgasminderungsquote (THG-Quote) ist die Verwendung von Palmöl seit dem 1. Januar Jahr 2022 deutlich beschränkt und ab 2023 beendet, da der Anbau von Ölpalmen einer der Haupttreiber für die Rodung von Regenwald ist. Im Flugverkehr wird größtenteils aus Erdöl hergestelltes Kerosin getankt. Kerosin bezeichnet Kraftstoffe, die sich für den Einsatz in Flugturbinen eignen. In der Binnenschifffahrt wird schwefelreduzierter Binnenschiffsdiesel verwendet. In der Seeschifffahrt kommen Marinediesel- und Marinegasöle sowie Schweröle mit unterschiedlichem Schwefelgehalt und ggf. notwendigen Abgasnachbehandlungssystemen (Kraftstoffnorm: ISO 8217) zum Einsatz. Sowohl im Binnen- als auch im Seeverkehr werden mehr und mehr Schiffe mit Flüssigerdgas (⁠ LNG ⁠ – Liquified Natural Gas) oder – in ersten Modellanwendungen – mit LPG (Liquified Petroleum Gas), auch Autogas genannt, Methanol oder Biodiesel betrieben. Mehr Informationen hierzu finden Sie auf unserer Themenseite zur Seeschifffahrt. Nur durch den Ersatz von mineralölbasierten Kraftstoffen durch klimafreundliche Alternativen kann der Verkehrssektor den notwendigen Beitrag zur Senkung seiner Treibhausgasemissionen leisten. Um diese Energiewende im Verkehr zu erreichen, ist die Entwicklung und Innovation bei alternativen Antriebstechnologien von zentraler Bedeutung. Perspektivisch sollte Strom aus erneuerbaren Energiequellen zur Energieversorgung im Verkehr direkt genutzt werden, d. h. ohne weitere Umwandlungsschritte zu strombasierten Kraftstoffen, sofern dies, wie etwa im Pkw-Verkehr, technisch möglich ist. Alternative Kraftstoffe Alternative Kraftstoffe sind entweder bezüglich der Bereitstellung alternativ, also "biogen" oder "synthetisch", oder es handelt sich um andere Kraftstoffe als Alternative zu Benzin oder Diesel. Biogene Kraftstoffe, oder auch Biokraftstoffe, werden vor allem aus Pflanzen, Pflanzenresten und ‑abfällen oder Gülle gewonnen. Synthetische Kraftstoffe unterscheiden sich von konventionellen Kraftstoffen durch ein geändertes Herstellungsverfahren und oft auch durch andere Ausgangsstoffe als Mineralöl. Biokraftstoffe wie Bioethanol oder Biodiesel leisten bereits seit vielen Jahren einen Beitrag zur Minderung der Treibhausgasemissionen des Verkehrssektors. Biokraftstoffe sind entweder flüssige (zum Beispiel Ethanol und Biodiesel) oder gasförmige (Biomethan) Kraftstoffe, die aus ⁠ Biomasse ⁠ hergestellt werden und für den Betrieb von Verbrennungsmotoren in Fahrzeugen bestimmt sind. Man unterscheidet Biokraftstoffe der ersten und zweiten Generation, wobei eine klare Abgrenzung der Kraftstoffe beider Generationen schwierig ist. Bei der Erzeugung von Biokraftstoffen der ersten Generation wird nur die Frucht (Öl, Zucker, Stärke) genutzt, während ein Großteil der Pflanze als Futtermittel Verwendung finden kann. Biokraftstoffe der zweiten Generation sind noch in der Entwicklung und werden aus Pflanzenmaterial hergestellt, das nicht als Nahrung verwendet werden kann, zum Beispiel aus Ernteabfällen, Abfällen aus der Landwirtschaft oder Siedlungsmüll. Zu dieser Generation, dessen Vertreter auch „fortgeschrittene Biokraftstoffe“ genannt werden, gehört auch solches Bioethanol, das aus zellulosehaltigen Materialien wie Stroh oder Holz gewonnen wird. Generelle Informationen zur energetischen Nutzung von Biomasse und zu den Nachhaltigkeitsanforderungen sind auf unserer UBA-Themenseite zur Bioenergie zusammengestellt. Synthetische Kraftstoffe sind Kraftstoffe, die durch chemische Verfahren hergestellt werden und bei denen, im Vergleich zu konventionellen Kraftstoffen, die Rohstoffquelle Mineralöl durch andere Energieträger ersetzt wird. XtL-Kraftstoffe sind synthetische Kraftstoffe, die ähnliche Eigenschaften und chemische Zusammensetzungen wie konventionelle Kraftstoffe aufweisen. Sie entstehen durch die Umwandlung eines Energieträgers zu einem kohlenstoffhaltigen Kraftstoff, der unter Normalbedingungen flüssig ist. Das "X" wird in dieser Schreibweise durch eine Abkürzung des ursprünglichen Energieträgers ausgetauscht. "tL" steht für "to Liquid". Aktuell sind in dieser Schreibweise die Abkürzungen GtL (Gas-to-Liquid) bei der Verwendung von Erdgas beziehungsweise Biogas, BtL (Biomass-to-Liquid) bei der Verwendung von Biomasse und CtL (Coal-to-Liquid) bei der Verwendung von Kohle als Ausgangsenergieträger gebräuchlich. Zur Herstellung von Power-to-X (Power-to-Gas/⁠ PtG ⁠ oder ⁠ PtL ⁠)-Kraftstoffen wird Wasser unter Einsatz von Strom in Wasserstoff und Sauerstoff aufgespalten. In einem Folgeschritt kann der gewonnene Wasserstoff in Verbindung mit anderen Komponenten – hier vor allem Kohlenstoffdioxid – zu Methan (PtG-Methan) oder flüssigem Kraftstoff (PtL) verarbeitet werden. Der gewonnene Wasserstoff (PtG-Wasserstoff) kann jedoch auch direkt als Energieträger im Verkehr, zum Beispiel in Brennstoffzellen-Fahrzeugen genutzt werden. Mehr Informationen hierzu finden Sie in den vom UBA beantworteten „Häufig gestellten Fragen zu Wasserstoff im Verkehr“ . Elektrischer Antrieb: Strom als Energieversorgungsoption Energetisch betrachtet, ist der Einsatz von ⁠ PtG ⁠-Wasserstoff in Brennstoffzellen-Pkw bzw. von ⁠PtG⁠-Methan und PtL⁠ in Verbrennungsmotoren von Pkw hochgradig ineffizient. Für dieselbe ⁠ Fahrleistung ⁠ muss etwa die drei- beziehungsweise sechsfache Menge an Strom im Vergleich zu einem Elektro-Pkw eingesetzt werden, wie die folgende Abbildung veranschaulicht. Da erneuerbarer Strom, beispielsweise aus Wind und Photovoltaik, und die notwendigen Ressourcenbedarfe für die Energieanlagen nicht unbegrenzt zur Verfügung stehen, muss auch mit erneuerbaren Energien sparsam umgegangen werden. Am effizientesten ist die direkte Stromnutzung im Verkehr, beispielsweise über Oberleitungen für Bahnen. Ähnlich effizient ist die Stromnutzung über batterieelektrisch betriebene Fahrzeuge. Deswegen sollte zur möglichst effizienten Defossilisierung des Straßenverkehrs ein weitgehender Umstieg auf batterieelektrisch betriebene Fahrzeuge angestrebt werden, wo immer dies technisch möglich ist. Vollzugsaufgaben des UBA zur 38. BImSchV In Deutschland sind Inverkehrbringer von Kraftstoffen gesetzlich verpflichtet, den Ausstoß von Treibhausgasen (THG) durch die von ihnen in Verkehr gebrachten Kraftstoffe um einen bestimmten Prozentsatz zu mindern. Dies regelt die im seit 1. Januar 2022 gültigen Gesetz zur Weiterentwicklung der Treibhausgasminderungsquote festgeschriebene THG‑Quote. Im Rahmen der THG-Quote hat das Umweltbundesamt (⁠ UBA ⁠) verschiedene Vollzugsaufgaben. Eine Aufgabe regelt die Verordnung zur Festlegung weiterer Bestimmungen zur Treibhausgasminderung bei Kraftstoffen (38. ⁠ BImSchV ⁠): Das UBA bescheinigt auf Antrag Strommengen, die im Straßenverkehr genutzt wurden. Weitere Informationen finden Sie auf der entsprechenden Themenseite zur 38. BImSchV .

AGEE-Stat aktuell - Nr.: 2/2023

Liebe Leser*innen, vor Kurzem wurde der Monatsbericht Plus zur Entwicklung der Erneuerbaren Energien in Deutschland im ersten Halbjahr 2023 veröffentlicht. Damit präsentiert die Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) erste Daten zur Entwicklung der erneuerbaren Energien in den Bereichen Strom, Wärme und Verkehr für das erste Halbjahr 2023. In diesem Newsletter finden Sie eine Kurzzusammenfassung der Ergebnisse und alle wichtigen Links zu den neuen Daten. Außerdem möchten wir Sie mit diesem Newsletter über weitere Forschungsergebnisse mit Bezug zur Erneuerbare-Energien-Statistik informieren. Eine interessante Lektüre wünscht das Team der Geschäftsstelle der AGEE-Stat am Umweltbundesamt Monatsbericht Plus „Erneuerbare Energien in Deutschland – Daten zur Entwicklung im ersten Halbjahr 2023“ veröffentlicht Erneuerbare Energien 2019 bis 2023 Quelle: AGEE-Stat / Umweltbundesamt Die AGEE-Stat hat den Monatsbericht Plus „Erneuerbare Energien in Deutschland – Daten zur Entwicklung im ersten Halbjahr 2023“ veröffentlicht. In dieser Publikation werden erste offizielle Daten zur Entwicklung der erneuerbaren Energien (EE) vorgestellt. Diese zeigen: Anteil der Erneuerbaren am Bruttostromverbrauch Im erste Halbjahr 2023 wurden knapp 136 Terawattstunden (TWh) erneuerbarer Strom erzeugt. Damit nahm die EE-Stromerzeugung gegenüber dem Vorjahreszeitraum um circa 1 Prozent ab. Grund hierfür waren sonnenarme und auch weniger windige Witterungsverhältnisse als im Vorjahr. Die Energiepreiskrise zu Beginn des Jahres führte indes zu einem sinkenden Stromverbrauch insgesamt. Daher nahm der Anteil der erneuerbaren Energien am (Brutto)-Stromverbrauch trotz sinkender EE-Stromerzeugung im Vergleich zum Vorjahr zu und lag bei 52 Prozent (1. Halbjahr 2022: 49 Prozent). Anteil der Erneuerbaren am Endenergieverbrauch Wärme Auch im ersten Halbjahr 2023 wurden weiterhin fossile Energieträger zur Wärmeerzeugung eingespart und durch erneuerbare Energieträger ersetzt. Dies führte zu einem Anstieg der erneuerbaren Wärme, insbesondere durch den Einsatz fester Biomasse in Haushalten, aber auch im Bereich der Wärmepumpen. Mit etwa 119 TWh erhöhte sich der Anteil der erneuerbaren Energien am Endenergieverbrauch für Wärme und Kälte im Vergleich zum Vorjahr um 5 Prozent. Anteil der Erneuerbaren am Endenergieverbrauch Verkehr Im Verkehrsbereich war im ersten Halbjahr hingegen nach ersten Abschätzungen nur wenig Dynamik festzustellen. So wurden in etwa gleich viele Biokraftstoffe (Biodiesel, Pflanzenöl, Bioethanol oder Biomethan) getankt wie im Vorjahreszeitraum. Zugenommen hat indes der Anteil des Verbrauchs von erneuerbarem Strom im Verkehr, bedingt durch die Zunahme des EE-Anteils am Strommix insgesamt. Mit 20 TWh steigt somit der Anteil der erneuerbaren Energien am Endenergieverbrauch im Verkehr um etwa 3 Prozent. Der Monatsbericht Plus „Erneuerbare Energien in Deutschland – Daten zur Entwicklung im ersten Halbjahr 2023“ stellt die oben genannten Entwicklungen grafisch und tabellarisch dar und gibt zusätzliche Hintergrundinformationen. Weitere aktuelle Daten und Fakten zur Entwicklung der erneuerbaren Energien sind auf den Themenseiten des Umweltbundesamtes sowie im Internetportal Erneuerbare Energien des Bundesministeriums für Wirtschaft und Energie (BMWK) verfügbar. Dort finden Sie unter anderem auch weitere Grafiken und Schaubilder sowie die vollständigen Zeitreihentabellen zur Entwicklung der erneuerbaren Energien ab dem Jahr 1990 in Deutsch und Englisch. Abschlussbericht des Forschungsvorhabens „Substitutionseffekte erneuerbarer Energien im Stromsektor“ (SeEiS) veröffentlicht Daten zur Entwicklung der Jahre 2013 – 2018 und 2019 – 2021 Der Abschlussbericht zum Forschungsvorhaben „Substitutionseffekte erneuerbarer Energien im Stromsektor“ (SeEiS), welche von ESA² GmbH zusammen mit der TU Dresden, dem KIT und TEP Energy GmbH erarbeitet wurde, ist auf der Seite des Umweltbundesamtes veröffentlicht worden. Die Studie ist eine wesentliche Datengrundlage für die Emissionsbilanz erneuerbarer Energieträger, da sie die Substitutionsbeziehungen zwischen fossilen und erneuerbaren Energieträgern im Stromsektor herleitet. Durch den grenzübergreifenden Stromhandel sind die Vermeidungseffekte dabei nicht auf Deutschland begrenzt. Die durch erneuerbare Stromerzeugung vermiedenen Emissionen sind dabei von Entwicklungen des Kraftwerksparks, der Preisentwicklung der Energieträger und dem Ausbau der erneuerbaren Stromerzeugung abhängig. Die Substitutionseffekte können sich in Deutschland deutlich von denen im Ausland unterscheiden. Dabei stieg der Anteil der in Deutschland vermiedenen Emissionen in den letzten 10 Jahren deutlich an. Während in Deutschland hauptsächlich Stromerzeugung aus Steinkohlekraftwerken ersetzt wurde, wurde im Ausland hauptsächlich Stromerzeugung aus Gaskraftwerken ersetzt. Seit 2019 kommt es zudem auf Grund der teilweise hohen Erzeugungsspitzen erneuerbarer Stromerzeugung auch zu einer Verdrängung von Braunkohlestrom. AGEE-Stat – Fachgespräch „Statistische Erfassung erneuerbarer Energie aus Umweltwärme und oberflächennaher Geothermie (Wärmepumpen)“ AGEE-Stat diskutierte mit Expert*innen über die Wärmepumpenstatistik Am 25.05.2023 fand das AGEE-Stat-Fachgespräch „Statistische Erfassung erneuerbarer Energie aus Umweltwärme und oberflächennaher Geothermie (Wärmepumpen)“ statt, in dessen Rahmen die Geschäftsstelle der AGEE-Stat mit rund 30 Fachleuten aus Wissenschaft, Forschung und Praxis sowie Vertreter*innen der Verbände sowie Ministerien und Landesämtern über die Verbesserung der statistischen Erfassung von Wärmepumpen und deren nutzbar gemachter Wärme diskutierte. Das Fraunhofer-ISE (FH-ISE) als forschungsnehmende Institution stellte ihre im Rahmen des Forschungsvorhabens „Wissenschaftliche Analysen zu ausgewählten Aspekten der Statistik erneuerbarer Energien und zur Unterstützung der Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat)“ gewonnenen wissenschaftlichen Erkenntnisse und Empfehlungen zur Weiterentwicklung vor. Die einfließenden Datenquellen und Parameter des Modells wurden dabei präsentiert und von FH-ISE zur Diskussion gestellt. Einig waren sich die Fachexpert*innen darin, dass, trotz des weiter steigenden politischen und medialen Interesses am Thema erneuerbare Wärmeversorgung, viele Herausforderungen und Datenlücken bei der energiestatistischen Erfassung von Wärmepumpen existierten. Die AGEE-Stat als mit der Bereitstellung einer belastbaren, methodisch konsistenten Datenbasis für Deutschland beauftragtes Gremium stellt sich der daraus resultierenden Herausforderung für seine Arbeit. Fachgespräche wie diese dienen dazu, bestehende und neue Ansätze und Methoden einem Praxischeck zu unterziehen und an neue Erkenntnisse und Gegebenheiten anzupassen. Es ist vorgesehen, die Weiterentwicklungen der Wärmepumpen-Statistik im dritten Quartal in den AGEE-Stat-Zeitreihen zur Entwicklung der erneuerbaren Energien in Deutschland , der Publikation „Erneuerbare Energien in Zahlen“ und den zugehörigen BMWK-Zeitreihen und -Schaubildern umzusetzen. In eigener Sache Um den zunehmenden Zukunftsaufgaben der Energie(daten)wende gerecht zu werden, wurde die Aufbauorganisation der Abteilung V 1 Klimaschutz und Energie des Umweltbundesamtes weiterentwickelt. In diesem Kontext möchten wir Sie darauf aufmerksam machen, dass die Geschäftsstelle der Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) zukünftig als neu gegründetes Fachgebiet V 1.8 ihre Arbeiten wahrnehmen wird. E-Mailverkehr, der an das neue Fachgebiet V 1.8 „ Geschäftsstelle der Arbeitsgruppe Erneuerbare Energien-Statistik “ gerichtet wird, senden Sie bitte wie bisher an das bestehende Postfach AGEE-Stat@uba.de .

Transportguterweiterung für die Rohstoffpipeline Rostock-Böhlen (RRB)

Die Dow Olefinverbund GmbH, Olefinstraße 1, 04564 Böhlen hat bei der Landesdirektion Sachsen als obere Wasserbehörde mit Schreiben vom 2. Mai 2022, Unterlagen vollständig am 15.11.2022, die Feststellung beantragt, ob für das Vorhaben „Transportguterweiterung für die Rohstoffpipeline Rostock-Böhlen“ eine Verpflichtung zur Durchführung einer Umweltverträglichkeitsprüfung besteht. Über die Rohstoffpipeline Rostock-Böhlen werden seit ihrer Inbetriebnahme im Jahr 1997 flüssige Kohlenwasserstoffgemische, insbesondere Naphtha (Rohbenzin), Pyrolysebenzin und Kondensat transportiert. Des Weiteren ist die RRB für den Transport von Pentan, Benzol und Rohöl (von Rostock bis Leuna) sowie für Flüssiggase der Fraktion C3+ genehmigt. Zur Umsetzung der globalen Klimaschutzziele sowie der Dow-Nachhaltigkeitsziele zur Reduzierung des CO2-Ausstoßes sowie zur Aufrechterhaltung der Versorgungssicherheit an den mitteldeutschen Industriestandorten ist eine Transportguterweiterung für folgende Einsatzstoffgruppen vorgesehen: - Kohlenwasserstoffe basierend auf pflanzlichen Ölen und/oder tierischen Fetten, hydrierte Pflanzenöle, Einordnung je nach Stoffeigenschaften in Dieseltyp und Naphtha-Typ - Rohstoffe aus Abfällen der Kunststoff-, Holzindustrie etc. - Rohstoffe aus recycelten Kunststoffen - Ergänzende fossile Rohstoffe (Diesel/Kerosin) Insbesondere ist die Erweiterung des Fördermedienspektrums um folgende Rohstoffe geplant. - Diesel-Typ (Biobasis) - Naphtha-Typ (Biobasis) - Cirularity-Co-Processed LWP test-run-product (Diesel/Naphtha-Gemisch) - Kerosin (Jet-A1).

Mehr grüner Strom und mehr erneuerbare Wärme im Jahr 2022

Mehr grüner Strom und mehr erneuerbare Wärme im Jahr 2022 Die erneuerbare Stromerzeugung steigt 2022 auf einen neuen Höchstwert. Quelle: Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) Diagramm als PNG-Datei herunterladen Im Jahr 2022 werden etwa 46 Prozent des Stromverbrauchs durch erneuerbare Energien gedeckt. Quelle: Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) Diagramm als PNG-Datei herunterladen Photovoltaik- und Windstromerzeugung wachsen im Jahr 2022 kräftig im Vergleich zum Vorjahr. Quelle: Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) Diagramm als PNG-Datei herunterladen Viele neue Photovoltaikanlagen im Jahr 2022, aber wenig Dynamik beim Ausbau der Windenergie Quelle: Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) Diagramm als PNG-Datei herunterladen Sonniges Wetter sorgte im Jahr 2022 für starkes Wachstum bei der Stromerzeugung aus Photovoltaik. Die Installation von Wärmepumpen und Solarthermie nimmt Fahrt auf. Wenig Dynamik zeigt allerdings weiterhin der Ausbau der Windenergie. Um die Ziele des Erneuerbare-Energien-Gesetzes zu erreichen, muss der Ausbau der Erneuerbaren in Deutschland deutlich gesteigert werden. Nach vorläufigen Daten der Geschäftsstelle der Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) am Umweltbundesamt wurden im Jahr 2022 etwa neun Prozent mehr Strom aus erneuerbaren Quellen erzeugt als im Vorjahr. Die gesamte ⁠ Bruttostromerzeugung ⁠ aus erneuerbaren Energien wird mit etwa 256 Terawattstunden (⁠ TWh ⁠) zwar über der Erzeugung der Vorjahre liegen, jedoch unter dem Ziel des im Erneuerbaren-Energien-Gesetz (EEG 2021) avisierten Strommengenpfads von 269 TWh. Um im Jahr 2030 die avisierten 80 Prozent des deutschen Bruttostromverbrauchs mit erneuerbarem Strom zu decken, wird eine Strommenge von etwa 600 TWh benötigt. Damit muss sich die grüne Stromerzeugung in den nächsten acht Jahren mehr als verdoppeln. Da der Strombedarf im Jahr 2022 leicht rückläufig war, wird der Anteil erneuerbarer Energien am ⁠ Bruttostromverbrauch ⁠ im Jahr 2022 voraussichtlich deutlich von 41 Prozent im Jahr 2021 auf rund 46 Prozent steigen. Prof. Dr. Dirk Messner, Präsident des Umweltbundesamtes hierzu: „Zwar wurden die Ausbauziele für Photovoltaik und Windenergie an Land aus dem EEG 2021 für das Jahr 2022 erreicht. Allerdings kann das Erreichen dieser ersten, eher mäßig ambitionierten Zwischenschritte nicht als großer Erfolg gewertet werden. Glücklicherweise wurden die Ausbauziele inzwischen deutlich angehoben. Jetzt gilt es insbesondere bei dem so wichtigen Ausbau der Windenergie an Land dringend, alle möglichen Hebel in Bewegung zu setzen, um den Ausbau zu beschleunigen. Entscheidende Weichen für einen erfolgreichen Ausbauverlauf müssen zeitnah gestellt werden. Nur dann besteht Hoffnung, die Klimaziele zu erreichen und die Abhängigkeit von russischem Erdgas und fossilen Rohstoffen zu überwinden.“ Die Zahlen für Strom, Wärme und Verkehr im Einzelnen Hauptpfeiler der erneuerbaren Stromproduktion waren auch im Jahr 2022 die Photovoltaik und die Windenergie: Die Stromerzeugung aus Photovoltaik-Anlagen stieg wegen des Anlagenzuwachses im Vorjahr, aber auch wegen des sehr sonnigen Wetters um 23 Prozent auf 61 TWh deutlich an. Auch die Stromerzeugung aus Windenergie lag im Jahr 2022 mit 128 TWh (davon ca. 103 TWh aus Windenergieanlagen an Land und ca. 25 TWh aus Windenergieanlagen auf See) 12 Prozent höher als im windarmen Vorjahr. Der bisherige Spitzenwert aus dem Jahr 2020 wurde bei der Windenergie jedoch nicht erreicht, was auch auf den nach wie vor sehr niedrigen Anlagenzubau zurückgeführt werden kann. Im Wärmesektor gab es aufgrund der milden ⁠ Witterung ⁠ im Jahr 2022 und nicht zuletzt aufgrund der Einsparmaßnahmen infolge des Krieges in der Ukraine einen deutlichen Rückgang des gesamten Energieverbrauchs. Der Verbrauch erneuerbarer Energien für Wärmezwecke betrug dagegen mehr als 200 TWh, und damit etwa 1 Prozent mehr als 2021. Neben einer starken Zunahme der Nutzung von Umweltwärme und oberflächennaher Geothermie mittels Wärmepumpen (+13 Prozent gegenüber dem Vorjahr), stieg auch die Wärmeerzeugung aus Solarthermieanlagen (+11 Prozent) wegen der sehr sonnigen Witterung deutlich. Zusätzlich dürfte auch ein verstärkter Einsatz von Holz als Ersatz für Erdgas zum Wachstum der erneuerbaren Wärme beigetragen haben. Im Verkehr wurden Biokraftstoffe, trotz der von 2021 zu 2022 von 6 auf 7 Prozent gestiegenen ⁠ Treibhausgas ⁠-Minderungsquote, nur in einem ähnlichen Umfang wie im Vorjahr eingesetzt. Grund hierfür waren Quotenübertragungen aus dem Jahr 2021 und nochmals steigende UER-Anrechnungen, also die Möglichkeit, Emissionsminderungen auch in der ⁠ Vorkette ⁠ der Kraftstoffproduktion anrechnen zu lassen. Vorläufige Daten zeigen, dass der Absatz von Biodiesel (inkl. hydrierter Pflanzenöle, HVO) leicht rückläufig war. Der Absatz von Bioethanol dagegen stiegt leicht an. Erneuerbarer Strom wurde im Verkehr im Jahr 2022 mit einem Zuwachs von 15 Prozent deutlich mehr eingesetzt als im Vorjahr. Weitere Informationen Die Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) bilanziert im Auftrag des Bundesministeriums für Wirtschaft und ⁠ Klimaschutz ⁠ die Nutzung der erneuerbaren Energien. Sie hat auf der Grundlage aktuell verfügbarer Daten eine erste Schätzung zur Entwicklung der erneuerbaren Energien im Strom-, Wärme- und Verkehrssektor im Jahr 2022 erstellt. Besonders in den Bereichen Wärme und Verkehr sind die bisher vorliegenden Daten aber noch mit großen Unsicherheiten behaftet. Im März 2023 wird das jährliche AGEE-Stat-Hintergrundpapier „Erneuerbare Energien in Deutschland – Daten zur Entwicklung im Jahr 2022“ erscheinen. Mit dem Hintergrundpapier werden konsolidierte Daten für die Bereiche Strom, Wärme und Verkehr veröffentlicht und vertiefende Einschätzungen zur Entwicklung gegeben.

1 2 3 4 565 66 67