Der Pretest des 5. Umwelt-Surveys Teilvorhaben 2 - Human-Biomonitoring Analytik dient zur Vorbereitung des 5. Umwelt-Surveys. Es wurden 52 Urinproben auf verschiedene Umweltkontaminanten bzw. Bezugsparameter (Kreatinin) analysiert. Neben dem Kreatiningehalt wurden 1OH-Pyren, N-Methylpyrrolidon und N-Ethylpyrrolidon- Metabolite , Cotinin und 2-Mercaptothiobenzol bestimmt. Die Konzentrationen von verschiedenen Phthalat-Metaboliten und Metaboliten von Phthalatersatzprodukten wurden ebenfalls analysiert. Zudem wurden Parabene und umweltrelevante Phenole, Organophosphate, Quecksilber, Cadmium, Arsen untersucht. Veröffentlicht in Umwelt & Gesundheit | 10/2015.
Herstellung von Ethylen (=Ethen) durch Dampfpyrolyse von Naphtha nach dem Steamcracking-Verfahren. Zum Cracken (Spalten) wird der Kohlenwasserstoff mit Dampf gemischt und auf 500 bis 650 C vorgeheizt. Im eigentlichen Reaktor wird dann das Gemisch bei Temperaturen zwischen 700 und 900 C gecrackt. Die Verweilzeit im Reaktor beträgt weniger als eine Sekunde. Nach dem Reaktor wird das heiße Gasgemisch schockartig abgekühlt, um die Zersetzung der gebildeten Produkte (außer Ethylen entstehen weitere wertvolle Produkte: Propylen, C4-Fraktion, Benzol) zu vermeiden. Schließlich wird der Produktstrom gewaschen, getrocknet und fraktioniert. Zur Trennung der Produkte in verschiedene Fraktionen wird das Gasgemisch komprimiert und auf tiefe Temperaturen abgekühlt. Zur Reingewinnung der Produkte (Ethylen, Propylen und Benzol) aus den unterschiedlichen Fraktionen sind jeweils weitere spezielle Aufarbeitungsschritte notwendig. Weltweit werden 97 % der Ethylenproduktion durch die Dampfpyrolyse (Steamcracking) von Kohlenwasserstoffen hergestellt. Als wichtigster Rohstoff dient in den USA Ethan aus Erdgas (ca. 50 %), in Westeuropa und Japan wird überwiegend (über 80 %) von Naphtha ausgegangen. Der Weltjahresverbrauch an Ethylen betrug 1983 33,7 Mio. t (USA 13,1 Mio. t, Westeuropa 11,9 Mio. t). In der BRD wurden 1987 ca. 2,8 Mio. t Ethylen produziert (siehe #2). Für die Betrachtung der Herstellung von Ethylen wurden die Literaturquellen #1-3 ausgewertet. Bei der hier betrachteten Ethylenherstellung wird nur das Steamcracking von Naphtha bilanziert. Die Daten geben den Stand der Technik der 80er Jahre in Westeuropa bzw. den USA (Emissionen) wieder. Da die Kennziffern vom eingesetzten Rohstoff und der Produktverteilung abhängig sind, ist eine Übertragung der Daten auf andere Herstellungsländer nur bedingt möglich. Allokation: Beim Cracken von Naphtha entsteht eine Vielzahl an Stoffen. Dieser Output des Crackers wurde nach den Angaben von #1 berechnet und ist in Tabelle 1 wiedergegeben. Als Produkte werden Ethylen, Propylen, 60 % der C4-Fraktion und Benzol betrachtet. Im Unterschied zu den Angaben aus #1 wurde Acetylen durch Benzol als Produkt ersetzt. Als Reststoffe werden 40 % der C4-Fraktion, Wasserstoff, Benzine, Rückstände und Acetylen gewertet. Während nach #1 (siehe Tabelle 1, Spalten 1 und 2) das Heizgas (Methan) mitbilanziert wird, entfällt dieses bei der Bilanzierung für GEMIS (siehe Tabelle 1, Spalten 3 bis 5). Das Heizgas wird bei GEMIS nicht stofflich berücksichtigt (wird bei Input und Output des Crackers herausgerechnet), da es wieder direkt im Prozeß zur Energieerzeugung (Erzeugung von Prozeßwärme durch Verbrennung) eingesetzt wird. Der Rohstoffbedarf an Naphtha, der Energie- und Wasserbedarf sowie die anfallenden Emissionen und Abfälle werden unter den Produkten (Ethylen, Propylen, 60 % der C4- Fraktion und Benzol) aufgeteilt. Die Allokation erfolgt nach Massen. So entfällt auf Ethylen ein Anteil von 53,6 %, auf Propylen 26,8 %, auf die 60 % C4 10,7 % und auf Benzol die restlichen 8,9 % (vgl. Produktmengen in Tabelle 1). Für die Reststoffe wird eine Gutschrift für den Ersatz von Rohöl gegeben. In #1 wird der beim Cracken anfallende 3-bar-Dampf mit einer Energiegutschrift von 3150 MJ (Heizwert) pro Tonne Dampf bedacht. Dies entspricht einer Dampfgutschrift von 10,37 GJ/t Ethylen. Im Unterschied dazu werden bei #2 die Einsparungsmöglichkeiten nur mit ca. 2 GJ beziffert. In GEMIS werden die Bilanzdaten aus #1 übernommen. Tabelle 1 Stoffbilanzen beim Steamcracking in kg (Gesamtprozeß und nach Allokation für die Ethylenherstellung) BUWAL gesamt [kg] GEMIS gesamt [kg] allokiert für gesamt Ethylen [kg] Edukt Naphtha 1000 Edukt Naphtha 2766,7 1482,2 Produkte Produkt Ethylen 300 Ethylen 1000 1000 Propylen 150 Propylen 500 60 % C4-Frakt. 60 60 % C4 200 Benzol 50 Benzol 166,7 Reststoffe 268 Reststoffe 893,3 478,6 Heizgas 170 Verluste 2 Verluste 6,7 3,6 Genese der Kennziffern Massenbilanz: Die Massenbilanz des Crackers kann der Tabelle 1 entnommen werden. Ausgehend von den Angaben aus #1 (Spalten 2 der Tabelle 1) ergibt sich der Stoffstrom des Crackers bezogen auf die Herstellung von 1 Tonne Ethylen nach GEMIS (Spalte 4) durch das Herausrechnen des Heizgases und anschließendes Umrechnen der Werte von 300 kg auf 1000 kg Ethylen. Die sich aus dem Gesamtcrackingprozeß (Spalte 4) nach der Allokationsregel (53,6 %) ergebenden Anteile für die Ethylenherstellung sind in der Spalte 5 wiedergegeben. Energiebedarf: Der Energiebedarf beim Steamcracking wird in #1 mit ca. 7,78 GJ (inkl. Dampfgutschrift) pro Tonne Input angegeben. Umgerechnet auf einen Output von 1 t Ethylen ergibt sich entsprechend der o.g. Allokationsregel ein Energiebedarf von 13,89 GJ (inkl. Dampfgutschirft von 10,37 GJ/t). In GEMIS ergibt sich daraus für den Energiebedarf ein Wert von 24,26 GJ/t Ethylen (53,6 % der Energie des Gesamtcrackingprozesses) und eine Dampfgutschrift von 10,37 GJ/t . In #3 wird der Energiebedarf zur Herstellung von Ethylen (Input Naphtha) mit 5,415 btu/lb (Anteil für Ethylen, Tellus wertet den gesamten Output, 100 %, als Produkt) angegeben. Nach der hier angewandten Allokationsregel ergibt sich daraus ein Wert von 22,5 GJ/t Ethylen. Im Vergleich dazu wird bei #2 ein Wert von 20,9 GJ/t Ethylen angegeben. (Über Produktdefinition und Allokation liegen keine Angaben vor, die Werte werden jedoch als repräsentativ bezeichnet. Durch Nutzung der Abwärme sind Einsparungen von ca. 2 GJ/t Ethylen möglich). Für GEMIS werden entsprechend der Massenbilanz die Daten von #1 verwendet. Prozeßbedingte Luftemissionen: An prozeßbedingten Luftemissionen sind beim Steamcracking-Prozeß vor allem flüchtige organische Verbindungen (VOC) von Bedeutung. Aus der Literatur konnte nur für Benzol ein Wert ermittelt werden. Mit Hilfe der Angaben aus #3 - dort wird aus US EPA, Locating and Estimating Air Emissions from Sources of Benzene,1988 ein Wert von 0,169 lbs/ton Ethylen aufgeführt - wurde für Benzol ein Emissionswert von 0,151 kg/t Ethylen berechnet. Wasser: Der Kühlwasserbedarf zur Herstellung von 1 t Ethylen wurde aus den Angaben aus #2 berechnet. Er beträgt 1,26 m3 Wasser. Weiter Angaben zum Wasserbedarf bei der Ethylenherstellung liegen nicht vor. Abwasser entsteht beim Steamcracken beim Ausschleusen des kondensierten Prozeßdampfes und der verbrauchten Lauge mit der die Spaltgase schwefelfrei gewaschen werden. Abwasserinhaltsstoffe sind hauptsächlich Kohlenwasserstoffe, begleitet von Phenolen und Schwefelverbindungen (UBA 1995a). Für Phenol wurde mit den Angaben aus #3 - dort wird ein Wert von 0,00238 lbs/ton Ethylen aus US EPA, Contractors Engineering Report: Analysis of Organic Chemicals and Plastics/Synthetic Fibers Industries, Appendix S: Production Processes, 1981 aufgeführt - ein Wert von 0,00213 kg/t Ethylen berechnet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Öl gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 67,5% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften
Herstellung von Ethylen (=Ethen) durch Dampfpyrolyse von Naphtha nach dem Steamcracking-Verfahren. Zum Cracken (Spalten) wird der Kohlenwasserstoff mit Dampf gemischt und auf 500 bis 650 C vorgeheizt. Im eigentlichen Reaktor wird dann das Gemisch bei Temperaturen zwischen 700 und 900 C gecrackt. Die Verweilzeit im Reaktor beträgt weniger als eine Sekunde. Nach dem Reaktor wird das heiße Gasgemisch schockartig abgekühlt, um die Zersetzung der gebildeten Produkte (außer Ethylen entstehen weitere wertvolle Produkte: Propylen, C4-Fraktion, Benzol) zu vermeiden. Schließlich wird der Produktstrom gewaschen, getrocknet und fraktioniert. Zur Trennung der Produkte in verschiedene Fraktionen wird das Gasgemisch komprimiert und auf tiefe Temperaturen abgekühlt. Zur Reingewinnung der Produkte (Ethylen, Propylen und Benzol) aus den unterschiedlichen Fraktionen sind jeweils weitere spezielle Aufarbeitungsschritte notwendig. Weltweit werden 97 % der Ethylenproduktion durch die Dampfpyrolyse (Steamcracking) von Kohlenwasserstoffen hergestellt. Als wichtigster Rohstoff dient in den USA Ethan aus Erdgas (ca. 50 %), in Westeuropa und Japan wird überwiegend (über 80 %) von Naphtha ausgegangen. Der Weltjahresverbrauch an Ethylen betrug 1983 33,7 Mio. t (USA 13,1 Mio. t, Westeuropa 11,9 Mio. t). In der BRD wurden 1987 ca. 2,8 Mio. t Ethylen produziert (siehe #2). Für die Betrachtung der Herstellung von Ethylen wurden die Literaturquellen #1-3 ausgewertet. Bei der hier betrachteten Ethylenherstellung wird nur das Steamcracking von Naphtha bilanziert. Die Daten geben den Stand der Technik der 80er Jahre in Westeuropa bzw. den USA (Emissionen) wieder. Da die Kennziffern vom eingesetzten Rohstoff und der Produktverteilung abhängig sind, ist eine Übertragung der Daten auf andere Herstellungsländer nur bedingt möglich. Allokation: Beim Cracken von Naphtha entsteht eine Vielzahl an Stoffen. Dieser Output des Crackers wurde nach den Angaben von #1 berechnet und ist in Tabelle 1 wiedergegeben. Als Produkte werden Ethylen, Propylen, 60 % der C4-Fraktion und Benzol betrachtet. Im Unterschied zu den Angaben aus #1 wurde Acetylen durch Benzol als Produkt ersetzt. Als Reststoffe werden 40 % der C4-Fraktion, Wasserstoff, Benzine, Rückstände und Acetylen gewertet. Während nach #1 (siehe Tabelle 1, Spalten 1 und 2) das Heizgas (Methan) mitbilanziert wird, entfällt dieses bei der Bilanzierung für GEMIS (siehe Tabelle 1, Spalten 3 bis 5). Das Heizgas wird bei GEMIS nicht stofflich berücksichtigt (wird bei Input und Output des Crackers herausgerechnet), da es wieder direkt im Prozeß zur Energieerzeugung (Erzeugung von Prozeßwärme durch Verbrennung) eingesetzt wird. Der Rohstoffbedarf an Naphtha, der Energie- und Wasserbedarf sowie die anfallenden Emissionen und Abfälle werden unter den Produkten (Ethylen, Propylen, 60 % der C4- Fraktion und Benzol) aufgeteilt. Die Allokation erfolgt nach Massen. So entfällt auf Ethylen ein Anteil von 53,6 %, auf Propylen 26,8 %, auf die 60 % C4 10,7 % und auf Benzol die restlichen 8,9 % (vgl. Produktmengen in Tabelle 1). Für die Reststoffe wird eine Gutschrift für den Ersatz von Rohöl gegeben. In #1 wird der beim Cracken anfallende 3-bar-Dampf mit einer Energiegutschrift von 3150 MJ (Heizwert) pro Tonne Dampf bedacht. Dies entspricht einer Dampfgutschrift von 10,37 GJ/t Ethylen. Im Unterschied dazu werden bei #2 die Einsparungsmöglichkeiten nur mit ca. 2 GJ beziffert. In GEMIS werden die Bilanzdaten aus #1 übernommen. Tabelle 1 Stoffbilanzen beim Steamcracking in kg (Gesamtprozeß und nach Allokation für die Ethylenherstellung) BUWAL gesamt [kg] GEMIS gesamt [kg] allokiert für gesamt Ethylen [kg] Edukt Naphtha 1000 Edukt Naphtha 2766,7 1482,2 Produkte Produkt Ethylen 300 Ethylen 1000 1000 Propylen 150 Propylen 500 60 % C4-Frakt. 60 60 % C4 200 Benzol 50 Benzol 166,7 Reststoffe 268 Reststoffe 893,3 478,6 Heizgas 170 Verluste 2 Verluste 6,7 3,6 Genese der Kennziffern Massenbilanz: Die Massenbilanz des Crackers kann der Tabelle 1 entnommen werden. Ausgehend von den Angaben aus #1 (Spalten 2 der Tabelle 1) ergibt sich der Stoffstrom des Crackers bezogen auf die Herstellung von 1 Tonne Ethylen nach GEMIS (Spalte 4) durch das Herausrechnen des Heizgases und anschließendes Umrechnen der Werte von 300 kg auf 1000 kg Ethylen. Die sich aus dem Gesamtcrackingprozeß (Spalte 4) nach der Allokationsregel (53,6 %) ergebenden Anteile für die Ethylenherstellung sind in der Spalte 5 wiedergegeben. Energiebedarf: Der Energiebedarf beim Steamcracking wird in #1 mit ca. 7,78 GJ (inkl. Dampfgutschrift) pro Tonne Input angegeben. Umgerechnet auf einen Output von 1 t Ethylen ergibt sich entsprechend der o.g. Allokationsregel ein Energiebedarf von 13,89 GJ (inkl. Dampfgutschirft von 10,37 GJ/t). In GEMIS ergibt sich daraus für den Energiebedarf ein Wert von 24,26 GJ/t Ethylen (53,6 % der Energie des Gesamtcrackingprozesses) und eine Dampfgutschrift von 10,37 GJ/t . In #3 wird der Energiebedarf zur Herstellung von Ethylen (Input Naphtha) mit 5,415 btu/lb (Anteil für Ethylen, Tellus wertet den gesamten Output, 100 %, als Produkt) angegeben. Nach der hier angewandten Allokationsregel ergibt sich daraus ein Wert von 22,5 GJ/t Ethylen. Im Vergleich dazu wird bei #2 ein Wert von 20,9 GJ/t Ethylen angegeben. (Über Produktdefinition und Allokation liegen keine Angaben vor, die Werte werden jedoch als repräsentativ bezeichnet. Durch Nutzung der Abwärme sind Einsparungen von ca. 2 GJ/t Ethylen möglich). Für GEMIS werden entsprechend der Massenbilanz die Daten von #1 verwendet. Prozeßbedingte Luftemissionen: An prozeßbedingten Luftemissionen sind beim Steamcracking-Prozeß vor allem flüchtige organische Verbindungen (VOC) von Bedeutung. Aus der Literatur konnte nur für Benzol ein Wert ermittelt werden. Mit Hilfe der Angaben aus #3 - dort wird aus US EPA, Locating and Estimating Air Emissions from Sources of Benzene,1988 ein Wert von 0,169 lbs/ton Ethylen aufgeführt - wurde für Benzol ein Emissionswert von 0,151 kg/t Ethylen berechnet. Wasser: Der Kühlwasserbedarf zur Herstellung von 1 t Ethylen wurde aus den Angaben aus #2 berechnet. Er beträgt 1,26 m3 Wasser. Weiter Angaben zum Wasserbedarf bei der Ethylenherstellung liegen nicht vor. Abwasser entsteht beim Steamcracken beim Ausschleusen des kondensierten Prozeßdampfes und der verbrauchten Lauge mit der die Spaltgase schwefelfrei gewaschen werden. Abwasserinhaltsstoffe sind hauptsächlich Kohlenwasserstoffe, begleitet von Phenolen und Schwefelverbindungen (UBA 1995a). Für Phenol wurde mit den Angaben aus #3 - dort wird ein Wert von 0,00238 lbs/ton Ethylen aus US EPA, Contractors Engineering Report: Analysis of Organic Chemicals and Plastics/Synthetic Fibers Industries, Appendix S: Production Processes, 1981 aufgeführt - ein Wert von 0,00213 kg/t Ethylen berechnet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Öl gesicherte Leistung: 100% Jahr: 2015 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 67,5% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften
Herstellung von Ethylen (=Ethen) durch Dampfpyrolyse von Naphtha nach dem Steamcracking-Verfahren. Zum Cracken (Spalten) wird der Kohlenwasserstoff mit Dampf gemischt und auf 500 bis 650 C vorgeheizt. Im eigentlichen Reaktor wird dann das Gemisch bei Temperaturen zwischen 700 und 900 C gecrackt. Die Verweilzeit im Reaktor beträgt weniger als eine Sekunde. Nach dem Reaktor wird das heiße Gasgemisch schockartig abgekühlt, um die Zersetzung der gebildeten Produkte (außer Ethylen entstehen weitere wertvolle Produkte: Propylen, C4-Fraktion, Benzol) zu vermeiden. Schließlich wird der Produktstrom gewaschen, getrocknet und fraktioniert. Zur Trennung der Produkte in verschiedene Fraktionen wird das Gasgemisch komprimiert und auf tiefe Temperaturen abgekühlt. Zur Reingewinnung der Produkte (Ethylen, Propylen und Benzol) aus den unterschiedlichen Fraktionen sind jeweils weitere spezielle Aufarbeitungsschritte notwendig. Weltweit werden 97 % der Ethylenproduktion durch die Dampfpyrolyse (Steamcracking) von Kohlenwasserstoffen hergestellt. Als wichtigster Rohstoff dient in den USA Ethan aus Erdgas (ca. 50 %), in Westeuropa und Japan wird überwiegend (über 80 %) von Naphtha ausgegangen. Der Weltjahresverbrauch an Ethylen betrug 1983 33,7 Mio. t (USA 13,1 Mio. t, Westeuropa 11,9 Mio. t). In der BRD wurden 1987 ca. 2,8 Mio. t Ethylen produziert (siehe #2). Für die Betrachtung der Herstellung von Ethylen wurden die Literaturquellen #1-3 ausgewertet. Bei der hier betrachteten Ethylenherstellung wird nur das Steamcracking von Naphtha bilanziert. Die Daten geben den Stand der Technik der 80er Jahre in Westeuropa bzw. den USA (Emissionen) wieder. Da die Kennziffern vom eingesetzten Rohstoff und der Produktverteilung abhängig sind, ist eine Übertragung der Daten auf andere Herstellungsländer nur bedingt möglich. Allokation: Beim Cracken von Naphtha entsteht eine Vielzahl an Stoffen. Dieser Output des Crackers wurde nach den Angaben von #1 berechnet und ist in Tabelle 1 wiedergegeben. Als Produkte werden Ethylen, Propylen, 60 % der C4-Fraktion und Benzol betrachtet. Im Unterschied zu den Angaben aus #1 wurde Acetylen durch Benzol als Produkt ersetzt. Als Reststoffe werden 40 % der C4-Fraktion, Wasserstoff, Benzine, Rückstände und Acetylen gewertet. Während nach #1 (siehe Tabelle 1, Spalten 1 und 2) das Heizgas (Methan) mitbilanziert wird, entfällt dieses bei der Bilanzierung für GEMIS (siehe Tabelle 1, Spalten 3 bis 5). Das Heizgas wird bei GEMIS nicht stofflich berücksichtigt (wird bei Input und Output des Crackers herausgerechnet), da es wieder direkt im Prozeß zur Energieerzeugung (Erzeugung von Prozeßwärme durch Verbrennung) eingesetzt wird. Der Rohstoffbedarf an Naphtha, der Energie- und Wasserbedarf sowie die anfallenden Emissionen und Abfälle werden unter den Produkten (Ethylen, Propylen, 60 % der C4- Fraktion und Benzol) aufgeteilt. Die Allokation erfolgt nach Massen. So entfällt auf Ethylen ein Anteil von 53,6 %, auf Propylen 26,8 %, auf die 60 % C4 10,7 % und auf Benzol die restlichen 8,9 % (vgl. Produktmengen in Tabelle 1). Für die Reststoffe wird eine Gutschrift für den Ersatz von Rohöl gegeben. In #1 wird der beim Cracken anfallende 3-bar-Dampf mit einer Energiegutschrift von 3150 MJ (Heizwert) pro Tonne Dampf bedacht. Dies entspricht einer Dampfgutschrift von 10,37 GJ/t Ethylen. Im Unterschied dazu werden bei #2 die Einsparungsmöglichkeiten nur mit ca. 2 GJ beziffert. In GEMIS werden die Bilanzdaten aus #1 übernommen. Tabelle 1 Stoffbilanzen beim Steamcracking in kg (Gesamtprozeß und nach Allokation für die Ethylenherstellung) BUWAL gesamt [kg] GEMIS gesamt [kg] allokiert für gesamt Ethylen [kg] Edukt Naphtha 1000 Edukt Naphtha 2766,7 1482,2 Produkte Produkt Ethylen 300 Ethylen 1000 1000 Propylen 150 Propylen 500 60 % C4-Frakt. 60 60 % C4 200 Benzol 50 Benzol 166,7 Reststoffe 268 Reststoffe 893,3 478,6 Heizgas 170 Verluste 2 Verluste 6,7 3,6 Genese der Kennziffern Massenbilanz: Die Massenbilanz des Crackers kann der Tabelle 1 entnommen werden. Ausgehend von den Angaben aus #1 (Spalten 2 der Tabelle 1) ergibt sich der Stoffstrom des Crackers bezogen auf die Herstellung von 1 Tonne Ethylen nach GEMIS (Spalte 4) durch das Herausrechnen des Heizgases und anschließendes Umrechnen der Werte von 300 kg auf 1000 kg Ethylen. Die sich aus dem Gesamtcrackingprozeß (Spalte 4) nach der Allokationsregel (53,6 %) ergebenden Anteile für die Ethylenherstellung sind in der Spalte 5 wiedergegeben. Energiebedarf: Der Energiebedarf beim Steamcracking wird in #1 mit ca. 7,78 GJ (inkl. Dampfgutschrift) pro Tonne Input angegeben. Umgerechnet auf einen Output von 1 t Ethylen ergibt sich entsprechend der o.g. Allokationsregel ein Energiebedarf von 13,89 GJ (inkl. Dampfgutschirft von 10,37 GJ/t). In GEMIS ergibt sich daraus für den Energiebedarf ein Wert von 24,26 GJ/t Ethylen (53,6 % der Energie des Gesamtcrackingprozesses) und eine Dampfgutschrift von 10,37 GJ/t . In #3 wird der Energiebedarf zur Herstellung von Ethylen (Input Naphtha) mit 5,415 btu/lb (Anteil für Ethylen, Tellus wertet den gesamten Output, 100 %, als Produkt) angegeben. Nach der hier angewandten Allokationsregel ergibt sich daraus ein Wert von 22,5 GJ/t Ethylen. Im Vergleich dazu wird bei #2 ein Wert von 20,9 GJ/t Ethylen angegeben. (Über Produktdefinition und Allokation liegen keine Angaben vor, die Werte werden jedoch als repräsentativ bezeichnet. Durch Nutzung der Abwärme sind Einsparungen von ca. 2 GJ/t Ethylen möglich). Für GEMIS werden entsprechend der Massenbilanz die Daten von #1 verwendet. Prozeßbedingte Luftemissionen: An prozeßbedingten Luftemissionen sind beim Steamcracking-Prozeß vor allem flüchtige organische Verbindungen (VOC) von Bedeutung. Aus der Literatur konnte nur für Benzol ein Wert ermittelt werden. Mit Hilfe der Angaben aus #3 - dort wird aus US EPA, Locating and Estimating Air Emissions from Sources of Benzene,1988 ein Wert von 0,169 lbs/ton Ethylen aufgeführt - wurde für Benzol ein Emissionswert von 0,151 kg/t Ethylen berechnet. Wasser: Der Kühlwasserbedarf zur Herstellung von 1 t Ethylen wurde aus den Angaben aus #2 berechnet. Er beträgt 1,26 m3 Wasser. Weiter Angaben zum Wasserbedarf bei der Ethylenherstellung liegen nicht vor. Abwasser entsteht beim Steamcracken beim Ausschleusen des kondensierten Prozeßdampfes und der verbrauchten Lauge mit der die Spaltgase schwefelfrei gewaschen werden. Abwasserinhaltsstoffe sind hauptsächlich Kohlenwasserstoffe, begleitet von Phenolen und Schwefelverbindungen (UBA 1995a). Für Phenol wurde mit den Angaben aus #3 - dort wird ein Wert von 0,00238 lbs/ton Ethylen aus US EPA, Contractors Engineering Report: Analysis of Organic Chemicals and Plastics/Synthetic Fibers Industries, Appendix S: Production Processes, 1981 aufgeführt - ein Wert von 0,00213 kg/t Ethylen berechnet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Öl gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 67,5% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften
Herstellung von Ethylen (=Ethen) durch Dampfpyrolyse von Naphtha nach dem Steamcracking-Verfahren. Zum Cracken (Spalten) wird der Kohlenwasserstoff mit Dampf gemischt und auf 500 bis 650 C vorgeheizt. Im eigentlichen Reaktor wird dann das Gemisch bei Temperaturen zwischen 700 und 900 C gecrackt. Die Verweilzeit im Reaktor beträgt weniger als eine Sekunde. Nach dem Reaktor wird das heiße Gasgemisch schockartig abgekühlt, um die Zersetzung der gebildeten Produkte (außer Ethylen entstehen weitere wertvolle Produkte: Propylen, C4-Fraktion, Benzol) zu vermeiden. Schließlich wird der Produktstrom gewaschen, getrocknet und fraktioniert. Zur Trennung der Produkte in verschiedene Fraktionen wird das Gasgemisch komprimiert und auf tiefe Temperaturen abgekühlt. Zur Reingewinnung der Produkte (Ethylen, Propylen und Benzol) aus den unterschiedlichen Fraktionen sind jeweils weitere spezielle Aufarbeitungsschritte notwendig. Weltweit werden 97 % der Ethylenproduktion durch die Dampfpyrolyse (Steamcracking) von Kohlenwasserstoffen hergestellt. Als wichtigster Rohstoff dient in den USA Ethan aus Erdgas (ca. 50 %), in Westeuropa und Japan wird überwiegend (über 80 %) von Naphtha ausgegangen. Der Weltjahresverbrauch an Ethylen betrug 1983 33,7 Mio. t (USA 13,1 Mio. t, Westeuropa 11,9 Mio. t). In der BRD wurden 1987 ca. 2,8 Mio. t Ethylen produziert (siehe #2). Für die Betrachtung der Herstellung von Ethylen wurden die Literaturquellen #1-3 ausgewertet. Bei der hier betrachteten Ethylenherstellung wird nur das Steamcracking von Naphtha bilanziert. Die Daten geben den Stand der Technik der 80er Jahre in Westeuropa bzw. den USA (Emissionen) wieder. Da die Kennziffern vom eingesetzten Rohstoff und der Produktverteilung abhängig sind, ist eine Übertragung der Daten auf andere Herstellungsländer nur bedingt möglich. Allokation: Beim Cracken von Naphtha entsteht eine Vielzahl an Stoffen. Dieser Output des Crackers wurde nach den Angaben von #1 berechnet und ist in Tabelle 1 wiedergegeben. Als Produkte werden Ethylen, Propylen, 60 % der C4-Fraktion und Benzol betrachtet. Im Unterschied zu den Angaben aus #1 wurde Acetylen durch Benzol als Produkt ersetzt. Als Reststoffe werden 40 % der C4-Fraktion, Wasserstoff, Benzine, Rückstände und Acetylen gewertet. Während nach #1 (siehe Tabelle 1, Spalten 1 und 2) das Heizgas (Methan) mitbilanziert wird, entfällt dieses bei der Bilanzierung für GEMIS (siehe Tabelle 1, Spalten 3 bis 5). Das Heizgas wird bei GEMIS nicht stofflich berücksichtigt (wird bei Input und Output des Crackers herausgerechnet), da es wieder direkt im Prozeß zur Energieerzeugung (Erzeugung von Prozeßwärme durch Verbrennung) eingesetzt wird. Der Rohstoffbedarf an Naphtha, der Energie- und Wasserbedarf sowie die anfallenden Emissionen und Abfälle werden unter den Produkten (Ethylen, Propylen, 60 % der C4- Fraktion und Benzol) aufgeteilt. Die Allokation erfolgt nach Massen. So entfällt auf Ethylen ein Anteil von 53,6 %, auf Propylen 26,8 %, auf die 60 % C4 10,7 % und auf Benzol die restlichen 8,9 % (vgl. Produktmengen in Tabelle 1). Für die Reststoffe wird eine Gutschrift für den Ersatz von Rohöl gegeben. In #1 wird der beim Cracken anfallende 3-bar-Dampf mit einer Energiegutschrift von 3150 MJ (Heizwert) pro Tonne Dampf bedacht. Dies entspricht einer Dampfgutschrift von 10,37 GJ/t Ethylen. Im Unterschied dazu werden bei #2 die Einsparungsmöglichkeiten nur mit ca. 2 GJ beziffert. In GEMIS werden die Bilanzdaten aus #1 übernommen. Tabelle 1 Stoffbilanzen beim Steamcracking in kg (Gesamtprozeß und nach Allokation für die Ethylenherstellung) BUWAL gesamt [kg] GEMIS gesamt [kg] allokiert für gesamt Ethylen [kg] Edukt Naphtha 1000 Edukt Naphtha 2766,7 1482,2 Produkte Produkt Ethylen 300 Ethylen 1000 1000 Propylen 150 Propylen 500 60 % C4-Frakt. 60 60 % C4 200 Benzol 50 Benzol 166,7 Reststoffe 268 Reststoffe 893,3 478,6 Heizgas 170 Verluste 2 Verluste 6,7 3,6 Genese der Kennziffern Massenbilanz: Die Massenbilanz des Crackers kann der Tabelle 1 entnommen werden. Ausgehend von den Angaben aus #1 (Spalten 2 der Tabelle 1) ergibt sich der Stoffstrom des Crackers bezogen auf die Herstellung von 1 Tonne Ethylen nach GEMIS (Spalte 4) durch das Herausrechnen des Heizgases und anschließendes Umrechnen der Werte von 300 kg auf 1000 kg Ethylen. Die sich aus dem Gesamtcrackingprozeß (Spalte 4) nach der Allokationsregel (53,6 %) ergebenden Anteile für die Ethylenherstellung sind in der Spalte 5 wiedergegeben. Energiebedarf: Der Energiebedarf beim Steamcracking wird in #1 mit ca. 7,78 GJ (inkl. Dampfgutschrift) pro Tonne Input angegeben. Umgerechnet auf einen Output von 1 t Ethylen ergibt sich entsprechend der o.g. Allokationsregel ein Energiebedarf von 13,89 GJ (inkl. Dampfgutschirft von 10,37 GJ/t). In GEMIS ergibt sich daraus für den Energiebedarf ein Wert von 24,26 GJ/t Ethylen (53,6 % der Energie des Gesamtcrackingprozesses) und eine Dampfgutschrift von 10,37 GJ/t . In #3 wird der Energiebedarf zur Herstellung von Ethylen (Input Naphtha) mit 5,415 btu/lb (Anteil für Ethylen, Tellus wertet den gesamten Output, 100 %, als Produkt) angegeben. Nach der hier angewandten Allokationsregel ergibt sich daraus ein Wert von 22,5 GJ/t Ethylen. Im Vergleich dazu wird bei #2 ein Wert von 20,9 GJ/t Ethylen angegeben. (Über Produktdefinition und Allokation liegen keine Angaben vor, die Werte werden jedoch als repräsentativ bezeichnet. Durch Nutzung der Abwärme sind Einsparungen von ca. 2 GJ/t Ethylen möglich). Für GEMIS werden entsprechend der Massenbilanz die Daten von #1 verwendet. Prozeßbedingte Luftemissionen: An prozeßbedingten Luftemissionen sind beim Steamcracking-Prozeß vor allem flüchtige organische Verbindungen (VOC) von Bedeutung. Aus der Literatur konnte nur für Benzol ein Wert ermittelt werden. Mit Hilfe der Angaben aus #3 - dort wird aus US EPA, Locating and Estimating Air Emissions from Sources of Benzene,1988 ein Wert von 0,169 lbs/ton Ethylen aufgeführt - wurde für Benzol ein Emissionswert von 0,151 kg/t Ethylen berechnet. Wasser: Der Kühlwasserbedarf zur Herstellung von 1 t Ethylen wurde aus den Angaben aus #2 berechnet. Er beträgt 1,26 m3 Wasser. Weiter Angaben zum Wasserbedarf bei der Ethylenherstellung liegen nicht vor. Abwasser entsteht beim Steamcracken beim Ausschleusen des kondensierten Prozeßdampfes und der verbrauchten Lauge mit der die Spaltgase schwefelfrei gewaschen werden. Abwasserinhaltsstoffe sind hauptsächlich Kohlenwasserstoffe, begleitet von Phenolen und Schwefelverbindungen (UBA 1995a). Für Phenol wurde mit den Angaben aus #3 - dort wird ein Wert von 0,00238 lbs/ton Ethylen aus US EPA, Contractors Engineering Report: Analysis of Organic Chemicals and Plastics/Synthetic Fibers Industries, Appendix S: Production Processes, 1981 aufgeführt - ein Wert von 0,00213 kg/t Ethylen berechnet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Öl gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 67,5% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften
Herstellung von Ethylen (=Ethen) durch Dampfpyrolyse von Naphtha nach dem Steamcracking-Verfahren. Zum Cracken (Spalten) wird der Kohlenwasserstoff mit Dampf gemischt und auf 500 bis 650 C vorgeheizt. Im eigentlichen Reaktor wird dann das Gemisch bei Temperaturen zwischen 700 und 900 C gecrackt. Die Verweilzeit im Reaktor beträgt weniger als eine Sekunde. Nach dem Reaktor wird das heiße Gasgemisch schockartig abgekühlt, um die Zersetzung der gebildeten Produkte (außer Ethylen entstehen weitere wertvolle Produkte: Propylen, C4-Fraktion, Benzol) zu vermeiden. Schließlich wird der Produktstrom gewaschen, getrocknet und fraktioniert. Zur Trennung der Produkte in verschiedene Fraktionen wird das Gasgemisch komprimiert und auf tiefe Temperaturen abgekühlt. Zur Reingewinnung der Produkte (Ethylen, Propylen und Benzol) aus den unterschiedlichen Fraktionen sind jeweils weitere spezielle Aufarbeitungsschritte notwendig. Weltweit werden 97 % der Ethylenproduktion durch die Dampfpyrolyse (Steamcracking) von Kohlenwasserstoffen hergestellt. Als wichtigster Rohstoff dient in den USA Ethan aus Erdgas (ca. 50 %), in Westeuropa und Japan wird überwiegend (über 80 %) von Naphtha ausgegangen. Der Weltjahresverbrauch an Ethylen betrug 1983 33,7 Mio. t (USA 13,1 Mio. t, Westeuropa 11,9 Mio. t). In der BRD wurden 1987 ca. 2,8 Mio. t Ethylen produziert (siehe #2). Für die Betrachtung der Herstellung von Ethylen wurden die Literaturquellen #1-3 ausgewertet. Bei der hier betrachteten Ethylenherstellung wird nur das Steamcracking von Naphtha bilanziert. Die Daten geben den Stand der Technik der 80er Jahre in Westeuropa bzw. den USA (Emissionen) wieder. Da die Kennziffern vom eingesetzten Rohstoff und der Produktverteilung abhängig sind, ist eine Übertragung der Daten auf andere Herstellungsländer nur bedingt möglich. Allokation: Beim Cracken von Naphtha entsteht eine Vielzahl an Stoffen. Dieser Output des Crackers wurde nach den Angaben von #1 berechnet und ist in Tabelle 1 wiedergegeben. Als Produkte werden Ethylen, Propylen, 60 % der C4-Fraktion und Benzol betrachtet. Im Unterschied zu den Angaben aus #1 wurde Acetylen durch Benzol als Produkt ersetzt. Als Reststoffe werden 40 % der C4-Fraktion, Wasserstoff, Benzine, Rückstände und Acetylen gewertet. Während nach #1 (siehe Tabelle 1, Spalten 1 und 2) das Heizgas (Methan) mitbilanziert wird, entfällt dieses bei der Bilanzierung für GEMIS (siehe Tabelle 1, Spalten 3 bis 5). Das Heizgas wird bei GEMIS nicht stofflich berücksichtigt (wird bei Input und Output des Crackers herausgerechnet), da es wieder direkt im Prozeß zur Energieerzeugung (Erzeugung von Prozeßwärme durch Verbrennung) eingesetzt wird. Der Rohstoffbedarf an Naphtha, der Energie- und Wasserbedarf sowie die anfallenden Emissionen und Abfälle werden unter den Produkten (Ethylen, Propylen, 60 % der C4- Fraktion und Benzol) aufgeteilt. Die Allokation erfolgt nach Massen. So entfällt auf Ethylen ein Anteil von 53,6 %, auf Propylen 26,8 %, auf die 60 % C4 10,7 % und auf Benzol die restlichen 8,9 % (vgl. Produktmengen in Tabelle 1). Für die Reststoffe wird eine Gutschrift für den Ersatz von Rohöl gegeben. In #1 wird der beim Cracken anfallende 3-bar-Dampf mit einer Energiegutschrift von 3150 MJ (Heizwert) pro Tonne Dampf bedacht. Dies entspricht einer Dampfgutschrift von 10,37 GJ/t Ethylen. Im Unterschied dazu werden bei #2 die Einsparungsmöglichkeiten nur mit ca. 2 GJ beziffert. In GEMIS werden die Bilanzdaten aus #1 übernommen. Tabelle 1 Stoffbilanzen beim Steamcracking in kg (Gesamtprozeß und nach Allokation für die Ethylenherstellung) BUWAL gesamt [kg] GEMIS gesamt [kg] allokiert für gesamt Ethylen [kg] Edukt Naphtha 1000 Edukt Naphtha 2766,7 1482,2 Produkte Produkt Ethylen 300 Ethylen 1000 1000 Propylen 150 Propylen 500 60 % C4-Frakt. 60 60 % C4 200 Benzol 50 Benzol 166,7 Reststoffe 268 Reststoffe 893,3 478,6 Heizgas 170 Verluste 2 Verluste 6,7 3,6 Genese der Kennziffern Massenbilanz: Die Massenbilanz des Crackers kann der Tabelle 1 entnommen werden. Ausgehend von den Angaben aus #1 (Spalten 2 der Tabelle 1) ergibt sich der Stoffstrom des Crackers bezogen auf die Herstellung von 1 Tonne Ethylen nach GEMIS (Spalte 4) durch das Herausrechnen des Heizgases und anschließendes Umrechnen der Werte von 300 kg auf 1000 kg Ethylen. Die sich aus dem Gesamtcrackingprozeß (Spalte 4) nach der Allokationsregel (53,6 %) ergebenden Anteile für die Ethylenherstellung sind in der Spalte 5 wiedergegeben. Energiebedarf: Der Energiebedarf beim Steamcracking wird in #1 mit ca. 7,78 GJ (inkl. Dampfgutschrift) pro Tonne Input angegeben. Umgerechnet auf einen Output von 1 t Ethylen ergibt sich entsprechend der o.g. Allokationsregel ein Energiebedarf von 13,89 GJ (inkl. Dampfgutschirft von 10,37 GJ/t). In GEMIS ergibt sich daraus für den Energiebedarf ein Wert von 24,26 GJ/t Ethylen (53,6 % der Energie des Gesamtcrackingprozesses) und eine Dampfgutschrift von 10,37 GJ/t . In #3 wird der Energiebedarf zur Herstellung von Ethylen (Input Naphtha) mit 5,415 btu/lb (Anteil für Ethylen, Tellus wertet den gesamten Output, 100 %, als Produkt) angegeben. Nach der hier angewandten Allokationsregel ergibt sich daraus ein Wert von 22,5 GJ/t Ethylen. Im Vergleich dazu wird bei #2 ein Wert von 20,9 GJ/t Ethylen angegeben. (Über Produktdefinition und Allokation liegen keine Angaben vor, die Werte werden jedoch als repräsentativ bezeichnet. Durch Nutzung der Abwärme sind Einsparungen von ca. 2 GJ/t Ethylen möglich). Für GEMIS werden entsprechend der Massenbilanz die Daten von #1 verwendet. Prozeßbedingte Luftemissionen: An prozeßbedingten Luftemissionen sind beim Steamcracking-Prozeß vor allem flüchtige organische Verbindungen (VOC) von Bedeutung. Aus der Literatur konnte nur für Benzol ein Wert ermittelt werden. Mit Hilfe der Angaben aus #3 - dort wird aus US EPA, Locating and Estimating Air Emissions from Sources of Benzene,1988 ein Wert von 0,169 lbs/ton Ethylen aufgeführt - wurde für Benzol ein Emissionswert von 0,151 kg/t Ethylen berechnet. Wasser: Der Kühlwasserbedarf zur Herstellung von 1 t Ethylen wurde aus den Angaben aus #2 berechnet. Er beträgt 1,26 m3 Wasser. Weiter Angaben zum Wasserbedarf bei der Ethylenherstellung liegen nicht vor. Abwasser entsteht beim Steamcracken beim Ausschleusen des kondensierten Prozeßdampfes und der verbrauchten Lauge mit der die Spaltgase schwefelfrei gewaschen werden. Abwasserinhaltsstoffe sind hauptsächlich Kohlenwasserstoffe, begleitet von Phenolen und Schwefelverbindungen (UBA 1995a). Für Phenol wurde mit den Angaben aus #3 - dort wird ein Wert von 0,00238 lbs/ton Ethylen aus US EPA, Contractors Engineering Report: Analysis of Organic Chemicals and Plastics/Synthetic Fibers Industries, Appendix S: Production Processes, 1981 aufgeführt - ein Wert von 0,00213 kg/t Ethylen berechnet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Öl gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 67,5% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften
Herstellung von Ethylen (=Ethen) durch Dampfpyrolyse von Naphtha nach dem Steamcracking-Verfahren. Zum Cracken (Spalten) wird der Kohlenwasserstoff mit Dampf gemischt und auf 500 bis 650 C vorgeheizt. Im eigentlichen Reaktor wird dann das Gemisch bei Temperaturen zwischen 700 und 900 C gecrackt. Die Verweilzeit im Reaktor beträgt weniger als eine Sekunde. Nach dem Reaktor wird das heiße Gasgemisch schockartig abgekühlt, um die Zersetzung der gebildeten Produkte (außer Ethylen entstehen weitere wertvolle Produkte: Propylen, C4-Fraktion, Benzol) zu vermeiden. Schließlich wird der Produktstrom gewaschen, getrocknet und fraktioniert. Zur Trennung der Produkte in verschiedene Fraktionen wird das Gasgemisch komprimiert und auf tiefe Temperaturen abgekühlt. Zur Reingewinnung der Produkte (Ethylen, Propylen und Benzol) aus den unterschiedlichen Fraktionen sind jeweils weitere spezielle Aufarbeitungsschritte notwendig. Weltweit werden 97 % der Ethylenproduktion durch die Dampfpyrolyse (Steamcracking) von Kohlenwasserstoffen hergestellt. Als wichtigster Rohstoff dient in den USA Ethan aus Erdgas (ca. 50 %), in Westeuropa und Japan wird überwiegend (über 80 %) von Naphtha ausgegangen. Der Weltjahresverbrauch an Ethylen betrug 1983 33,7 Mio. t (USA 13,1 Mio. t, Westeuropa 11,9 Mio. t). In der BRD wurden 1987 ca. 2,8 Mio. t Ethylen produziert (siehe #2). Für die Betrachtung der Herstellung von Ethylen wurden die Literaturquellen #1-3 ausgewertet. Bei der hier betrachteten Ethylenherstellung wird nur das Steamcracking von Naphtha bilanziert. Die Daten geben den Stand der Technik der 80er Jahre in Westeuropa bzw. den USA (Emissionen) wieder. Da die Kennziffern vom eingesetzten Rohstoff und der Produktverteilung abhängig sind, ist eine Übertragung der Daten auf andere Herstellungsländer nur bedingt möglich. Allokation: Beim Cracken von Naphtha entsteht eine Vielzahl an Stoffen. Dieser Output des Crackers wurde nach den Angaben von #1 berechnet und ist in Tabelle 1 wiedergegeben. Als Produkte werden Ethylen, Propylen, 60 % der C4-Fraktion und Benzol betrachtet. Im Unterschied zu den Angaben aus #1 wurde Acetylen durch Benzol als Produkt ersetzt. Als Reststoffe werden 40 % der C4-Fraktion, Wasserstoff, Benzine, Rückstände und Acetylen gewertet. Während nach #1 (siehe Tabelle 1, Spalten 1 und 2) das Heizgas (Methan) mitbilanziert wird, entfällt dieses bei der Bilanzierung für GEMIS (siehe Tabelle 1, Spalten 3 bis 5). Das Heizgas wird bei GEMIS nicht stofflich berücksichtigt (wird bei Input und Output des Crackers herausgerechnet), da es wieder direkt im Prozeß zur Energieerzeugung (Erzeugung von Prozeßwärme durch Verbrennung) eingesetzt wird. Der Rohstoffbedarf an Naphtha, der Energie- und Wasserbedarf sowie die anfallenden Emissionen und Abfälle werden unter den Produkten (Ethylen, Propylen, 60 % der C4- Fraktion und Benzol) aufgeteilt. Die Allokation erfolgt nach Massen. So entfällt auf Ethylen ein Anteil von 53,6 %, auf Propylen 26,8 %, auf die 60 % C4 10,7 % und auf Benzol die restlichen 8,9 % (vgl. Produktmengen in Tabelle 1). Für die Reststoffe wird eine Gutschrift für den Ersatz von Rohöl gegeben. In #1 wird der beim Cracken anfallende 3-bar-Dampf mit einer Energiegutschrift von 3150 MJ (Heizwert) pro Tonne Dampf bedacht. Dies entspricht einer Dampfgutschrift von 10,37 GJ/t Ethylen. Im Unterschied dazu werden bei #2 die Einsparungsmöglichkeiten nur mit ca. 2 GJ beziffert. In GEMIS werden die Bilanzdaten aus #1 übernommen. Tabelle 1 Stoffbilanzen beim Steamcracking in kg (Gesamtprozeß und nach Allokation für die Ethylenherstellung) BUWAL gesamt [kg] GEMIS gesamt [kg] allokiert für gesamt Ethylen [kg] Edukt Naphtha 1000 Edukt Naphtha 2766,7 1482,2 Produkte Produkt Ethylen 300 Ethylen 1000 1000 Propylen 150 Propylen 500 60 % C4-Frakt. 60 60 % C4 200 Benzol 50 Benzol 166,7 Reststoffe 268 Reststoffe 893,3 478,6 Heizgas 170 Verluste 2 Verluste 6,7 3,6 Genese der Kennziffern Massenbilanz: Die Massenbilanz des Crackers kann der Tabelle 1 entnommen werden. Ausgehend von den Angaben aus #1 (Spalten 2 der Tabelle 1) ergibt sich der Stoffstrom des Crackers bezogen auf die Herstellung von 1 Tonne Ethylen nach GEMIS (Spalte 4) durch das Herausrechnen des Heizgases und anschließendes Umrechnen der Werte von 300 kg auf 1000 kg Ethylen. Die sich aus dem Gesamtcrackingprozeß (Spalte 4) nach der Allokationsregel (53,6 %) ergebenden Anteile für die Ethylenherstellung sind in der Spalte 5 wiedergegeben. Energiebedarf: Der Energiebedarf beim Steamcracking wird in #1 mit ca. 7,78 GJ (inkl. Dampfgutschrift) pro Tonne Input angegeben. Umgerechnet auf einen Output von 1 t Ethylen ergibt sich entsprechend der o.g. Allokationsregel ein Energiebedarf von 13,89 GJ (inkl. Dampfgutschirft von 10,37 GJ/t). In GEMIS ergibt sich daraus für den Energiebedarf ein Wert von 24,26 GJ/t Ethylen (53,6 % der Energie des Gesamtcrackingprozesses) und eine Dampfgutschrift von 10,37 GJ/t . In #3 wird der Energiebedarf zur Herstellung von Ethylen (Input Naphtha) mit 5,415 btu/lb (Anteil für Ethylen, Tellus wertet den gesamten Output, 100 %, als Produkt) angegeben. Nach der hier angewandten Allokationsregel ergibt sich daraus ein Wert von 22,5 GJ/t Ethylen. Im Vergleich dazu wird bei #2 ein Wert von 20,9 GJ/t Ethylen angegeben. (Über Produktdefinition und Allokation liegen keine Angaben vor, die Werte werden jedoch als repräsentativ bezeichnet. Durch Nutzung der Abwärme sind Einsparungen von ca. 2 GJ/t Ethylen möglich). Für GEMIS werden entsprechend der Massenbilanz die Daten von #1 verwendet. Prozeßbedingte Luftemissionen: An prozeßbedingten Luftemissionen sind beim Steamcracking-Prozeß vor allem flüchtige organische Verbindungen (VOC) von Bedeutung. Aus der Literatur konnte nur für Benzol ein Wert ermittelt werden. Mit Hilfe der Angaben aus #3 - dort wird aus US EPA, Locating and Estimating Air Emissions from Sources of Benzene,1988 ein Wert von 0,169 lbs/ton Ethylen aufgeführt - wurde für Benzol ein Emissionswert von 0,151 kg/t Ethylen berechnet. Wasser: Der Kühlwasserbedarf zur Herstellung von 1 t Ethylen wurde aus den Angaben aus #2 berechnet. Er beträgt 1,26 m3 Wasser. Weiter Angaben zum Wasserbedarf bei der Ethylenherstellung liegen nicht vor. Abwasser entsteht beim Steamcracken beim Ausschleusen des kondensierten Prozeßdampfes und der verbrauchten Lauge mit der die Spaltgase schwefelfrei gewaschen werden. Abwasserinhaltsstoffe sind hauptsächlich Kohlenwasserstoffe, begleitet von Phenolen und Schwefelverbindungen (UBA 1995a). Für Phenol wurde mit den Angaben aus #3 - dort wird ein Wert von 0,00238 lbs/ton Ethylen aus US EPA, Contractors Engineering Report: Analysis of Organic Chemicals and Plastics/Synthetic Fibers Industries, Appendix S: Production Processes, 1981 aufgeführt - ein Wert von 0,00213 kg/t Ethylen berechnet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Öl gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 67,5% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften
Herstellung von Ethylen (=Ethen) durch Dampfpyrolyse von Naphtha nach dem Steamcracking-Verfahren. Zum Cracken (Spalten) wird der Kohlenwasserstoff mit Dampf gemischt und auf 500 bis 650 C vorgeheizt. Im eigentlichen Reaktor wird dann das Gemisch bei Temperaturen zwischen 700 und 900 C gecrackt. Die Verweilzeit im Reaktor beträgt weniger als eine Sekunde. Nach dem Reaktor wird das heiße Gasgemisch schockartig abgekühlt, um die Zersetzung der gebildeten Produkte (außer Ethylen entstehen weitere wertvolle Produkte: Propylen, C4-Fraktion, Benzol) zu vermeiden. Schließlich wird der Produktstrom gewaschen, getrocknet und fraktioniert. Zur Trennung der Produkte in verschiedene Fraktionen wird das Gasgemisch komprimiert und auf tiefe Temperaturen abgekühlt. Zur Reingewinnung der Produkte (Ethylen, Propylen und Benzol) aus den unterschiedlichen Fraktionen sind jeweils weitere spezielle Aufarbeitungsschritte notwendig. Weltweit werden 97 % der Ethylenproduktion durch die Dampfpyrolyse (Steamcracking) von Kohlenwasserstoffen hergestellt. Als wichtigster Rohstoff dient in den USA Ethan aus Erdgas (ca. 50 %), in Westeuropa und Japan wird überwiegend (über 80 %) von Naphtha ausgegangen. Der Weltjahresverbrauch an Ethylen betrug 1983 33,7 Mio. t (USA 13,1 Mio. t, Westeuropa 11,9 Mio. t). In der BRD wurden 1987 ca. 2,8 Mio. t Ethylen produziert (siehe #2). Für die Betrachtung der Herstellung von Ethylen wurden die Literaturquellen #1-3 ausgewertet. Bei der hier betrachteten Ethylenherstellung wird nur das Steamcracking von Naphtha bilanziert. Die Daten geben den Stand der Technik der 80er Jahre in Westeuropa bzw. den USA (Emissionen) wieder. Da die Kennziffern vom eingesetzten Rohstoff und der Produktverteilung abhängig sind, ist eine Übertragung der Daten auf andere Herstellungsländer nur bedingt möglich. Allokation: Beim Cracken von Naphtha entsteht eine Vielzahl an Stoffen. Dieser Output des Crackers wurde nach den Angaben von #1 berechnet und ist in Tabelle 1 wiedergegeben. Als Produkte werden Ethylen, Propylen, 60 % der C4-Fraktion und Benzol betrachtet. Im Unterschied zu den Angaben aus #1 wurde Acetylen durch Benzol als Produkt ersetzt. Als Reststoffe werden 40 % der C4-Fraktion, Wasserstoff, Benzine, Rückstände und Acetylen gewertet. Während nach #1 (siehe Tabelle 1, Spalten 1 und 2) das Heizgas (Methan) mitbilanziert wird, entfällt dieses bei der Bilanzierung für GEMIS (siehe Tabelle 1, Spalten 3 bis 5). Das Heizgas wird bei GEMIS nicht stofflich berücksichtigt (wird bei Input und Output des Crackers herausgerechnet), da es wieder direkt im Prozeß zur Energieerzeugung (Erzeugung von Prozeßwärme durch Verbrennung) eingesetzt wird. Der Rohstoffbedarf an Naphtha, der Energie- und Wasserbedarf sowie die anfallenden Emissionen und Abfälle werden unter den Produkten (Ethylen, Propylen, 60 % der C4-Fraktion und Benzol) aufgeteilt. Die Allokation erfolgt nach Massen. So entfällt auf Ethylen ein Anteil von 53,6 %, auf Propylen 26,8 %, auf die 60 % C4 10,7 % und auf Benzol die restlichen 8,9 % (vgl. Produktmengen in Tabelle 1). Für die Reststoffe wird eine Gutschrift für den Ersatz von Rohöl gegeben. In #1 wird der beim Cracken anfallende 3-bar-Dampf mit einer Energiegutschrift von 3150 MJ (Heizwert) pro Tonne Dampf bedacht. Dies entspricht einer Dampfgutschrift von 10,37 GJ/t Ethylen. Im Unterschied dazu werden bei #2 die Einsparungsmöglichkeiten nur mit ca. 2 GJ beziffert. In GEMIS werden die Bilanzdaten aus #1 übernommen. Tabelle 1 Stoffbilanzen beim Steamcracking in kg (Gesamtprozeß und nach Allokation für die Ethylenherstellung) BUWAL gesamt [kg] GEMIS gesamt [kg] allokiert für gesamt Ethylen [kg] Edukt Naphtha 1000 Edukt Naphtha 2766,7 1482,2 Produkte Produkt Ethylen 300 Ethylen 1000 1000 Propylen 150 Propylen 500 60 % C4-Frakt. 60 60 % C4 200 Benzol 50 Benzol 166,7 Reststoffe 268 Reststoffe 893,3 478,6 Heizgas 170 Verluste 2 Verluste 6,7 3,6 Genese der Kennziffern Massenbilanz: Die Massenbilanz des Crackers kann der Tabelle 1 entnommen werden. Ausgehend von den Angaben aus #1 (Spalten 2 der Tabelle 1) ergibt sich der Stoffstrom des Crackers bezogen auf die Herstellung von 1 Tonne Ethylen nach GEMIS (Spalte 4) durch das Herausrechnen des Heizgases und anschließendes Umrechnen der Werte von 300 kg auf 1000 kg Ethylen. Die sich aus dem Gesamtcrackingprozeß (Spalte 4) nach der Allokationsregel (53,6 %) ergebenden Anteile für die Ethylenherstellung sind in der Spalte 5 wiedergegeben. Energiebedarf: Der Energiebedarf beim Steamcracking wird in #1 mit ca. 7,78 GJ (inkl. Dampfgutschrift) pro Tonne Input angegeben. Umgerechnet auf einen Output von 1 t Ethylen ergibt sich entsprechend der o.g. Allokationsregel ein Energiebedarf von 13,89 GJ (inkl. Dampfgutschirft von 10,37 GJ/t). In GEMIS ergibt sich daraus für den Energiebedarf ein Wert von 24,26 GJ/t Ethylen (53,6 % der Energie des Gesamtcrackingprozesses) und eine Dampfgutschrift von 10,37 GJ/t . In #3 wird der Energiebedarf zur Herstellung von Ethylen (Input Naphtha) mit 5,415 btu/lb (Anteil für Ethylen, Tellus wertet den gesamten Output, 100 %, als Produkt) angegeben. Nach der hier angewandten Allokationsregel ergibt sich daraus ein Wert von 22,5 GJ/t Ethylen. Im Vergleich dazu wird bei #2 ein Wert von 20,9 GJ/t Ethylen angegeben. (Über Produktdefinition und Allokation liegen keine Angaben vor, die Werte werden jedoch als repräsentativ bezeichnet. Durch Nutzung der Abwärme sind Einsparungen von ca. 2 GJ/t Ethylen möglich). Für GEMIS werden entsprechend der Massenbilanz die Daten von #1 verwendet. Prozessbedingte Luftemissionen: An prozeßbedingten Luftemissionen sind beim Steamcracking-Prozeß vor allem flüchtige organische Verbindungen (VOC) von Bedeutung. Aus der Literatur konnte nur für Benzol ein Wert ermittelt werden. Mit Hilfe der Angaben aus #3 - dort wird aus US EPA, Locating and Estimating Air Emissions from Sources of Benzene,1988 ein Wert von 0,169 lbs/ton Ethylen aufgeführt - wurde für Benzol ein Emissionswert von 0,151 kg/t Ethylen berechnet. Wasser: Der Kühlwasserbedarf zur Herstellung von 1 t Ethylen wurde aus den Angaben aus #2 berechnet. Er beträgt 1,26 m3 Wasser. Weiter Angaben zum Wasserbedarf bei der Ethylenherstellung liegen nicht vor. Abwasser entsteht beim Steamcracken beim Ausschleusen des kondensierten Prozeßdampfes und der verbrauchten Lauge mit der die Spaltgase schwefelfrei gewaschen werden. Abwasserinhaltsstoffe sind hauptsächlich Kohlenwasserstoffe, begleitet von Phenolen und Schwefelverbindungen (UBA 1995a). Für Phenol wurde mit den Angaben aus #3 - dort wird ein Wert von 0,00238 lbs/ton Ethylen aus US EPA, Contractors Engineering Report: Analysis of Organic Chemicals and Plastics/Synthetic Fibers Industries, Appendix S: Production Processes, 1981 aufgeführt - ein Wert von 0,00213 kg/t Ethylen berechnet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Öl gesicherte Leistung: 100% Jahr: 2050 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 67,5% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften
Polystyrol-Polymerisation: GPPS (und HIPS) werden heute hauptsächlich über kontinuierliche Polymerisationsprozesse hergestellt. Bei dem Polymerisationsverfahren in Lösung werden in geringen Mengen Lösungsmittel wie Toluol oder Ethylbenzol hinzugegeben. Das Masseverfahren unterscheidet sich dadurch, dass hierbei kein Lösungsmittel zugesetzt wird. Vielmehr dient Styrol sowohl als Edukt als auch als Lösungsmittel. In der Reaktorsektion wird das monomere Styrol zu Polystyrol umgesetzt. Das Produktgemisch, das die Reaktorsektion verläßt hat eine Polystyrolkonzentration von 70-90 %. Nicht umgesetztes monomeres Styrol und Lösungsmittel werden abgetrennt und wieder dem Reaktionsprozeß zugeführt. An den eigentlichen Polymerisationsschritt schließt sich die Zugabe von Additiven (Farbstoffe, Stabilisatoren) zur Produktschmelze, die Extrusion, die Kühlung des Monomers und die Granulation an. Prozess-Situierung: Bei dem Thermoplast Polystyrol (PS) werden verschiedene Arten an PS unterschieden. GP(general-purpose)PS oder auch Standard- PS ist ein hartes, schmelzbares und transparentes Material. HI(high-impact)PS enthält ca. 3 - 10 % Polybutadien als Gummizusatz. Expandable PS (EPS) ist Ausgangsmaterial für PS-Hartschäume. Die Herstellung geht von PS unter Zugabe von ca. 6 % eines Schäumungsmittels (z.B. Pentan) aus. EPS (Handelsname: Styropor) wird sowohl für die Geräusch- als auch die Kälteisolierung eingesetzt. Es werden aber auch Werbe- und Sportartike (z.B. Schwimmwesten)l aus EPS hergestellt. Extrudierte Polystyrolschäume (XPS) werden aus PS und halogenierten Kohlenwasserstoffen als Treibmittel hergestellt. XPS findelt vor allem als thermisches Isoliermittel Anwendung. Weitere Produkte können durch den Zusatz von Copolymeren bei der Polymerisation von Styrol erhalten werden. In dieser Prozeßeinheit wird die Polymerisation von Styrol zu GPPS bilanziert. Nicht alle betrachteten Literaturquellen geben explizit an welches Polystyrol dort bilanziert wird. Es wird jedoch angenommen, daß das Standard-PS betrachtet wird bzw. die entsprechenden Angaben sich nicht wesentlich von denen für GPPS unterscheiden. Der jährliche Verbrauch an PS betrug 1990 weltweit ca. 6,7 Mio. Tonnen. Davon entfielen ca. 2 Mio. t auf Westeuropa (Ullmann 1992). In (APME 1994) wird für Westeuropa, 1994, eine Produktionsmenge von 1,998 Mio. t PS aufgeführt. In #3 werden Anlagen bilanziert, die ca. 0,70 Mio. t GPPS bzw. ca 0,63. Mio. t HIPS produzieren. Die Bilanzierung der PS-Polymerisation beruht auf den Literaturquellen (Ullmann 1992), (APME 1994), #1, #2, #3, (OEKO 1992c) und (Tellus 1992). Aufgrund der unterschiedlichen Datenherkunft kann der Gesamtprozeß weder einem bestimmten Zeitraum noch einer bestimmten Region zugeordnet werden. Die Massenbilanz bezieht sich auf die Produktion in Deutschland Ende der 80er Jahre (#1). Die Energiebilanz gibt Daten Anfang der 80er Jahre aus den USA wieder (#2). Die Emissionswerte beziehen sich sowohl auf die USA (Tellus 1992) als auch auf Westeuropa (OEKO 1992c, #1). Allokation: keine Genese der Daten: - Massenbilanz: Nach #1 werden für die Herstellung einer Tonne Polystyrol (es ist anzunehmen, daß bei BUWAL GPPS bilanziert wird) 974,8 kg monomeres Styrol eingesetzt. Unter „Hilfsstoffe, Zusätze" werden weitere 31,2 kg aufgeführt, die nicht weiter spezifiziert sind. Diese Menge wird hier vernachlässigt. Bei der Polymerisation fällt eine Menge von 5,75 kg an nicht weiter spezifizierten „Nebenausbeuten" sowie 0,09 kg feste Abfälle an. Der Einsatz an Styrol stimmt gut mit den Angaben aus (Tellus 1992) bzw. #3 für die Herstellung von GPPS überein. Dort werden jeweils Werte von 980 kg Styrol und 30 bzw. 33 kg an Kohlenwasserstoffen genannt. Da bei BUWAL die ausführlichsten Angaben vorliegen, werden diese Daten für GEMIS verwendet. Energiebedarf: Die Prozessenergie zur Herstellung einer Tonne PS (Masseverfahren) wird in #2 mit insgesamt ca. 3,7 GJ/t PS beziffert (0,6 GJ elektrische Energie, 1,8 GJ Energieträger und 1,3 GJ Energieinhalt des eingesetzten Dampfs). Bei GEMIS wurde für den Einsatz des Energieträger ein Wirkungsgrad von 85 % zugundegelegt. Die entsprechende Energie wird (wie auch der eingesetzte Dampf) als Prozeaawärme (Industriemix, Summe aus Energieträger und Dampf: 2,8 GJ) bereitgestellt. Bei (Tellus 1992) wird ein fast identischer Energiebedarf von 3,8 GJ/t GPPS bilanziert (Masseverfahren: 2,8 GJ elektrische Energie, 1,0 GJ Energieinhalt des Dampfs). Im Vergleich dazu wird bei (PWMI 1993a) ein wesentlicher geringer Energiebedarf von 1,08 GJ/t GPPS genannt, der sich aus 0,80 GJ elektrischer Energie und 0,28 GJ an Energieträgern zusammensetzt. [Für die Herstellung von HIPS ist nach #3 ein vergleichbarer Energiebedarf, 0,60 GJ elektrische Energie und 0,33 GJ Energieträger, erforderlich]. Da bei #2 die weitaus detailliertesten Angaben vorliegen, wurden diese Werte als Kennziffern verwendet. Prozessbedingte Luftemissionen: Bei der Herstellung von Polystyrol sind prinzipiell Emissionen des monomeren Styrols in Betracht zu ziehen. In (OEKO 1992c) werden die prozeßbedingten VOC-Emissionen bei der Polystyrolherstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 1 kg VOC/t PS. Wasser: In #3 wird der Wasserbedarf zur Herstellung einer Tonne GPPS mit 1850 kg beziffert, hinzu kommen weitere 169 kg an Dampf.Im Hinblick auf Wasserverunreinigungen ist das Suspensionsverfahren (hauptsächlich für die Herstellung von EPS) relevant, bei dem die Polymerisation in wässrigem Medium durchgeführt wird. Beim Masseverfahren kommt das Produkt nur bei der Extrusion (Kühlung) in Kontakt mit Wasser. Angaben zu Abwasserwerten für das Masseverfahren sind in (Tellus 1992) enthalten. Im behandelten Abwasser wird dort für Benzol ein Wert von 0,048 g/t GPPS und für Phenol ein Wert von 0,56 g/t GPPS angegeben. Aus #1 kann entnommen werden, dass der BSB5-Wert gleich null ist. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 103% Produkt: Kunststoffe
Polystyrol-Polymerisation: GPPS (und HIPS) werden heute hauptsächlich über kontinuierliche Polymerisationsprozesse hergestellt. Bei dem Polymerisationsverfahren in Lösung werden in geringen Mengen Lösungsmittel wie Toluol oder Ethylbenzol hinzugegeben. Das Masseverfahren unterscheidet sich dadurch, dass hierbei kein Lösungsmittel zugesetzt wird. Vielmehr dient Styrol sowohl als Edukt als auch als Lösungsmittel. In der Reaktorsektion wird das monomere Styrol zu Polystyrol umgesetzt. Das Produktgemisch, das die Reaktorsektion verläßt hat eine Polystyrolkonzentration von 70-90 %. Nicht umgesetztes monomeres Styrol und Lösungsmittel werden abgetrennt und wieder dem Reaktionsprozeß zugeführt. An den eigentlichen Polymerisationsschritt schließt sich die Zugabe von Additiven (Farbstoffe, Stabilisatoren) zur Produktschmelze, die Extrusion, die Kühlung des Monomers und die Granulation an. Prozess-Situierung: Bei dem Thermoplast Polystyrol (PS) werden verschiedene Arten an PS unterschieden. GP(general-purpose)PS oder auch Standard- PS ist ein hartes, schmelzbares und transparentes Material. HI(high-impact)PS enthält ca. 3 - 10 % Polybutadien als Gummizusatz. Expandable PS (EPS) ist Ausgangsmaterial für PS-Hartschäume. Die Herstellung geht von PS unter Zugabe von ca. 6 % eines Schäumungsmittels (z.B. Pentan) aus. EPS (Handelsname: Styropor) wird sowohl für die Geräusch- als auch die Kälteisolierung eingesetzt. Es werden aber auch Werbe- und Sportartike (z.B. Schwimmwesten)l aus EPS hergestellt. Extrudierte Polystyrolschäume (XPS) werden aus PS und halogenierten Kohlenwasserstoffen als Treibmittel hergestellt. XPS findelt vor allem als thermisches Isoliermittel Anwendung. Weitere Produkte können durch den Zusatz von Copolymeren bei der Polymerisation von Styrol erhalten werden. In dieser Prozeßeinheit wird die Polymerisation von Styrol zu GPPS bilanziert. Nicht alle betrachteten Literaturquellen geben explizit an welches Polystyrol dort bilanziert wird. Es wird jedoch angenommen, daß das Standard-PS betrachtet wird bzw. die entsprechenden Angaben sich nicht wesentlich von denen für GPPS unterscheiden. Der jährliche Verbrauch an PS betrug 1990 weltweit ca. 6,7 Mio. Tonnen. Davon entfielen ca. 2 Mio. t auf Westeuropa (Ullmann 1992). In (APME 1994) wird für Westeuropa, 1994, eine Produktionsmenge von 1,998 Mio. t PS aufgeführt. In #3 werden Anlagen bilanziert, die ca. 0,70 Mio. t GPPS bzw. ca 0,63. Mio. t HIPS produzieren. Die Bilanzierung der PS-Polymerisation beruht auf den Literaturquellen (Ullmann 1992), (APME 1994), #1, #2, #3, (OEKO 1992c) und (Tellus 1992). Aufgrund der unterschiedlichen Datenherkunft kann der Gesamtprozeß weder einem bestimmten Zeitraum noch einer bestimmten Region zugeordnet werden. Die Massenbilanz bezieht sich auf die Produktion in Deutschland Ende der 80er Jahre (#1). Die Energiebilanz gibt Daten Anfang der 80er Jahre aus den USA wieder (#2). Die Emissionswerte beziehen sich sowohl auf die USA (Tellus 1992) als auch auf Westeuropa (OEKO 1992c, #1). Allokation: hier keine, aber in Vorketten (energetisch) Genese der Daten: - Massenbilanz: Nach #1 werden für die Herstellung einer Tonne Polystyrol (es ist anzunehmen, daß bei BUWAL GPPS bilanziert wird) 974,8 kg monomeres Styrol eingesetzt. Unter „Hilfsstoffe, Zusätze" werden weitere 31,2 kg aufgeführt, die nicht weiter spezifiziert sind. Diese Menge wird hier vernachlässigt. Bei der Polymerisation fällt eine Menge von 5,75 kg an nicht weiter spezifizierten „Nebenausbeuten" sowie 0,09 kg feste Abfälle an. Der Einsatz an Styrol stimmt gut mit den Angaben aus (Tellus 1992) bzw. #3 für die Herstellung von GPPS überein. Dort werden jeweils Werte von 980 kg Styrol und 30 bzw. 33 kg an Kohlenwasserstoffen genannt. Da bei BUWAL die ausführlichsten Angaben vorliegen, werden diese Daten für GEMIS verwendet. Energiebedarf: Die Prozessenergie zur Herstellung einer Tonne PS (Masseverfahren) wird in #2 mit insgesamt ca. 3,7 GJ/t PS beziffert (0,6 GJ elektrische Energie, 1,8 GJ Energieträger und 1,3 GJ Energieinhalt des eingesetzten Dampfs). Bei GEMIS wurde für den Einsatz des Energieträger ein Wirkungsgrad von 85 % zugundegelegt. Die entsprechende Energie wird (wie auch der eingesetzte Dampf) als Prozeaawärme (Industriemix, Summe aus Energieträger und Dampf: 2,8 GJ) bereitgestellt. Bei (Tellus 1992) wird ein fast identischer Energiebedarf von 3,8 GJ/t GPPS bilanziert (Masseverfahren: 2,8 GJ elektrische Energie, 1,0 GJ Energieinhalt des Dampfs). Im Vergleich dazu wird bei (PWMI 1993a) ein wesentlicher geringer Energiebedarf von 1,08 GJ/t GPPS genannt, der sich aus 0,80 GJ elektrischer Energie und 0,28 GJ an Energieträgern zusammensetzt. [Für die Herstellung von HIPS ist nach #3 ein vergleichbarer Energiebedarf, 0,60 GJ elektrische Energie und 0,33 GJ Energieträger, erforderlich]. Da bei #2 die weitaus detailliertesten Angaben vorliegen, wurden diese Werte als Kennziffern verwendet. Prozessbedingte Luftemissionen: Bei der Herstellung von Polystyrol sind prinzipiell Emissionen des monomeren Styrols in Betracht zu ziehen. In (OEKO 1992c) werden die prozeßbedingten VOC-Emissionen bei der Polystyrolherstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 1 kg VOC/t PS. Wasser: In #3 wird der Wasserbedarf zur Herstellung einer Tonne GPPS mit 1850 kg beziffert, hinzu kommen weitere 169 kg an Dampf.Im Hinblick auf Wasserverunreinigungen ist das Suspensionsverfahren (hauptsächlich für die Herstellung von EPS) relevant, bei dem die Polymerisation in wässrigem Medium durchgeführt wird. Beim Masseverfahren kommt das Produkt nur bei der Extrusion (Kühlung) in Kontakt mit Wasser. Angaben zu Abwasserwerten für das Masseverfahren sind in (Tellus 1992) enthalten. Im behandelten Abwasser wird dort für Benzol ein Wert von 0,048 g/t GPPS und für Phenol ein Wert von 0,56 g/t GPPS angegeben. Aus #1 kann entnommen werden, dass der BSB5-Wert gleich null ist. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 103% Produkt: Kunststoffe
Origin | Count |
---|---|
Bund | 579 |
Land | 1335 |
Type | Count |
---|---|
Förderprogramm | 460 |
Messwerte | 1307 |
Text | 117 |
Umweltprüfung | 2 |
unbekannt | 87 |
License | Count |
---|---|
closed | 94 |
open | 1768 |
unknown | 52 |
Language | Count |
---|---|
Deutsch | 1907 |
Englisch | 55 |
Resource type | Count |
---|---|
Archiv | 1291 |
Datei | 43 |
Dokument | 122 |
Keine | 416 |
Unbekannt | 2 |
Webseite | 1450 |
Topic | Count |
---|---|
Boden | 1723 |
Lebewesen & Lebensräume | 1797 |
Luft | 1661 |
Mensch & Umwelt | 1914 |
Wasser | 1766 |
Weitere | 1901 |