technologyComment of dimethyl carbonate production (RER): Dimethyl carbonate has been historically produced through the reaction of phosgene and methanol. Because of the toxicity of phosgene, a greener route of production has been developed (Tundo and Selva 2002). Today it is mostly produced through the reaction of ethylene or propylene carbonate with methanol. This activity models the production of dimethyl carbonate as the result of the reaction of ethylene carbonate and methanol. Chemical reaction: C3H4O3 + CH3OH -> C3H6O3 + CH2O This inventory representing production of a particular chemical compound is at least partially based on a generic model on the production of chemicals. The data generated by this model have been improved by compound-specific data when available. The model on production of chemicals is using specific industry or literature data wherever possible and more generic data on chemical production processes to fill compound-specific data gaps when necessary. The basic principles of the model have been published in literature (Hischier 2005, Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability). The model has been updated and extended with newly available data from the chemical industry. In the model, unreacted fractions are treated in a waste treatment process, and emissions reported are after a waste treatment process that is included in the scope of this dataset. For volatile reactants, a small level of evaporation is assumed. Solvents and catalysts are mostly recycled in closed-loop systems within the scope of the dataset and reported flows are for losses from this system. The main source of information for the values for heat, electricity, water (process and cooling), nitrogen, chemical factory is industry data from Gendorf. The values are a 5-year average of data (2011 - 2015) published by the Gendorf factory (Gendorf, 2016, Umwelterklärung, www.gendorf.de), (Gendorf, 2015, Umwelterklärung, www.gendorf.de), (Gendorf, 2014, Umwelterklärung, www.gendorf.de). The Gendorf factory is based in Germany, it produces a wide range of chemical substances. The factory produced 1657400 tonnes of chemical substances in the year 2015 (Gendorf, 2016, Umwelterklärung, www.gendorf.de) and 740000 tonnes of intermediate products. Reference(s): Hischier, R. (2005) Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability (9 pp). The International Journal of Life Cycle Assessment, Volume 10, Issue 1, pp 59–67. 10.1065/lca2004.10.181.7 Gendorf (2016) Umwelterklärung 2015, Werk Gendorf Industriepark, www.gendorf.de Tundo, P. and Selva, M. 2002. The Chemistry of Dimethyl Carbonate. Acc. Chem. Res. Vol.9, 35, pp. 706–716 For more information on the model please refer to the dedicate ecoinvent report, access it in the Report section of ecoQuery (http://www.ecoinvent.org/login-databases.html) technologyComment of oxidation of methanol (RER): Represents a current cross-section of actual plants in Europe. The inventory is based on 100% formaldehyde production. The inputs and outputs are an average of the Silver and Formox processes. Silver process: Initially, methanol is dehydrogenated and subsequently there is combustion of hydrogen overall resulting in the production of formaldehyde and water. The raction takes place with air over a crystalline silver catalyst. Formox process: Methanol is directly oxidized by air over a metal oxide catalyst at a temperature of 470 °C. excess heat is removed with an oil-transfer medium. The product gases are cooled, absorbed in water, and an aqueous 37% formaldehyde solution is obtained. (Wells, 1999) References: G. Margaret Wells, “Handbook of Petrochemicals and Processes”, 2nd edition, Ashgate, 1999 Althaus H.-J., Chudacoff M., Hischier R., Jungbluth N., Osses M. and Primas A. (2007) Life Cycle Inventories of Chemicals. Final report ecoinvent data v2.0 No. 8. Swiss Centre for Life Cycle Inventories, Dübendorf, CH.
Das Projekt "Carbon2Chem-2 L-5 - Carbon2Polymers" wird vom Umweltbundesamt gefördert und von Covestro Deutschland AG durchgeführt. Die Erforschung einer möglichen Verwendung von CO aus Kuppelgasen der Stahlindustrie für die Herstellung hochwertiger Kunststoffe soll im Rahmen des Vorhabens 'Carbon2Polymers II' konkret am Beispiel der Herstellung von Polycarbonat aus Diphenylcarbonat (DPC) erfolgen. Bestandteile des Projektes sind zudem eine umfassende Wirtschaftlichkeitsanalyse sowie Ökobilanzierung (LCA). In der vergangenen Förderperiode wurden eine Laboranlage sowie eine Technikumsanlage zur Phosgenerzeugung (Phosgen-Miniplant) errichtet und in Betrieb genommen. In der Labor- und in der Technikumsanlage werden mit Hüttengasen behandelte Katalysatoren unter verschiedenen Bedingungen getestet. Zudem wurden in der ersten Phase von Carbon2Polymers die Versuchsplanung zur Umsetzung des Phosgen mit dem Phenol angepasst und ein bestehender Reaktor ertüchtigt und in Betrieb genommen. In der jetzt anstehenden zweiten Förderphase wird der Einfluss von Begleitstoffen und Korrosion auf die Reaktionskinetik und das Reaktionsnetzwerk der Phosgenierung von Phenol unter bislang unüblichen Bedingungen untersucht. Zudem wird ein Prozessdesign für die großtechnische Umsetzung erarbeitet. Für die dritte Projektphase ist die Implementierung in einem industriellen Technikumsmaßstab angedacht.
Das Projekt "Teilvorhaben 3" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Katalyse e.V. an der Universität Rostock durchgeführt. 1. Vorhabenziel Ziel des Projektteils Verwendung von CO2 zur Diphenylcarbonat (DPC)-Synthese an dem LIKAT mitarbeitet ist die phosgenfreie, wirtschaftlich erfolgreiche Synthese von DPC-Einheiten, die weiter mit Bisphenol-A, dem mit Abstand bedeutendsten Monomer für Polycarbonate, zu Polycarbonaten umgesetzt werden. Diese hier angestrebte Dream Reaction beinhaltet sowohl die Vermeidung von Phosgen als auch die Fixierung von CO2, beides aus ökologischer und ökonomischer Perspektive von großem Interesse. 2. Arbeitsplanung Der Arbeitsplan orientiert sich an der in der Gesamtvorhabensbeschreibung dargestellten Planung. Daran angelehnt sind für das Teilvorhaben des LIKAT folgende Arbeitspakete (SP1 AP 1.1-1.5 und SP2 AP 2.5 sowie SP 3) definiert. Die Arbeiten werden in enger Kooperation mit den Projektpartnern durchgeführt. 3. Ergebnisverwertung Die im Rahmen dieses Projektes erarbeiteten Ergebnisse sollen in Publikationen und Patenten veröffentlicht werden. Die in diesem Projekt durchgeführten Studien beschäftigen sich mit generischen Problemen des Einbaus von CO2 in Kondensationspolymere und können deshalb kurzfristig nach Projektende vielfältige wissenschaftliche Folgeprojekte und/oder weiterführenden Entwicklungen anstoßen.
Das Projekt "Carbon2Chem- L5: Carbon2Polymers - Herstellung von Wertstoffen für die Kunststoffindustrie auf Basis von CO und CO2 aus Kuppelgasen" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Technische Chemie und Makromolekulare Chemie durchgeführt. Die bei der Herstellung von Stahl anfallenden sogenannten 'Kuppelgase' sind reich an Kohlenmonoxid (CO) und Kohlendioxid (CO2) und stellen eine alternative Kohlenstoff-Quelle für die Herstellung chemischer Wertprodukte dar. Neben der Umwandlung zu chemischen Bulkchemikalien stellt auch die Verwendung von CO und CO2 als Rohstoffe für die Kunststoffindustrie eine ökologisch wie ökonomisch interessante Variante da. Im Rahmen des Vorhabens Carbon2Polymers sollen neue Verfahren zur Herstellung von Polycarbonaten und den Polyurethanbestandteilen erforscht werden. Hochwertige Kunststoffe werden heutzutage in Mio. Tonnen hergestellt. Da auch in Zukunft von einem wachsenden Bedarf an diesen Materialen auszugehen ist, zeichnet sich für eine Synergie zwischen Stahlwerken und der Kunststoffindustrie ein Potential ab. Die stoffliche Nutzung der Kuppelgase hat das Potential, den spezifischen CO2-Ausstoß der Stahlwerke zu reduzieren und ermöglicht der chemischen Kunststoffindustrie den Zugang zu einer alternativen Rohstoffbasis. Insgesamt kann diese Synergie zu einer nennenswerten Senkung des Primärrohstoffverbrauchs und zu einer Reduktion von CO2-Emissionen führen. Im Rahmen dieses Vorhabens soll die Verwendung von CO aus Hüttengasen für die Polycarbonat-Herstellung (TP A) und von CO2 für die Isocyanat-Herstellung für Polyurethane (TP B) untersucht werden. Ein zentraler Punkt des Vorhabens ist TP A mit der Herstellung von Carbonaten unter der Randbedingung einer veränderten Rohstoffbasis und fluktuierendem Stromangebot. Besonderes Augenmerk wird dabei auf die Weiterentwicklung der beiden katalytischen Prozessschritte gelegt: der Phosgenbildung und der lösungsmittelfreien Direktphosgenierung. Aufgabe im TP B ist es, die entwickelten Verfahrenskonzepte, deren prinzipielle Anwendbarkeit bereits demonstriert wurde, in den verschiedenen Arbeitspaketen weiterzuentwickeln und zu optimieren, zu evaluieren, an die Produktverwertung anzukoppeln und damit zur industriellen Reife zu bringen.
Das Projekt "Carbon2Chem- L5: Carbon2Polymers - Herstellung von Wertstoffen für die Kunststoffindustrie auf Basis von CO und CO2 aus Kuppelgasen" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Kohlenforschung durchgeführt. Die bei der Herstellung von Stahl sowie der Bereitstellung der notwendigen Rohstoffe in einem Stahlwerk anfallenden sogenannten 'Kuppelgase' sind reich an Kohlenmonoxid (CO) und Kohlendioxid (CO2) und stellen daher potentiell eine alternative Kohlenstoff-Quelle für die Herstellung chemischer Wertprodukte dar. Neben der Umwandlung zu chemischen Bulkchemikalien wie Methanol, Harnstoff oder Ammoniak stellt auch die Verwendung von CO und CO2 als Rohstoffe für die Kunststoffindustrie eine ökologisch wie ökonomisch interessante Variante da. Im Rahmen des Vorhabens L5- Carbon2Polymers, das sich als ein Teil in die Gesamtstrategie von Carbon2Chem einbettet, sollen neue (Teil)verfahren zur Herstellung von Polycarbonaten und dem Polyurethanbestandteil Toluoldiisocyanat erforscht und entwickelt werden. Ein zentraler Punkt des Vorhabens ist Teilprojekt A mit der Herstellung von Carbonaten unter der speziellen Randbedingung einer veränderten Rohstoffbasis und fluktuierendem Stromangebot. Besonderes Augenmerk wird dabei auf die Erforschung und Weiterentwicklung der beiden katalytischen Prozessschritte gelegt: der Phosgenbildung und der lösungsmittelfreien Direktphosgenierung. Der Partner MPI stellt darüber hinaus auch neue, definierte Kohlenstoffstrukturen her. Im Rahmen dieses Arbeitspaktes soll durch Versuche im Labormaßstab ein geeigneter Katalysator zur Phosgenbildung identifiziert werden. Dabei werden die kommerziell erhältlichen Materialien vergleichend zu den zu definierten Strukturen gemessen. Anhand der Messdaten sollen die Modelle der katalytischen Umsetzung entwickelt und validiert werden. Hierbei soll sowohl die Nebenprodukt-Bildung des aus der Patentliteratur bekannten Tetrachlorkohlenstoffs betrachtet werden als auch die Wechselwirkung des Katalysators mit aus Kuppelgasen bekannten Nebenkomponenten und Verunreinigungen wie H2, H2S, CO2, O2.
Das Projekt "Verfahren zur Herstellung von Kohlensaeureestern und Polycarbonaten auf der Basis von Kohlendioxid" wird vom Umweltbundesamt gefördert und von Bayer AG durchgeführt. Es sollen Verfahren erarbeitet werden, die Herstellung von Kohlensaeureestern und Polycarbonaten auf der Basis von Phosgen zu ersetzen durch Verfahren, die von Kohlendioxid ausgehen. Dazu werden 3 Wege untersucht. 1. Umsetzung von Kohlendioxid mit Alkoholen oder Phenolen ueber geeigneten Katalysator. 2. Umsetzung von Kohlendioxid mit Aethylenoxid und Alkoholen zu Dialkylcarbonaten und deren Umesterung mit Phenol zu Diphenylcarbonat oder mit Bisphenol zu Polycarbonaten. 3. Umsetzung von Harnstoff mit ein- oder mehrwertigen Alkoholen oder Phenolen zu Kohlensaeureestern bzw. Polycarbonaten.
Das Projekt "Verfahren zur Herstellung von Kohlensaeureestern und Polycarbonaten auf der Basis von Kohlendioxid" wird vom Umweltbundesamt gefördert und von Bayer AG durchgeführt. Es sollen Verfahren erarbeitet werden, die Herstellung von Kohlensaeureestern und Polycarbonaten auf der Basis von Phosgen zu ersetzen durch Verfahren, die von Kohlendioxid ausgehen. Dazu werden 3 Wege untersucht. 1. Umsetzung von Kohlendioxid mit Alkoholen oder Phenolen ueber geeigneten Katalysator. 2. Umsetzung von Kohlendioxid mit Aethylenoxid und Alkoholen zu Dialkylcarbonaten und deren Umesterung mit Phenol zu Diphenylcarbonat oder mit Biphenol zu Polycarbonaten. 3. Umsetzung von Harnstoff mit ein- oder mehrwertigen Alkoholen oder Phenolen zu Kohlensaeureestern bzw. Polycarbonaten.
Das Projekt "Utilization of industrial waste and especially petrochemical residues for power generation with low emissions" wird vom Umweltbundesamt gefördert und von Mineralöl-Raffinerie Dollbergen GmbH durchgeführt. Objective: The purpose of the project is to demonstrate a low-emission combustion unit to burn petrochemical wastes, such as distillation bottoms, light boiling petrol residues, heavy oil fractions, acid tars and PCB-containing waste oil. General Information: The concept is based on a proprietary combustion system combined with a two step, dry flue gas treatment system and an existing boiler. The combustor is composed of a high swirl, substoichiometric combustion chamber, followed by an after combustion chamber, to which secondary air is added ensuring a residence time of 0.3 s. and 1200 deg. C. The particular geometry, together with the flow pattern lead to a complete combustion, with low formation levels of NOx, CO and dioxins. The flue gas is desulphurized by injection of crushed limestone, together with recirculated flue gas to reduce the temperature to a level of 1100 - 1150 deg. C. After heat recovery, lime powder and steam are added for HCI removal. Finally, the flue gas is cleaned using bag filters. Achievements: The plant started full operation on September 1988. The burner capacity was varied between 120-450 kg oil/h while for all tests the combustion air supplied was 125. The operating temperature of the furnace was in the range of 1150-1250 deg. C and this was controlled by recycling of flue gases. The flue gases purification system was modified considerably and it was concluded that hot gas desulphurization was not needed while for HCl removal a combination of limestone and steam injection in the dechlorination reactor proved efficient and resolved all operational problems of solids, (CaCl2) accumulation. No problem was encountered with the bag filter. Emission measurements for dust, CO, SO2, HCl and total carbon are performed continuously while emission measurements for inorganic halogen compounds (HF, phosgen), BTEX-aromatics, chlorinated hydrocarbons, PCB and PCDD are performed periodically. The table below summarizes some of the results obtained. It was also formal that no significant amounts of phosgene BTEX-aromatics, chlorinated hydrocarbons and polychlorinated Biphenyles are emitted by the installation and these were always well below the limits set by TA Luft. However the emissions of dioxines and furnaces were always close to the limits specified by TA Luft and although the limits were rarely exceeded the contractor plans to continue development work in this area. Nevertheless, it can be concluded that from the emissions point of view, the furnace chamber system with swirl has proved to burn waste oils successfully. During the demonstration period which ended on 31.12.1989, the demonstration plant fulfilled almost 80 per cent of the planned capacity of waste oils combustion and about 50 per cent of the targeted energy savings. The reduced capacity was due to technical optimation at the flue gas purification system while the reduced energy savings were due to the utilization of an existing old type radiation boiler instead..
Das Projekt "Teilvorhaben 5" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Technische Chemie und Makromolekulare Chemie durchgeführt. 1. Vorhabensziel 1.Ziel dieses Teilvorhabens ist die Entwicklung von hochaktiven und leicht zu optimierenden Katalysatorsystemen zur Herstellung von OH-funktionalisierten Polyether-Polycarbonat-Polyolen (PPP) unter Verwendung von CO2 als erneuerbarer Kohlenstoffquelle. Weiterhin sollen neue Katalysatorsysteme entwickelt werden, die die Synthese von Diphenylcarbonat (DPC)-Bausteinen unter Verwendung von CO2 ermöglichen. Beiden Zielen inhärent ist die Entwicklung alternativer Synthesewege zu den genannten Produkten unter Vermeidung des Gefahrstoffes Phosgen. 2. Arbeitsplanung 2.Für die PPP-Synthese werden zunächst homogene Katalysatoren -vorzugsweise einkernige Übergangsmetallkomplexe mit den Metallen Zink, Nickel und Eisen- entwickelt, die in Lewis-sauren ionischen Flüssigkeiten als Reaktionsmedium gehandhabt werden. Diese ionischen Flüssigkeiten werden ebenfalls synthetisiert und charakterisiert. Im Anschluss an die Katalysatorsynthese werden die Katalysatorsysteme mit spektroskopischen und gegebenenfalls röntgenographischen Methoden charakterisiert und anschließend Katalysereaktionen durchgeführt, um die Initial-Performance der Katalysatoren zu bestimmen. Auf Grundlage dieser Ergebnisse werden die Katalysatorsysteme dann optimiert. Alle nötigen off- und gegebenenfalls online-Analytikmethoden (NMR, GC/HPLC, MS, IR, UV, GPC) werden gegebenenfalls entwickelt oder angepasst. Bei der DPC-Synthese kommt das o.g. Verfahren analog zum Einsatz, wird allerdings auf die Synthese von Nanopartikel-Katalysatoren erweitert, bzw. dieses steht dort im Vordergrund. 3. Ergebnisverwertung 3. Die Anmeldung von Schutzrechten sowie die Publikation der Ergebnisse auf nationalen und internationalen Tagungen sowie in einschlägigen Fachzeitschriften wird angestrebt.
Das Projekt "Zur Minimierung der Tetrachlorethen-Emission bei der Chemischreinigung von Textilgut durch Ozon-UV-Oxidation" wird vom Umweltbundesamt gefördert und von WFK-Forschungsinstitut für Reinigungstechnologie e.V. durchgeführt. Ziel des Forschungsprojektes war die Entwicklung einer alternativen Nachbehandlungsstufe zur Beseitigung der Restkonzentration von Tetrachlorethen fuer die Chemischreinigung durch photochemischen Abbau (Ozon-UV-Oxidation) in der Luft (des Trocknungssystems der Reinigungsmaschinen) oder im Dampf (eines Tunnelfinishers). Der photochemische Abbau von Per fuehrt auf einem Reaktionsweg zum sehr giftigen Phosgen, das aber problemlos durch eine alkalische Nachwaesche in unbedenkliche Produkte (Natriumchlorid, Kohlendioxid) ueberfuehrbar ist. Der zweite Reaktionsweg fuehrt zu Trichloracetylchlorid, das in der alkalischen Nachwaesche die aetzende und hochchlorierte Trichloressigsaeure ergibt. Die Trichloressigsaeure laesst sich durch eine nachgeschaltete UV-Oxidation oder thermisch in Gegenwart von Titandioxid bis auf Spuren von enstehendem Trichlormethan oder Formiat fast vollstaendig mineralisieren (zu Kohlendioxid und Salzsaeure, die in der alkalischen Nachwaesche Natriumchlorid ergibt). Die Abbaueffizienz laesst sich durch UV-Strahler-Leistung, zugesetzte Ozonmenge, Wassermenge und die Bestrahlungszeit beeinflussen. Laborversuche ergaben fuer diese Parameter in einem weiten Bereich einen vollstaendigen Per-Abbau, wobei die zugesetzte Ozonmenge von untergeordneter Bedeutung war. Eine Beeinflussung des Per-Abbaus in der Weise, dass nur das in der alkalischen Nachwaesche leichter zu entfernende Phosgen und kein Trichloracetylchlorid entsteht, ist nicht moeglich. Aufgrund der vorliegenden Ergebnisse ist davon auszugehen, dass eine zur Minimierung der Restemissionen von Per aus Chemischreinigungen geeignete Reaktionsfuehrung auch unter Praxisbedingungen erreicht werden kann. Die UV-Oxidation koennte prinzipiell auch in kleinen transportablen Anlagen erfolgen, so dass sie auch fuer kleinere Betriebe wirtschaftlich ist.